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ABSTRACT We present here a draft genome assembly of Micrococcus sp. KBS0714,
which was isolated from agricultural soil. The genome provides insight into the
strategies that Micrococcus spp. use to contend with environmental stressors such as
desiccation and starvation in environmental and host-associated ecosystems.

Microorganisms have evolved traits that allow them to cope with a wide range of
environmental conditions. For example, chemoorganotrophic representatives

of the genus Micrococcus (class Actinobacteria, family Micrococcaceae) are com-
monly found in temperate soil (1), water (2), mammalian skin (3), Antarctic ice (4),
and desert soil (5). Survival and reproduction in some of these habitats has been
linked to the ability of Micrococcus spp. to form biofilms or enter dormant stages in
response to conditions such as desiccation and starvation (6–8). Genome sequenc-
ing may illuminate additional traits that allow Micrococcus spp. to persist when
challenged with environmental stressors. However, outside of isolates from con-
taminated ecosystems (1, 9–12), very few Micrococcus genomes have been se-
quenced from soil. Here, we present the draft genome of Micrococcus sp. KBS0714,
isolated from never-tilled agricultural soil at the Kellogg Biological Station Long-
Term Ecological Research site (6, 13).

Micrococcus sp. KBS0714 genomic DNA was prepared with the Illumina TruSeq DNA
sample prep kit using an insert size of 250 bp for sequencing on an Illumina HiSeq 2500
with 100-bp paired-end reads (Illumina, San Diego, CA, USA). Raw sequences were
processed by removing the TruSeq adaptors and the first 10 bp using Cutadapt version
1.9 (14), interleaving the paired reads using khmer version 2.0 (15), and quality-filtering
with an average Phred score of 30 using the FASTX-Toolkit version 0.0.13 (Hannon
Lab, http://hannonlab.cshl.edu/fastx_toolkit). The coverage was normalized to 25 based
on a k-mer size of 25 bp using khmer, resulting in a total of 1,614,974 unmapped
paired-end reads. The genome was assembled using Velvet version 1.2.10 (16) with the
following parameters: a k-mer size of 55, expected coverage of 18�, and a coverage
cutoff of 2.29. Contigs longer than 200 bp were annotated using Prokka version 1.12
(https://github.com/tseemann/prokka) (17). Finally, we used MAPLE version 2.3.0 with
bidirectional best-hit matches (http://www.genome.jp/tools/maple) (18) to predict met-
abolic and physiological functions.

The draft assembly of Micrococcus sp. KBS0714 comprises 2,489,009 bp. It consists of
63 contigs with an N50 of 122,407 and a G�C content of 69%. Based on our gene
annotation, the genome contains 2,210 protein-coding sequences, 3 rRNAs, 52 tRNAs,
2,267 genes, and 2 transfer-messenger RNAs (tmRNAs).

The KBS0714 genome highlights traits that may be used by Micrococcus spp. in
soil. For example, we found genes involved with general stress response (relA) (19,
20) and biofilm formation (brpA) (21) in both the genome of KBS0714 and the
closely related M. luteus NCTC 2662 (99% 16S rRNA sequence similarity, NCBI
CP001628). Additionally, we detected pathways for desiccation and starvation
resistance, such as genes for osmotic stress response (mtrB-mtrA, rpoE) (22, 23),
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phosphate starvation response (senX3-regX3), and membrane lipid fluidity regula-
tion (desK-desR) (24, 25). In summary, the KBS0714 genome has features that may
provide a selective advantage under stressful conditions in soils and other envi-
ronments.

Accession number(s). This draft genome assembly has been deposited in DDBJ/

EMBL/GenBank under the accession number MVDF00000000. The version described
here is the second version, MVDF02000000. The code used for assembly and annotation
is available online at https://github.com/LennonLab/Micrococcus.
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