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Microbes form the base of food webs and drive biogeochemical cycling. Pre-
dicting the effects of microbial evolution on global elemental cycles remains
a significant challenge due to the sheer number of interacting environmental
and trait combinations. Here, we present an approach for integrating multi-
variate trait data into a predictive model of trait evolution. We investigated
the outcome of thousands of possible adaptive walks parameterized using
empirical evolution data from the alga Chlamydomonas exposed to high CO2.
We found that the direction of historical bias (existing trait correlations)
influenced both the rate of adaptation and the evolved phenotypes (trait com-
binations). Critically, we use fitness landscapes derived directly from empirical
trait values to capture known evolutionary phenomena. This work demon-
strates that ecological models need to represent both changes in traits and
changes in the correlation between traits in order to accurately capture
phytoplankton evolution and predict future shifts in elemental cycling.
1. Introduction
Microbes play a critical role in regulating biogeochemistry and the global climate.
In recent years, there has been a significant increase in global change studies
examining the role of microbial evolution in shaping future biogeochemical
cycles. This work has helped to more explicitly integrate the fields of evolution
andmicrobial ecology, resulting in both long-term experimental evolution studies
with ecologically importantmicrobes and, to a limited extent, the incorporation of
adaptation into ecological and ocean circulation models [1–13]. These studies are
just the first step in tackling the immensely complex challenge of microbial evol-
ution and its influence on global biogeochemistry. We still have only a limited
understanding of how microbial communities will respond to multi-stressor
and fluctuating environmental change. Additionally, the sheer number of inter-
acting environmental and trait combinations exceeds our experimental ability
to robustly quantify these responses [14,15]. Hence, experimental and theoretical
methods to reduce dimensionality and extract broad evolutionary patterns across
traits and taxa are critical for creating a framework that can both help guide
experiments and make more accurate future predictions [5].

Seminal research in quantitative genetics has investigated the impact of trait
variation, genotypic variability, inheritance, epistasis and environmental variabil-
ity on adaptive walks using multivariate and eigenvector methods on theoretical
populations experiencing environmental change [16–20]. These studies have
broadly found that an evolving population may be able to access only a subset
of phenotypes. Other theoretical approaches emphasized the role of de novo
mutations in a fitness landscape without accounting for standing genetic
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fitness

Figure 1. Comparison of adaptive walks for two different phenotypes in a
rugged fitness landscape with four high-fitness peaks. Two example starting
phenotypes are represented as circles (magenta and black). The x- and y-axis
represent dimensions in fitness space (e.g. different traits). The phenotypes
start with low fitness (z-axis) and through trait and trait correlation changes
move to higher fitness. The adaptive walk is governed by historical bias, or
different initial trait architecture, that impacts the movement of the popu-
lation within the landscape. As the adaptive walk proceeds, the population
moves to the top of one of the fitness peaks. While there are several
paths available to each starting phenotype (represented by magenta and
black arrows), due to historical bias (trait correlation constraints), some
paths can be inaccessible (denoted by the grey and purple arrows). Note
that depending on historical bias and the phenotypic starting location,
some high-fitness peaks are either more difficult to access or completely
inaccessible.
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variation [21,22]. While these studies have generated evol-
utionary theory [22,23] relevant for marine microbes, the gulf
between evolution literature and biological oceanography has
widened such that current state-of-the-art evolutionary
models are not suited to interface with biogeochemical ODE
models [24].

Empirical data have also demonstrated that biological sys-
tems produce certain phenotypic variants more readily than
others in response to a perturbation (mutation or environ-
mental change) due to the inherent structure, composition
and evolutionary history of a population [25,26]. These find-
ings contrast with the long-held assumption of isotropic
(i.e. equal) variation [27] and have revealed instead that only
a limited part of multivariate phenotypic space (i.e. only cer-
tain phenotypes) can be accessed [18,20,23,25–28]. Figure 1
shows an illustrative example of how the accessibility of
high-fitness phenotypes (i.e. peaks in a fitness landscape) dif-
fers depending on the starting location (ancestral phenotype)
and the initial trajectory, which is dictated by a population’s
collective genetic architecture (figure 1, magenta and black cir-
cles and paths). In summary, a growing body of the literature
has shown that genetic architecture influences how traits and
trait correlations are impacted by environmental shifts and
that these shifts produce non-random distributions of pheno-
types [29–31]. These studies have substantial consequences
for understanding future shifts in marine phytoplankton func-
tion and thus carbon cycling and global climate [32,33].
However, there have been fewattempts to investigate the impli-
cations of this phenomenon for the evolution of trait and trait
correlations of photosynthetic microbes [19,20].

We introduce a framework for understanding how
evolutionary trajectories of phenotypes (suites of traits) in
microbial populations are impacted by the evolutionary
relationships between traits (historical bias) and the evolution
of trait relationships. Here, we define bias as standing trait cor-
relations (i.e. relationships) in a population that are heritable
and can impact fitness such that, over time, these correlations
can constrain the direction of evolution [16]. Critically, this
framework is based on measurable trait values and so does
not require the quantification of the fitness impacts of
mutations. This is important as most marine microbes are not
geneticallyaccessible andmapping the fitness effectsof individ-
ual genetic variants is resource intensive. Our trait correlation
evolution (TRACE) model is a first step towards investigating
how correlated metabolic traits with clear biogeochemical sig-
nificance may impact elemental cycling under environmental
change (e.g. ocean acidification). Specifically, TRACE generates
a trait-based fitness landscapebasedonempirical trait data thus
facilitating future integration into global biogeochemical
models in which marine microbes are represented using trait-
based functional groups. Our results indicate that populations
harbouring trait correlations oriented in (i.e. consistent with)
the direction of selection may experience accelerated rates of
adaptation. We suggest that incorporating these dynamics
into biogeochemical models will be important for accurately
predicting the impact of microbial adaptation on rates of
biogeochemical cycling in the ocean.
2. Material and methods
(a) Trait-based fitness landscape
We generated a multivariate trait-based fitness landscape (trait-
scape) using principal component analyses (PCA). Specifically,
a trait-scape was created using four independent ecologically rel-
evant traits (growth rate, respiration, cell size and daughter cell
production) from five genotypes of high-CO2-adapted
Chlamydomonas reinhardtii [3]. PCA was conducted on standar-
dized evolved traits resulting in a total of 86% of variance
explained on two axes, 54% and 32% on axes PC1 and PC2,
respectively (figure 2a). To select a start and endpoint for the
adaptive walk, ancestral populations were projected onto the
evolved PC axes. A single genotype was selected for the model-
ling exercise where the observed ancestral trait values defined
the start point of the adaptive walk (tan circle in figure 2b;
electronic supplementary material, file S1) and the corresponding
evolved population trait values defined the evolutionary end-
point (red circle in figure 2b; electronic supplementary material,
file S1). Additional simulations were conducted in which the
start point was varied. As the specific traits themselves were
not relevant for this study, we will hereafter refer to them as
traits 1–4. We refer the reader to [3] for an in-depth discussion
of the evolution experiment.

(b) Trait correlation evolution model dynamics
The TRACE model framework simulates the adaptive walk of
a microbial population across a trait landscape (trait-scape)
towards a high-fitness area. TRACE was adapted from an
individual based Fisher model of adaptation [1,34,35]. Each gener-
ation, each individual in the population experienced either a
change in traits or changes in traits and trait correlations. Changes
in trait values moved these individuals across the trait-scape
while trait correlations constrained the direction of movement.
Selection was imposed based on distance to the evolutionary
endpoint in the trait-scape (described below), such that the
population evolved towards the high-fitness region of the trait-
scape. In essence, this framework selected for individuals with
the smallest overall difference across all trait values from the
empirically observed high-fitness phenotype. The weighting of
the traits was derived from the observed evolved phenotypes eval-
uated using PCA, such that traits that were not observed to play an



ancestral(a) (b) (c)

C1
C2
C3
C4
C5
C6

evolved correlation

trait A

1 2 X 0.59

1 3 –0.41 X

1 4 X 0.54

2 3 X X

2 4 –0.89 X

3 4 X 0.70

trait B
ancestral 

correlation
evolved

correlation

–6 –4 –2 0 2 4 6

PC1 (48%)

–6

–4

–2

0

2

4

6
PC

2 
(3

7%
)

1

2

3

4

–6 –4 –2 0 2 4 6

PC 1 (54%)

–6

–4

–2

0

2

4

6

PC
2 

(3
2%

)

1

2

3

4

Figure 2. Principal component analysis (PCA) of ancestral and evolved trait values and the corresponding trait correlations. (a) Ancestral PCA calculated from the
values of four ancestral traits across five genotypes where each point represents an independent biological population (i.e. culture) coloured by genotype. Percen-
tages associated with PC1 and PC2 denote the amount of variance explained by each PC axis. (b) Evolved PCA plot calculated from the evolved values of the same
four traits as in (a) across five genotypes. Filled circles represent the independent populations of the evolved genotypes. Open circles represent the corresponding
populations of the ancestral genotypes (a) projected onto the evolved PC axes. The tan and red filled circles denote the start and end coordinate of the model,
respectively. (c) Table of all six possible trait combinations and their values in their ancestral and evolved genotypes. An ‘X’ indicates a non-statistically significant
trait correlation ( p > 0.05).
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important role in fitness in the high-CO2 environment had low
weight. It is important to note that the model did not directly
select for trait correlations, but that specific correlations emerged
in the population if they provided a fitness advantage in terms
of trait dynamics.

In the default model simulations (referred to as 90/10), in each
generation 90% of individuals were randomly chosen to experi-
ence a random change in a trait value (while maintaining
all existing trait correlations) while 10% experienced both a trait
and trait correlation change. These changes were drawn from a
Gaussian distribution (mean = 0 and standard deviation = 0.05)
such that small changes were common and large changes were
rare. For each individual, the randomly chosen trait change was
added to the existing trait value. Following this first trait change,
the remaining three trait values were updated using the trait corre-
lations for that individual in that time step. For example, if trait 1
was initially changed, then traits 2, 3 and 4 would subsequently
be updated by multiplying the new trait 1 value by the three
trait correlations (1v2, 1v3 and 1v4).

The remaining 10% of the population experienced both a trait
and a trait correlation change. For each individual, one of the six
trait correlations was randomly selected to change. Similar to the
trait change, a random value was drawn from a Gaussian distri-
bution with a mean of 0 and standard deviation of 0.05 and
added to the existing correlation value. Next, one of the two
traits associated with that correlation was randomly chosen and
a trait change was selected in the same manner as above. Finally,
the second trait tied to the correlation was updated using the
new correlation and trait value (the other modelled trait values
were not updated in this generation). These trait changes moved
the individuals within the trait-scape.

Selection was imposed using the Euclidean distance of each
individual to the high-fitness area (zi). Specifically, the fitness
of each for each individual (wi) was calculated as [1,34]

wi ¼ e�z2i =2: ð2:1Þ
Individuals were then randomly sampled with replacement
weighted by wi such that high-fitness individuals were more
likely to persist to the next generation, as in [1,34].

(c) Model simulations
The model trait-scape and the high-fitness area (red circle in
figure 2b) were defined based on empirical data from the
Chlamydomonas long-term evolution study [3]. The model was initi-
alized with a population of 1000 individuals with either (i) all
individuals containing the same trait values corresponding to the
empirically observed ancestral trait values (tan circle in figure 2b),
(ii) all individuals containing the same trait values corresponding
to an alternative starting location or (iii) a mixed population with
multiple different starting trait values based on the empirical data.
To explore the impact of historical bias, trait correlations in the start-
ing populations were initialized in three different ways: mixed
mode, ancestral mode and evolved mode (described below). The
modes differed only in the initial conditions not inmodel dynamics.
Eachmodel runwas conducted for 2000 generations with 100 repli-
cates each. All model parameters are given in electronic
supplementary material, table S1. Previous work by us and others
have demonstrated that adaptive outcomes using this framework
are robust across a wide range of population sizes (electronic sup-
plementary material, information S1) [1,34]. Several sensitivity
studies were conducted to test model dynamics (see electronic
supplementary material, information S2).

(i) Mixed mode (no bias) simulations
To test all possible adaptive walks between the ancestral start
point and the evolutionary endpoint, simulations were con-
ducted with no historical bias. Specifically, each individual was
assigned correlation values randomly chosen from a standard
uniform distribution over the interval (−1,1). Hence, every indi-
vidual started with the same four trait values but random
correlation values. See electronic supplementary material,
information S3 for additional model detail.

(ii) Ancestral mode simulations
To test the effects of systematically adding ancestral bias, four
ancestral sub-modes were conducted: A1, A2, A3 and A4. For
sub-mode A1, random correlation values were generated as
above for five of the six trait correlations, and one empirical ances-
tral correlation was used for all individuals. For A2, A3 and A4, all
steps were the same except that two, three and four empirical
ancestral correlations were added back, respectively. For simpli-
city, we chose to sequentially add in ancestral correlations based
on the empirically calculated significant trait correlations from
most significant to least significant (R2 =−0.89 to 0.54; figure 2c).

(iii) Evolved mode simulations
The same procedure described above for the ancestral mode was
conducted for the evolved mode, but instead empirical evolved
correlations were systematically added (modes E1–E4).
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(d) Hierarchical clustering
Hierarchical clustering withmultiscale bootstrap resampling (1000
replicates) on mean trait correlation values was conducted with R
package pvclust [36] using Euclidean distance and the average
(UPGMA) method. Principal component analysis using mean
correlation values was conducted with R package vegan [37],
and pvclust clusters with approximately unbiased (AU) p-values <
75%were projected onto the PC coordinate plane as convex hulls.
3. Results
(a) Multi-dimensional trait evolution
To understand the constraints on phenotype evolution, we
must consider how multi-dimensional traits are altered by
selection. Previous empirical work has shown that both trait
values and the correlations between traits are altered as a
population adapts to a new environment. For example, when
five genotypes of the green alga C. reinhardtii were selected
under high CO2 [3], all quantified traits changed to varying
degrees depending on the genotype and the correlations
betweenmany traits changedwith some traits becoming corre-
lated (e.g. 1v2) while others becoming uncorrelated (e.g. 2v4;
figure 2c).

To understand how trait movement within the trait-scape
can be constrained by historical bias (correlations between
traits in the ancestral population), we developed a statistical
model (TRACE) of multi-trait adaptation and investigated
probabilities of different emergent evolutionary outcomes.
We began with a ‘null hypothesis’ model in which there was
no historical bias (mixed mode simulation) and then systema-
tically added in bias to determine the impact on population
level adaptation. An example of model dynamics from a
single run in mixed mode is shown in figure 3awhere a repre-
sentative population consisting of a thousand individuals
moved over time from the ancestral starting phenotype to the
evolved high-fitness area (figure 3a). This resulted in an overall
increase in fitness of the population over time (figure 3b). The
underlying dynamics of the model (changes in trait values
and trait correlation changes) for three representative traits
are shown in figure 3c.

Though TRACE is a novel modelling framework for under-
standing trait adaptation, the model captures well known
dynamics of adaptions. For example, fitness effects produced
from changes at the beginning of the walk were significantly
greater than at the end of the walk consistent with previous
experimental and theoretical work [1,34,38–41] (figure 3).
Although some individuals reached a maximum possible fit-
ness of 1 (i.e. the evolutionary end coordinate), the mean
population fitness consistently remained below 1 (figure 3b).
This is due to the fact that themodel is simultaneously optimiz-
ing multiple traits and their correlations, which inherently
introduces small but significant amounts of persistent pheno-
typic variation. In addition, while the average movement of
the population was fairly linear in PC space (figure 3a), the
trajectory of trait changes was not linear (figure 3c).
(b) Accessibility of cryptic phenotypes
Four distinct population types (i.e. traits + trait correlations
for the final population) emerged across the replicate runs
(1000 individuals × 100 replicate runs = 100 000 individuals
total). We term these population types (Pop-MA, Pop-MB,
Pop-MC and Pop-MD) ‘cryptic phenotypes’ as they had stat-
istically similar end mean fitness values and occurred in the
same region of the trait-scape but had distinct trait corre-
lations and, to some extent, distinct trait values (figure 4;
electronic supplementary material, figure S1). In other
words, these cryptic phenotypes represent four distinct evol-
utionary outcomes of different trait correlations + trait values
that all converged on the single evolutionary end coordinate
in the evolved trait-scape. For some correlations such as trait
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1 versus trait 2 (1v2), little to no overlap was observed across
each of the four population types (figure 4, row 5), while for
others, several population types shared the same trait corre-
lations. For example, individuals in Pop-MA and Pop-MD
shared the same 1v3 correlation (figure 4, row 2, columns 1
and 4) but had completely different relationships for 1v4
(figure 4, row 3, columns 1 and 4). The observance of emer-
gent, cryptic phenotypes with distinct underlying trait
combinations are qualitatively in line with experimental
evolution studies that observed convergent phenotypes
derived from a mix of parallel and divergent mutational
and transcriptional changes across replicate populations
adapting to the same environment [7,42–45].

When the model was run without the influence of trait cor-
relations, only one phenotype emerged, as expected, but in
contrast to the simulations where trait correlations were
included (electronic supplementary material, figure S2 and
information S2). Here individuals were unconstrained by bias
and so were able to quickly move directly to the high-fitness
area. This demonstrates that trait correlational constraints can
produce different evolutionary strategies (i.e. emergent, cryptic
phenotypes) and, if constraints are not present, individuals are
able to explore phenotypic space more freely and arrive at the
high-fitness phenotype more rapidly. The emergence of
multiple high-fitness phenotypes (e.g. figure 5a) occupying a
single high-fitness area in multivariate space demonstrates
that, by using PCA for the trait-scape, our model captures
a rugged trait-based fitness landscape with multiple
high-fitness peaks (e.g. figure 1).

Not all cryptic phenotypes were equally accessible by the
model populations. Here, we define accessibility as the fraction
of replicates that converged on an emergent population type.
When the model was run without bias, Pop-MA was the
most accessiblewith 55%of replicates converging on this popu-
lation typewhile Pop-MDwas the secondmost accessible with
33% (figure 5b). Pop-MA also exhibited the most variance in
trait values within the population (i.e. broadest peak when
plotted in more traditional pairwise trait space; e.g. Figure 5a),
indicating a relatively larger range of trait values conferring
high-fitness when associated with Pop-MA’s trait correlations.
The most accessible population type, Pop-MA, also had the
fastest rate of fitness gain (figure 5b,c). Although Pop-MA
and Pop-MB exhibited similar rates of adaptation (figure 5c,
left plot), Pop-MB was not nearly as accessible with only 6%
of the replicates converging on this population type (figure 5b).
Instead, Pop-MD with a slower adaptive rate was the second
most accessible population type (figure 5b,c). Pop-MA and
Pop-MD trait correlations were more similar overall than
those of Pop-MB.

To examine the impact of ancestral trait values on the acces-
sibility of different cryptic phenotypes, we ran themixed-mode
model using (i) a single population at a different starting
location (i.e. trait values) in the trait-scape that was equidistant
to the high–fitness area and (ii) four different subpopulations
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(i.e. four different starting locations in the trait-scape). These
model runs converged on the same cryptic phenotypes
observed with the empirical starting location (Pop-MA,
Pop-MB and Pop-MD for run 1 and all four cryptic phenotypes
for run 2). However, shifting the starting location did alter
the accessibility of the cryptic phenotypes (electronic sup-
plementary material, figures S3 and S4). These runs indicate
that the high-fitness phenotypes were conserved, and that
starting an adaptive walk from another location influenced
the accessibility of certain cryptic phenotypes thereby biasing
evolutionary outcomes. The fact that no new populations
emerged further supports the ability of this framework to
capture the known phenomenon that there are a limited
number of accessible phenotypes [27].
(c) Adding historical bias
Movement of the populations within the trait-scape was
impacted by the historical bias of the ancestral population
(i.e. trait correlations). In the mixed-mode model, the popu-
lation contained a large diversity of trait correlations among
individuals with analogous trait values. The robustness of
the resulting cryptic phenotypes across model runs indicates
that certain trait correlations confirm a fitness advantage
within the empirically defined trait-scape and thus were
selected for. To assess how different types of bias (ancestral
versus evolved correlations) impacted the accessibility of the
cryptic phenotypes and rate of adaptation, we conducted a
suite of simulations where bias was systematically added
(sub-modes A1–A4 and sub-modes E1–E4). For both ancestral
and evolved modes, systematically adding more bias (e.g.
going from A1 to A4) changed the accessibility of the high-fit-
ness phenotypes across replicate runs (electronic
supplementary material, figure S5). However, the type of bias
(e.g. ancestral versus evolved correlations) had a differential
impact on cryptic phenotype accessibility. Bias from the ances-
tral correlations was typically maladaptive and resulted in
fewer accessible cryptic phenotypes and slower adaptive
rates (electronic supplementary material, figure S5a). On the
other hand, introducing bias derived from the observed
evolved trait relationships (i.e. consistent with the trait-scape)
generally resulted in faster adaptive rates and greater overall
accessibility to the cryptic phenotypes (electronic supplemen-
tary material, figure S5b). These results are consistent with
prior empirical and theoretical observations in developmental
and quantitative genetic studies where bias (e.g. trait corre-
lations) accelerated adaptive evolution if existing biological
orientation aligned with the direction of selection but con-
strained adaptation if it limited variability in the direction
of selection [16,17,27]. Specifically, depending on a starting
population’s bias, different phenotypes are more probable
than others with some being generally inaccessible as found
in other studies [27,28]. Here, we demonstrate these
dynamics using a novel framework for modelling multivariate
adaption in phytoplankton based on easy to quantify empirical
trait data.
(d) Meta-analysis of phenotypes across different
modelled modes

We assessed the similarity between emergent cryptic
phenotypes across all model simulations (9 modes with 100
replicates each) and showed five high-confidence cryptic phe-
notypes. Specifically, we grouped similar population types
using hierarchical clustering with multiscale bootstrap resam-
pling (1000 replicates) on mean trait correlation values at the
2000th generation. We also included the empirical data from
the ancestral and evolved populations in this analysis.
Hierarchical clustering revealed five high-confidence clusters
(I–V) harbouring 93% of the phenotypes (n = 26 of 28) with
AU p-values greater than 75 (figure 6a). Two population
types, Pop-MB and Pop-EB-E1, clustered with II and IV,
respectively, albeitwith less confidence relative to the high-con-
fidence clusters. The empirical ancestral population did not fall
within anyof the high-confidence clusters, which is expected as
the ancestral population was not well adapted in the evolved
trait-scape. By contrast, the empirical evolved population
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clustered with high-confidence in cluster V. This empirically
observed population type (cluster V) only emerged in the
model simulation when evolved bias was present in the start-
ing population and was found by 55% of the replicates from
sub-modes E1, E3 and E4.

The clustering observed through the hierarchical analysis
also emerged through a PC analysis of the population trait cor-
relations. Specifically, we observed three general regions of
convergence in PC space among the population types, as clus-
ters II, III and IV collapsed into a small region of the lower left
quadrant in the PCA plot (figure 6b). Importantly, these
convergent regions emerged from thousands of possible
trait and correlation values across varying degrees of bias.
They provide valuable insight into probable combinations
of high-CO2 adaptive trait correlations along a reduced set of
biological axes.
4. Discussion
We need to bridge the gap between evolutionary models and
trait-based ecosystems models (ODE models) in order to
better predict how marine microbes will adapt to shifts in the
environment [11,46]. This work takes a critical first step in
developing a framework (TRACE) which uses empirically
derived multivariate trait-based landscapes to provide insight
into the interaction between historical bias (trait correlations)
and evolved phenotypes for marine phytoplankton. Critically,
TRACE is derived from and provides predictions of easily
quantifiable traits—such as those commonly measured by bio-
logical oceanographers. Using data from an experimental
evolution study with a model green alga, we found that a lim-
ited set of integrated phenotypes underlie thousands of
possible trait correlational scenarios and that only certain
phenotypes were accessible depending on the amount and
type of bias. By leveraging empirical ancestral trait correlations
and the observed changes in these correlations as a result of
adaptation to high CO2, we were able to simulate adaptive
walks with endpoints anchored in real evolutionary outcomes.
This study provides a roadmap for future integration of
evolutionary theory with biological oceanography. While we
focus on a case study using an experimental evolution study
to generate the trait-scape, our framework can be used to gen-
erate a trait-scape for any given environment A using trait data
from an in situ population (assuming that the in situ population
is well adapted to environment A). This trait-scape could then
be used with the TRACE framework to develop hypotheses as
to howa new population from a different environment Bmight
adapt upon exposure to environment A. This insight can be
gained with easily quantifiable trait measurements and with-
out requiring genetic manipulations, which are currently not
possible for most marine microbes.

Our work demonstrates that ecological models need to
represent both changes in traits (already existing in some
ecological models) and changes in the correlation between
traits in order to accurately capture phytoplankton evolution.
The TRACE framework could be combined with an ODE
based ecosystem model to predict marine microbial adaptation
more accurately. While the development of a fully integrated
TRACE+ODE model is beyond the scope of this paper, we
demonstrate that such an integration would result in a substan-
tially different set of phenotypes and impact community
dynamics (electronic supplementary material, information S4
and figures S6 and S7). Such an integration provides the added
benefit of removing theneed todefine the evolutionaryendpoint,
as fitness in an ODEmodel can be dynamically estimated based
on prognostically calculated growth and mortality rates.

This study demonstrates that shifts in trait correlations are
fundamental for understanding the evolved phenotype and
provides a novel framework for linking easily quantifiable
trait measurements to predictions of evolved phenotypes for
marine phytoplankton. This is particularly exciting because
we can create trait-scapes from field data and use TRACE to
understand how invading microbial populations may be able
to adapt (i.e. create new phenotypes). Importantly, this
approach can also help inform future experimental designs
aimed at testing the probability of adaptive outcomes across
multivariate environments through the analysis of a select
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set of traits. We are at a critical juncture where we need ecosys-
tem and biogeochemical models to incorporate evolutionary
dynamics in order to robustly predict future shifts in eco-
system dynamics [33]. Due to the seemingly infinite amount of
possible interacting biological and environmental variables to
test, evolutionary and mathematical tools that allow us to effi-
ciently combine experiments with modelling will be critical to
help predict microbial population responses to future global
change scenarios through the lens of evolutionary phenomena.

Data accessibility. The model code is available at https://github.com/
LevineLab and a version of the manuscript is available from the
biology preprint server bioRxiv: https://www.biorxiv.org/content/
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Authors’ contributions. N.G.W.: conceptualization, data curation, formal
analysis, investigation, methodology, project administration, software,
validation, visualization, writing-original draft, writing-review and
editing; J.H.: conceptualization, investigation, methodology, writing-
review and editing; P.A.A.: investigation, methodology, writing-
reviewand editing; S.G.L.: data curation, formal analysis, investigation,
methodology, visualization, writing-review and editing; M.A.D.:
conceptualization, funding acquisition, investigation, methodology,
writing-review and editing; S.C.: conceptualization, data curation,
formal analysis, funding acquisition, investigation, methodology, pro-
ject administration, resources, supervision, validation, writing-review
and editing; N.M.L.: conceptualization, data curation, formal analysis,
funding acquisition, investigation, methodology, project adminis-
tration, resources, software, supervision, validation, writing-original
draft, writing-review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Competing interests. We declare that we have no competing interests.

Funding. This work was supported by the Moore Foundation grant
MMI 7397 (to N.M.L., S.C., M.A.D.) and by the Simons Foundation
grant 509727 (to N.M.L.).
oc.B
288:2
References
0210940
1. Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine
NM. 2020 Microbial evolutionary strategies in a
dynamic ocean. Proc. Natl Acad. Sci. USA 117,
5943–5948. (doi:10.1073/pnas.1919332117)

2. Hinners J, Hense I, Kremp A. 2019 Modelling
phytoplankton adaptation to global warming based
on resurrection experiments. Ecol. Modell. 400,
27–33. (doi:10.1016/j.ecolmodel.2019.03.006)

3. Lindberg RT, Collins S. 2020 Quality–quantity trade-
offs drive functional trait evolution in a model
microalgal ‘climate change winner’. Ecol. Lett. 23,
780–790. (doi:10.1111/ele.13478)

4. Walworth NG, Fu F-X, Lee MD, Cai X, Saito MA,
Webb EA, Hutchins DA. 2018 Nutrient-colimited
Trichodesmium as a nitrogen source or sink in a
Future Ocean. Appl. Environ. Microbiol. 84, e02137-
17-14. (doi:10.1128/AEM.02137-17)

5. Brennan GL, Colegrave N, Collins S. 2017
Evolutionary consequences of multidriver
environmental change in an aquatic primary
producer. Proc. Natl Acad. Sci. USA 114, 9930–9935.
(doi:10.1073/pnas.1703375114)

6. Hutchins DA, Fu F. 2017 Microorganisms and ocean
global change. Nat. Microbiol. 2, 1–11. (doi:10.
1038/nmicrobiol.2017.58)

7. Walworth NG, Lee MD, Fu F-X, Hutchins DA, Webb
EA. 2016 Molecular and physiological evidence of
genetic assimilation to high CO2 in the marine
nitrogen fixer Trichodesmium. Proc. Natl Acad. Sci.
USA 113, E7367–E7374. (doi:10.1073/pnas.
1605202113)

8. Hutchins DA, Walworth NG, Webb EA, Saito MA,
Moran D, McIlvin MR, Gale J, Fu F-X. 2015
Irreversibly increased nitrogen fixation in
Trichodesmium experimentally adapted to elevated
carbon dioxide. Nat. Commun. 6, 1–7. (doi:10.1038/
ncomms9155)

9. Hellweger FL, van Sebille E, Fredrick ND. 2014
Biogeographic patterns in ocean microbes emerge
in a neutral agent-based model. Science 345,
1346–1349. (doi:10.1126/science.1254421)
10. Schaum C-E, Buckling A, Smirnoff N, Studholme DJ,
Yvon-Durocher G. 2018 Environmental fluctuations
accelerate molecular evolution of thermal tolerance
in a marine diatom. Nat. Commun. 9, 1–14. (doi:10.
1038/s41467-018-03906-5)

11. Ward BA, Collins S, Dutkiewicz S, Gibbs SJ, Bown P,
Ridgwell A, Sauterey B, Wilson JD, Oschlies A. 2019
Considering the role of adaptive evolution in models
of the ocean and climate system. J. Adv. Model.
Earth Syst. 11, 3343–3361. (doi:10.31223/osf.io/
srdh3)

12. Schluter L, Lohbeck KT, Gröger JP, Riebesell U,
Reusch TBH. 2016 Long-term dynamics of adaptive
evolution in a globally important phytoplankton
species to ocean acidification. Sci. Adv. 2, e1501660.
(doi:10.1126/sciadv.1501660)

13. Beckmann A, Schaum C-E, Hense I. 2019
Phytoplankton adaptation in ecosystem models.
J. Theor. Biol. 468, 60–71. (doi:10.1016/j.jtbi.2019.
01.041)

14. Boyd PW, Cornwall CE, Davison A, Doney SC,
Fourquez M, Hurd CL, Lima ID, McMinn A. 2016
Biological responses to environmental heterogeneity
under future ocean conditions. Glob. Change Biol.
22, 2633–2650. (doi:10.1111/gcb.13287)

15. Boyd PW et al. 2018 Experimental strategies to
assess the biological ramifications of multiple
drivers of global ocean change-a review. Glob.
Change Biol. 24, 2239–2261. (doi:10.1111/gcb.
14102)

16. Aguirre JD, Hine E, McGuigan K, Blows MW. 2014
Comparing G: multivariate analysis of genetic
variation in multiple populations. Heredity 112,
21–29. (doi:10.1038/hdy.2013.12)

17. Agrawal AA. 2019 A scale-dependent framework for
trade-offs, syndromes, and specialization in
organismal biology. Ecology 101, e02924. (doi:10.
1002/ecy.2924)

18. Barton S, Jenkins J, Buckling A, Schaum C-E,
Smirnoff N, Raven JA, Durocher GY. 2020
Evolutionary temperature compensation of carbon
fixation in marine phytoplankton. Ecol. Lett. 23,
722–733. (doi:10.1111/ele.13469)

19. Brandenburg KM, Wohlrab S, John U, Kremp A,
Jerney J, Krock B, Van de Waal DB. 2018
Intraspecific trait variation and trade-offs within and
across populations of a toxic dinoflagellate. Ecol.
Lett. 21, 1561–1571. (doi:10.1111/ele.13138)

20. Malcom JW, Hernandez KM, Likos R, Wayne T,
Leibold MA, Juenger TE. 2014 Extensive cross-
environment fitness variation lies along few axes of
genetic variation in the model alga,
Chlamydomonas reinhardtii. New Phytol. 205,
841–851. (doi:10.1111/nph.13063)

21. Anderson RW. 1995 Learning and evolution: a
quantitative genetics approach. J. Theor. Biol. 175,
89–101. (doi:10.1006/jtbi.1995.0123)

22. Tenaillon O. 2014 The utility of Fisher’s geometric
model in evolutionary genetics. Annu. Rev. Ecol.
Evol. Syst. 45, 179–201. (doi:10.1146/annurev-
ecolsys-120213-091846)

23. Martin G, Lenormand T. 2015 The fitness effect of
mutations across environments: Fisher’s geometrical
model with multiple optima. Evolution 69,
1433–1447. (doi:10.1111/evo.12671)

24. Ward BA, Collins S, Dutkiewicz S, Gibbs S, Bown P,
Ridgwell A, Sauterey B, Wilson JD, Oschlies A. 2019
Considering the role of adaptive evolution in models
of the ocean and climate system. J. Adv. Model.
Earth Syst. 11, 3343–3361. (doi:10.1029/
2018MS001452)

25. Parter M, Kashtan N, Alon U. 2008 Facilitated
variation: how evolution learns from past
environments to generalize to new environments.
PLoS Comput. Biol. 4, e1000206. (doi:10.1371/
journal.pcbi.1000206)

26. Kashtan N, Noor E, Alon U. 2007 Varying
environments can speed up evolution. Proc. Natl
Acad. Sci. USA 104, 13 711–13 716. (doi:10.1073/
pnas.0611630104)

27. Uller T, Moczek AP, Watson RA, Brakefield PM,
Laland KN. 2018 Developmental bias and evolution:

https://github.com/LevineLab
https://github.com/LevineLab
https://www.biorxiv.org/content/10.1101/2020.08.04.237230
https://www.biorxiv.org/content/10.1101/2020.08.04.237230
http://dx.doi.org/10.1073/pnas.1919332117
http://dx.doi.org/10.1016/j.ecolmodel.2019.03.006
http://dx.doi.org/10.1111/ele.13478
http://dx.doi.org/10.1128/AEM.02137-17
http://dx.doi.org/10.1073/pnas.1703375114
http://dx.doi.org/10.1038/nmicrobiol.2017.58
http://dx.doi.org/10.1038/nmicrobiol.2017.58
http://dx.doi.org/10.1073/pnas.1605202113
http://dx.doi.org/10.1073/pnas.1605202113
http://dx.doi.org/10.1038/ncomms9155
http://dx.doi.org/10.1038/ncomms9155
http://dx.doi.org/10.1126/science.1254421
http://dx.doi.org/10.1038/s41467-018-03906-5
http://dx.doi.org/10.1038/s41467-018-03906-5
http://dx.doi.org/10.31223/osf.io/srdh3
http://dx.doi.org/10.31223/osf.io/srdh3
http://dx.doi.org/10.1126/sciadv.1501660
http://dx.doi.org/10.1016/j.jtbi.2019.01.041
http://dx.doi.org/10.1016/j.jtbi.2019.01.041
http://dx.doi.org/10.1111/gcb.13287
http://dx.doi.org/10.1111/gcb.14102
http://dx.doi.org/10.1111/gcb.14102
http://dx.doi.org/10.1038/hdy.2013.12
http://dx.doi.org/10.1002/ecy.2924
http://dx.doi.org/10.1002/ecy.2924
http://dx.doi.org/10.1111/ele.13469
http://dx.doi.org/10.1111/ele.13138
http://dx.doi.org/10.1111/nph.13063
http://dx.doi.org/10.1006/jtbi.1995.0123
http://dx.doi.org/10.1146/annurev-ecolsys-120213-091846
http://dx.doi.org/10.1146/annurev-ecolsys-120213-091846
http://dx.doi.org/10.1111/evo.12671
http://dx.doi.org/10.1029/2018MS001452
http://dx.doi.org/10.1029/2018MS001452
http://dx.doi.org/10.1371/journal.pcbi.1000206
http://dx.doi.org/10.1371/journal.pcbi.1000206
http://dx.doi.org/10.1073/pnas.0611630104
http://dx.doi.org/10.1073/pnas.0611630104


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

288:20210940

9
a regulatory network perspective. Genetics 209,
949–966. (doi:10.1534/genetics.118.300995)

28. Elhanan Borenstein DCK. 2008 An end to endless
forms: epistasis, phenotype distribution bias, and
nonuniform evolution. PLoS Comput. Biol. 4,
e1000202. (doi:10.1371/journal.pcbi.1000202)

29. Gomulkiewicz R, Houle D. 2009 Demographic and
genetic constraints on evolution. Am. Nat. 174,
E218–E229. (doi:10.1086/645086)

30. Braendle C, Baer CF, Félix M-A. 2010 Bias and
evolution of the mutationally accessible phenotypic
space in a developmental system. PLoS Genet. 6,
e1000877. (doi:10.1371/journal.pgen.1000877)

31. Houle D, Bolstad GH, van der Linde K, Hansen TF.
2017 Mutation predicts 40 million years of fly wing
evolution. Nature 548, 447–450. (doi:10.1038/
nature23473)

32. Monroe JG, Markman DW, Beck WS, Felton AJ,
Vahsen ML, Pressler Y. 2018 Ecoevolutionary
dynamics of carbon cycling in the Anthropocene.
Trends Ecol. Evol. 33, 213–225. (doi:10.1016/j.tree.
2017.12.006)

33. Baltar F et al. 2019 Towards integrating evolution,
metabolism, and climate change studies of marine
ecosystems. Trends Ecol. Evol. 34, 1022–1033.
(doi:10.1016/j.tree.2019.07.003)

34. Kronholm I, Collins S. 2015 Epigenetic
mutations can both help and hinder adaptive
evolution. Mol. Ecol. 25, 1856–1868. (doi:10.1111/
mec.13296)
35. Fisher RA. 1930 The genetical theory of natural
selection. Oxford, UK: Oxford University Press.

36. Suzuki R, Shimodaira H. 2006 Pvclust: an R package
for assessing the uncertainty in hierarchical
clustering. Bioinformatics 22, 1540–1542. (doi:10.
1093/bioinformatics/btl117)

37. Oksanen J, Blanchet FG, Kindt R, Legendre P. 2013
vegan: community ecology package. R package
version 2.0-4.

38. Lenski RE. 2017 Convergence and divergence in a
long-term experiment with bacteria. Am. Nat. 190,
S57–S68. (doi:10.1086/691209)

39. Avrani S, Bolotin E, Katz S, Hershberg R. 2017
Rapid genetic adaptation during the first four
months of survival under resource exhaustion. Mol.
Biol. Evol. 34, 1758–1769. (doi:10.1093/molbev/
msx118)

40. Cooper VS, Lenski RE. 2000 The population genetics
of ecological specialization in evolving Escherichia
coli populations. Nature 407, 736–739. (doi:10.
1038/35037572)

41. Elena SF, Lenski RE. 2003 Microbial genetics:
evolution experiments with microorganisms: the
dynamics and genetic bases of adaptation. Nat. Rev.
Genet. 4, 457–469. (doi:10.1038/nrg1088)

42. Jerison ER, Ba ANN, Desai MM, Kryazhimskiy S.
2020 Chance and necessity in the pleiotropic
consequences of adaptation for budding yeast. Nat.
Ecol. Evol. 4, 601–611. (doi:10.1038/s41559-020-
1128-3)
43. Travisano M, Vasi F, Lenski RE. 1995 Long-term
experimental evolution in Escherichia coli. III.
Variation among replicate populations in
correlated responses to novel environments.
Evolution 49, 189–200. (doi:10.1111/j.1558-
5646.1995.tb05970.x)

44. Nakatsu CH, Korona R, Lenski RE, de Bruijn FJ,
Marsh TL, Forney LJ. 1998 Parallel and divergent
genotypic evolution in experimental populations of
Ralstonia sp. J. Bacteriol. 180, 4325–4331. (doi:10.
1128/JB.180.17.4325-4331.1998)

45. Fong SS. 2005 Parallel adaptive evolution cultures
of Escherichia coli lead to convergent growth
phenotypes with different gene expression states.
Genome Res. 15, 1365–1372. (doi:10.1101/gr.
3832305)

46. Walworth NG, Hinners J, Argyle PA, Leles SG, Doblin
MA, Collins S, Levine NM. 2020 The evolution of
trait correlations constrains phenotypic adaptation
to high CO2 in a eukaryotic alga. bioRxiv. (doi:10.
1101/2020.08.04.237230)

47. Walworth NG, Hinners J, Argyle PA, Leles SG, Doblin
MA, Collins S, Levine NM. 2021 The evolution of
trait correlations constrains phenotypic adaptation
to high CO2 in a eukaryotic alga. bioRxiv. (doi:10.
1101/2020.08.04.237230)

48. Walworth NG, Hinners J, Argyle PA, Leles SG, Doblin
MA, Collins S, Levine NM. 2021 The evolution of
trait correlations constrains phenotypic adaptation
to high CO2 in a eukaryotic alga. FigShare.

http://dx.doi.org/10.1534/genetics.118.300995
http://dx.doi.org/10.1371/journal.pcbi.1000202
http://dx.doi.org/10.1086/645086
http://dx.doi.org/10.1371/journal.pgen.1000877
http://dx.doi.org/10.1038/nature23473
http://dx.doi.org/10.1038/nature23473
http://dx.doi.org/10.1016/j.tree.2017.12.006
http://dx.doi.org/10.1016/j.tree.2017.12.006
http://dx.doi.org/10.1016/j.tree.2019.07.003
http://dx.doi.org/10.1111/mec.13296
http://dx.doi.org/10.1111/mec.13296
http://dx.doi.org/10.1093/bioinformatics/btl117
http://dx.doi.org/10.1093/bioinformatics/btl117
http://dx.doi.org/10.1086/691209
http://dx.doi.org/10.1093/molbev/msx118
http://dx.doi.org/10.1093/molbev/msx118
http://dx.doi.org/10.1038/35037572
http://dx.doi.org/10.1038/35037572
http://dx.doi.org/10.1038/nrg1088
http://dx.doi.org/10.1038/s41559-020-1128-3
http://dx.doi.org/10.1038/s41559-020-1128-3
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05970.x
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05970.x
http://dx.doi.org/10.1128/JB.180.17.4325-4331.1998
http://dx.doi.org/10.1128/JB.180.17.4325-4331.1998
http://dx.doi.org/10.1101/gr.3832305
http://dx.doi.org/10.1101/gr.3832305
http://dx.doi.org/10.1101/2020.08.04.237230
http://dx.doi.org/10.1101/2020.08.04.237230
http://dx.doi.org/10.1101/2020.08.04.237230
http://dx.doi.org/10.1101/2020.08.04.237230

	The evolution of trait correlations constrains phenotypic adaptation to high CO2 in a eukaryotic alga
	Introduction
	Material and methods
	Trait-based fitness landscape
	Trait correlation evolution model dynamics
	Model simulations
	Mixed mode (no bias) simulations
	Ancestral mode simulations
	Evolved mode simulations

	Hierarchical clustering

	Results
	Multi-dimensional trait evolution
	Accessibility of cryptic phenotypes
	Adding historical bias
	Meta-analysis of phenotypes across different modelled modes

	Discussion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


