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A B S T R C T

Objectives: To investigate the association between proton magnetic resonance spectroscopy (1H-MRS) metabolic
features and the grade of gliomas, and to establish a machine-learning model to predict the glioma grade.
Methods: This study included 112 glioma patients who were divided into the training (n=74) and validation
(n=38) sets based on the time of hospitalization. Twenty-six metabolic features were extracted from the pre-
operative 1H-MRS image. The Student's t-test was conducted to screen for differentially expressed features be-
tween low- and high-grade gliomas (WHO grades II and III/IV, respectively). Next, the minimum Redundancy
Maximum Relevance (mRMR) algorithm was performed to further select features for a support vector machine
(SVM) classifier building. Performance of the predictive model was evaluated both in the training and validation
sets using ROC curve analysis.
Results: Among the extracted 1H-MRS metabolic features, thirteen features were differentially expressed. Four
features were further selected as grade-predictive imaging signatures using the mRMR algorithm. The predictive
performance of the machine-learning model measured by the AUC was 0.825 and 0.820 in the training and
validation sets, respectively. This was better than the predictive performances of individual metabolic features,
the best of which was 0.812.
Conclusions: 1H-MRS metabolic features could help in predicting the grade of gliomas. The machine-learning
model achieved a better prediction performance in grading gliomas than individual features, indicating that it
could complement the traditionally used metabolic features.

1. Introduction

Diffuse gliomas represent 80% of malignant brain tumors
(Ceccarelli et al., 2016). Adult diffuse gliomas are classified into grades
II to IV according to histological criteria (Louis et al., 2016). Patients
with low-grade gliomas (grade II) typically survive for more than five
years after diagnosis, whereas those with high-grade gliomas (grades
III-IV) survive for approximately 1–3 years after diagnosis (Jiang et al.,
2016). Hence, predicting histological grades of diffuse gliomas with
high accuracy could highlight tumor invasive growth patterns, which
might allow for a precise assessment of tumor biological behavior and

aid in clinical therapeutic decision making for the precise management
of glioma patients (Su et al., 2018).

Proton magnetic resonance spectroscopy (1H-MRS) is a noninvasive
tool for investigating the spatial distribution of the metabolic changes
within the brain (Yamasaki et al., 2011). It can provide information on
the neuronal integrity and on the levels of neurotransmitters including
N-acetylaspartate (NAA), a neuronal marker, choline (Cho), which is
involved in the synthesis and degradation of cell membranes, creatine
(Cr), which reflects the energetic activity in the cells, lipid (Lip), a
product of membrane phospholipids and necrotic debris, and lactate
(Lac), which correlates with anaerobic glycolysis. In many studies, 1H-
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MRS has been shown to determine the tumor type and grade (Dou et al.,
2015). 1H-MRS adds relevant diagnostic value exceeding that obtained
from structural MR imaging alone. High-grade gliomas, particularly
glioblastomas (grade IV), display unique metabolic features when
compared with normal brain tissues and low-grade gliomas (Clark
et al., 2016).

However, the accuracy of 1H-MRS in distinguishing between low-
and high-grade gliomas needs further improvement. Since biomedical
metabolic information is acquired through the quantification of the 1H-
MRS data, proper and optimized quantification techniques will influ-
ence the objectivity and robustness of its results. Single metabolic
features and peak height ratios of the intra-tumor metabolites have
already been computed using 1H-MRS (Bulik et al., 2013). However, the
optimum method for predicting the grade of the glioma and whether a
machine-learning model of 1H-MRS metabolic features has a superior
diagnostic performance to individual features are unclear.

Thus, we designed this retrospective study to investigate which 1H-
MRS parameter is most effective in differentiating between low- and
high-grade gliomas, and to determine whether using a machine-
learning model of 1H-MRS parameters is more effective in differ-
entiating low-grade gliomas from high-grade gliomas than using in-
dividual parameters.

2. Materials and methods

2.1. Patients

Ethical approval for this retrospective study was provided by the
medical ethics committee of Beijing Tiantan Hospital, Capital Medical
University, and the need for informed consent was waived. A total of
112 patients who were treated at our hospital between March 2016 and
December 2017 were included in this study. The inclusion criteria were
as follows: (1) patients with pathological diagnoses of primary gliomas
of grade II-IV based on the WHO classification; (2) patients underwent
both preoperative T2-weighted MRI examination and preoperative 1H-
MRS examination; (3) patients with no history of preoperative therapy;
and (4) patients whose clinical characteristics were available.

The patients were divided into training and validation sets based on
the time of hospitalization. Seventy-four patients treated between
March 2016 and February 2017 (43 WHO II glioma, 9 WHO III glioma,
and 22 WHO IV glioma) were included into the training set to build the
imaging signature and to development the model. Thirty-eight patients
treated between March 2017 and December 2017 (19 WHO II glioma,
11 WHO III glioma, and 8 WHO IV glioma) were assigned into an in-
dependent validation set for model validation.

2.2. Histopathological analysis

Tissue samples obtained by subtotal/total resection were histo-
pathologically examined by an experienced neuropathologist. The
glioma was graded based on the WHO classification, and was dichot-
omized into two groups: the low- and high-grade glioma groups. Grade
II gliomas were regarded as low grade, whereas grade III and IV gliomas
were regarded as high grade. The histopathology is the ground truth for
comparison to 1H-MRS.

2.3. Magnetic resonance imaging

All patients underwent MR imaging using a 3.0 T MR system
(Siemens Magnetom Prisma, Germany) with a 20-channel head/neck
coil. The MR protocols were as follows: (1) The parameters used for the
turbo spin echo (TSE) sequence based T2-weighted imaging were TR/
TE: 5000ms/105ms, slices: 33, slice thickness: 3 mm with 0.9mm gap,
field of view: 220mm×220mm, and matrix size: 448×358.4. (2)
The parameters used for the MR spectra obtained using the multi-voxel
chemical shift imaging 1H-MRS method were TR/TE: 1700ms/135ms,

field of view: 160mm×160mm, volume of interest (VOI):
80mm×80mm, and number of excitations (NEX): 3. The VOI of 1H-
MRS was placed on the axial T2-weighted image including as much of
the lesion as possible and the contralateral normal-appearing brain
parenchyma while avoiding the subcutaneous fat, bones and sinuses.

2.4. Imaging processing

A neuroradiologist (Shaowu Li with twenty years of experiences in
MR imaging interpretation) delineated the tumor area on T2-weighted
images using the software SPIN (Signal Processing in NMR, Detroit,
Michigan, USA). Then the voxels were carefully positioned to include
the largest tumor region.

The spectroscopy data of each voxel was processed using the ima-
ging software, Syngo.via from Siemens Healthineers. The preprocessing
procedure included spatial filtering, 3D Fourier transformation for
spatial localization, baseline subtraction after fitting with polynomial
functions, and phase correction. Subsequently, the resonance intensities
of the individual spectra were determined by calculating the integral of
areas under the peaks of the chemical dislocation graphs.

The intra-tumor metabolites, Cho, NAA, Cr, Lac, and Lip, were
sampled from total area of the tumor and normalized based on the
corresponding metabolites in the contralateral normal-appearing brain
parenchyma (normalized metabolic parameter= original metabolic
parameter/contralateral metabolic parameter). The mean concentra-
tions were then analyzed by obtaining the intensities of the spectra and
the ratios between the spectra. Twenty-six metabolic features were in-
cluded: Cho, Cr1, NAA, Lac, lipid1 (Lip1), lipid2 (Lip2), (Lip1+ Lip2),
(Lac + Lip1+ Lip2), Cho/Cr1 ratio, NAA/Cr1 ratio, Lac/Cr1 ratio,
Lip1/Cr1 ratio, Lip2/Cr1 ratio, (Lip1+ Lip2)/Cr1 ratio, (Lac +
Lip1+ Lip2)/Cr1 ratio, Cho/NAA ratio, Lip1/NAA ratio, Lip2/NAA
ratio, Lac/NAA ratio, (Lip1+ Lip2)/NAA ratio, (Lac + Lip1+ Lip2)/
NAA ratio, Lip1/Cho ratio, Lip2/Cho ratio, Lac/Cho ratio,
(Lip1+ Lip2)/Cho ratio, and (Lac + Lip1+ Lip2)/Cho ratio.

2.5. Feature selection and individual feature analysis

For feature selection, we first screened the features that were sig-
nificantly (P < 0.05) differentially expressed between the low- and
high-grade gliomas using the Student's t-test. A ROC curve analysis was
performed on each differentially expressed feature to evaluate its pre-
dictive performance in grading gliomas. Next, the minimum
Redundancy Maximum Relevance (mRMR) feature selection algorithm
was used to further identify an imaging signature for grading the
gliomas in the training set (De Jay et al., 2013). The mRMR algorithm
attempts to optimize the maximum relevance and minimum re-
dundancy simultaneously. The Student's t-test was conducted on the
features selected using the mRMR algorithm to observe whether they
were differentially expressed between the low- and high-grade glioma
groups in the validation set. All the P values derived from multiple
testing were adjusted using the Bonferroni correction.

2.6. Machine-learning model establishment

A support vector machine (SVM) fitted with the final selected fea-
tures was used in the training set. The SVM classifier, a specific type of
supervised machine-learning method, is designed to classify the data
points by maximizing the margins between the classes in a high-di-
mensional space (Cortes and Vapnik, 1995). The SVM classifier out-
putted a decision value for each patient that could be used to predict
the grade of the glioma. The ROC curves were plotted and the AUC was
calculated to illustrate the diagnostic performance of the predictive
model. An optimal cutoff value was identified when sensitivity plus
specificity was maximal. The established predictive model was subse-
quently evaluated in an independent validation set.
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2.7. Statistical analysis

The mRMR algorithm, SVM classifier, and ROC curve analysis were
implemented using the R software, version 3.3.2 (R Core Team (2016).
R: A language and environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria. URL https://www.R-project.
org/). The code of the mRMR algorithm and SVM classifier was pro-
vided in the supplementary material. The clinical characteristics of the
training and validation sets were compared using the Student's t-test
and Chi-square test. P < 0.05 was considered statistically significant.

3. Results

3.1. Radiological and clinical characteristics

As shown in Table 1, the 1H-MRS metabolites examined were as-
signed as creatine (Cr1) at 3.02 to 3.12 ppm, choline (Cho) at 3.17 to
3.27 ppm, N-acetylaspartate (NAA) at 1.98 to 2.08 ppm, and lactate
(Lac) at 1.10 to 1.50 ppm. Lipid peak included Lip1 defined at 0.70 to
1.00 ppm and Lip2 defined at 1.25 to 1.60 ppm, respectively.

In this study, 62 and 50 patients diagnosed by pathological grading
with low- and high-grade gliomas, respectively were enrolled and di-
vided into the training (n=74) and validation (n=38) sets. Table 2
shows the patient characteristics. There were no significant differences
between the training and validation sets in age (P=0.6506), sex
(P= 0.3225) or high/low grade (P= 0.4138), which indicated the
justifiability of using these two sets.

3.2. Feature selection and individual feature analysis

First, the performance of each 1H-MRS metabolic feature in pre-
dicting the glioma grade was assessed using the training set. As shown
in Table 3, the expression of the following features were found to be
significantly different (P < 0.05) between the low- and high-grade
glioma groups: NAA, Lip2, (Lip1+ Lip2), (Lac + Lip1+ Lip2), Cho/
Cr1 ratio, Lip2/Cr1 ratio, (Lip1+ Lip2)/Cr1 ratio, (Lac +
Lip1+ Lip2)/Cr1 ratio, Cho/NAA ratio, Lip1/NAA ratio, Lip2/NAA
ratio, (Lip1+ Lip2)/NAA ratio, and (Lac + Lip1+ Lip2)/NAA. The
corresponding AUCs of the differentially expressed features were cal-
culated (Table 3). The Lip2/NAA ratio and (Lip1+ Lip2)/NAA ratio
yielded AUC values of 0.812 and 0.810, respectively, which were the
most predictive of the glioma grade among the features assessed. Their
accuracies in predicting the glioma grade were 71.62% and 72.97%,

respectively.
Four 1H-MRS metabolic features were further selected using the

mRMR algorithm for the establishment of a machine-learning model.
The selected four features were NAA, Lip2, (Lac + Lip1+ Lip2)/Cr1
ratio, and Cho/NAA ratio. Their distribution is shown in Fig. 1. In the
training set, the NAA was found to be significantly higher in the low-
grade glioma group than in the high-grade glioma group (P=0.0094).
The Lip2, (Lac + Lip1+ Lip2)/Cr1 ratio, and Cho/NAA ratio were
significantly higher in the high-grade glioma group than in the low-
grade glioma group (P=0.0078, P=0.0494, and P=0.0104, re-
spectively). Similarly, in the validation set, the NAA was significantly
higher in the low-grade glioma group than in the high-grade glioma
group (P= 0.0072), and the Lip2, (Lac + Lip1+ Lip2)/Cr1 ratio, and
Cho/NAA ratio were significantly higher in the high-grade glioma
group than in the low-grade glioma group (P= 0.0324, P=0.0381,
and P= 0.0394, respectively). Thus, the differential expression of these
four features was significantly different between the low- and high-
grade gliomas in both sets.

3.3. Machine-learning model establishment

3.3.1. Training set
Using the training set, a machine-learning model was developed

based on the four selected metabolic features and the SVM classifier.
For each patient, the SVM classifier outputted a decision value to pre-
dict the glioma grade, and a ROC curve was delineated. The AUC was
0.825 in the ROC curve analysis. The optimal cutoff point (0.4) ex-
hibited a sensitivity, specificity, and accuracy of 74.2%, 81.4%, and
78.38%, respectively (Fig. 2A). These results demonstrated that the use
of this model was superior to the use of the Lip2/NAA ratio
(AUC=0.812) and (Lip1+ Lip2)/NAA ratio (AUC=0.810) for dis-
tinguishing between low- and high-grade gliomas.

3.3.2. Validation set
The machine-learning model was then applied to the validation set.

The glioma grades could be predicted effectively. The AUC was 0.820 in
the ROC curve analysis. At the best cutoff point (0.8), sensitivity, spe-
cificity, and accuracy were 89.5%, 63.2%, and 76.31%, respectively
(Fig. 2B).

The prediction processes of two representative cases are shown in
Fig. 3. The first case was a 44-year-old female patient with a WHO
grade II glioma. She was accurately classified into the low-grade group
using the SVM decision value, which was high (1.1). The second case
was a 41-year-old female patient with a WHO grade IV glioma. She was
accurately classified into the high-grade group using the SVM decision
value, which was low (0.3).

4. Discussion

We investigated the performance of a series of 1H-MRS metabolic
features in differentiating between low- and high-grade gliomas. We
further identified a grade-predictive signature using the mRMR algo-
rithm. Subsequently, a machine-learning model was created using the
selected features and the SVM classifier. The model achieved an AUC of
0.825 and 0.820 in the training and validation sets, respectively. This
model performed better than any individual metabolic feature, in-
dicating that it can be used as a non-invasive approach for better
classifying the glioma grades and that it could complement the tradi-
tionally used 1H-MRS metabolic parameters.

Accurate preoperative grading of gliomas is important to estimate
the prognosis and plan the treatment: the treatment strategies applied
to high-grade gliomas need to be more aggressive than those applied to
low-grade gliomas (Fouke et al., 2015). Conventional MR imaging with
gadolinium-based contrast agents has an established role in character-
izing cerebral tumors and is considered the reference standard for
preoperative diagnostic evaluation in some instances. Nevertheless,

Table 1
Metabolites and peak integration range.

Metabolites Metabolites abbreviation Integration range (ppm)

Creatine Cr1 3.02–3.12
Choline Cho 3.17–3.27
N-acetylaspartate NAA 1.98–2.08
Lipid1 Lip1 0.70–1.00
Lipid2 Lip2 1.25–1.60
Lactate Lac 1.10–1.50

Abbreviation: ppm: parts per million.

Table 2
Patient characteristics.

Number Mean Age
(years)

Sex (male/
female)

Grade (high/
low)

Training set 74 42.76 48/26 31/43
Validation set 38 43.84 21/17 19/19
P value 0.6506a 0.3225b 0.4138b

a Student's t-test.
b Chi-square test.
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contrast enhancement is not specific for malignancy and primarily re-
flects the message of the contrast material across a disrupted blood-
brain barrier (Vogelbaum et al., 2012). Several studies have demon-
strated that the absence of enhancement does not necessarily imply that
the glioma is low-grade (White et al., 2005).

Previous studies have revealed that the perfusion images perform
well in grading gliomas. A pioneer study found that histogram analysis
of normalized cerebral blood volume could grade gliomas with high
sensitivity (90%), better than the established hot-spot method
(55%–76%) (Emblem et al., 2008a). Another study revealed that
combining the tumor blood volume histogram signatures derived from
perfusion images and SVM could achieve a true positive rate of 0.76 and
a true negative rate of 0.82 in grading gliomas (Emblem et al., 2008b).
Additionally, using a SVM model with a radial basis function kernel
exhibited better performance (true positive rate 0.83; true negative rate
0.91) (Zollner et al., 2010), which was better than our model. However,
certain patients could be allergic to the contrast agent used in the
perfusion imaging, which limited the application of this approach
(Behzadi et al., 2018). Without the limitation of contrast agent, 1H-MRS
could also be used in grading gliomas (Kalpathy-Cramer et al., 2014)
and predicting the survival of gliomas (Andronesi et al., 2017), similar
to the perfusion imaging (Emblem et al., 2014; Emblem et al., 2015).

1H-MRS displays the oncometabolic state of the tumor where con-
ventional MRI cannot make such distinctions (Dowling et al., 2001).
The levels of N-acetylaspartate and creatine are reduced, whereas those
of choline and choline-containing compounds are increased in tumors
when compared with their respective levels in the normal brain tissue
(McKnight et al., 2007). A low NAA level indicates the loss of the
neuronal cell viability, whereas a high Cho level infers an increased
cellular turnover (Bulik et al., 2013). The metabolites lactate at
1.33 ppm and mobile lipids, with its most prominent peaks at 0.9 and
1.3 ppm, were also observed. Lactate accumulation in brain tumors,
caused by increased glycolysis, is associated with ischemic changes in
the poorly perfused tumor parenchyma, or increased necrotic tissue

(Fulham et al., 1992). While several studies suggest that high-grade
gliomas can be distinguished from low-grade tumors using higher Lac
peaks (Yamasaki et al., 2011), others show no significant correlations
(Shimizu et al., 1996; Sibtain et al., 2007). Lipids exist as macro-
molecules in the cell membranes and myelin sheaths in the normal
brain tissue. When the brain tissue is damaged or disrupted, as occurs
during the growth of a brain tumor, the lipid macromolecules are
transformed into mobile lipids. Lipids correlates with the presence of
necrosis when the cells die and their membranes break down (Remy
et al., 1997). Among all the gliomas, Lip peaks are more frequently
found in glioblastomas (Kuesel et al., 1994).

The results are usually expressed as ratios between the cerebral
metabolites rather than as absolute concentrations. Single metabolite
ratios, such as Cho/Cr ratio and Cho/NAA ratio, have been used to
reveal significant differences between low- and high-grade gliomas in
most studies (Rao et al., 2013; Wang et al., 2016). There are also studies
in which high-grade gliomas were detected by calculating the ratio of
lipids and lactate (LL)/Cr (Kim et al., 2006; Yoon et al., 2014). How-
ever, it is not known whether combined ratios could improve the di-
agnostic accuracy. The highest accuracy in differentiating between low-
and high-grade gliomas in our study was 72.97% for the (Lip1+ Lip2)/
NAA ratio, yet it increased to 78.38%, along with an increased in the
AUC from 0.8102 to 0.825, when the predictive model was used. The
combination of NAA, Lip2, (Lac + Lip1+ Lip2)/Cr1 ratio, and Cho/
NAA ratio used in our predictive model was more useful than any single
1H-MRS metabolic feature in differentiating the glioma grade pre-
operatively.

Furthermore, although the role of 1H-MRS quantitative measure-
ments in the diagnosis and monitoring of glial tumors have been stu-
died, there were no independent validation sets in most of the previous
studies. In our study, an SVM-based machine-learning model was cre-
ated using the training set and was validated using the independent
validation set. An SVM can automatically learn the distinguishing
patterns using the existing data and create a corresponding model

Table 3
Statistics of intra-tumor 1H-MRS metabolic parameters in the training set.

Metabolic parameters (normalized) Low-grade gliomas (n=43) High-grade gliomas (n=31) P value Adjust P AUC

Cho 1.581 ± 0.076 1.953 ± 0.269 0.1328 0.2302
Cr1 1.017 ± 0.034 0.983 ± 0.084 0.6778 0.8366
NAA 0.539 ± 0.023 0.430 ± 0.023 0.0018⁎⁎ 0.0094⁎⁎ 0.7254
Lac 3.411 ± 0.590 3.719 ± 0.512 0.7079 0.8366
Lip1 3.323 ± 0.831 3.528 ± 0.899 0.8687 0.9411
Lip2 2.144 ± 0.228 3.940 ± 0.495 0.0006⁎⁎⁎ 0.0078⁎⁎ 0.7592
Lip1+ Lip2 2.190 ± 0.285 3.460 ± 0.346 0.0058⁎⁎ 0.0168⁎ 0.7382
Lac+ Lip1+Lip2 2.234 ± 0.215 3.396 ± 0.344 0.0036⁎⁎ 0.0117⁎ 0.6962
Cho/Cr1 1.673 ± 0.087 2.501 ± 0.292 0.0028⁎⁎ 0.0104⁎ 0.6572
NAA/Cr1 0.521 ± 0.020 0.522 ± 0.036 0.992 0.992
Lac/Cr1 4.188 ± 0.796 11.80 ± 5.181 0.094 0.1748
Lip1/Cr1 3.564 ± 0.811 4.763 ± 0.979 0.3466 0.5006
Lip2/Cr1 2.659 ± 0.430 9.002 ± 2.895 0.0135⁎ 0.0319⁎ 0.7449
(Lip1+ Lip2)/Cr1 2.633 ± 0.412 7.557 ± 2.209 0.0130⁎ 0.0319⁎ 0.7397
(Lac+ Lip1+Lip2)/Cr1 2.727 ± 0.369 8.227 ± 2.743 0.0228⁎ 0.0494⁎ 0.6992
Cho/NAA 4.832 ± 0.723 12.19 ± 2.591 0.0026⁎⁎ 0.0104⁎ 0.7089
Lip1/NAA 8.516 ± 2.025 13.89 ± 3.479 0.1608 0.2613
Lip2/NAA 6.287 ± 0.906 27.42 ± 7.127 0.0009⁎⁎⁎ 0.0078⁎⁎ 0.8124
Lac/NAA 12.19 ± 2.843 25.37 ± 5.858 0.0309⁎ 0.0618
(Lip1+ Lip2)/NAA 6.199 ± 0.913 23.37 ± 6.098 0.0017⁎⁎ 0.00936⁎⁎ 0.8102
(Lac+ Lip1+Lip2)/NAA 6.796 ± 0.986 22.89 ± 5.114 0.0006⁎⁎⁎ 0.0078⁎⁎ 0.7824
Lip1/Cho 2.985 ± 0.830 1.788 ± 0.322 0.2429 0.3715
Lip2/Cho 2.167 ± 0.578 2.609 ± 0.369 0.5571 0.7623
Lac/Cho 2.313 ± 0.395 2.641 ± 0.567 0.6252 0.8128
(Lip1+ Lip2)/Cho 2.202 ± 0.584 2.283 ± 0.290 0.9117 0.9482
(Lac + Lip1+ Lip2)/Cho 2.126 ± 0.488 2.272 ± 0.321 0.8192 0.9261

Note: Data were expressed as the mean ± standard error of mean (SEM).
The bold words and number mean that they are statistically significant.

⁎ P < 0.05
⁎⁎ P < 0.01, and
⁎⁎⁎ P < 0.001 by Student's t-test.
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(Zacharaki et al., 2009). Compared with the diagnostic performance of
this, the predictive model we developed might be a superior index for
distinguishing between low- and high-grade gliomas.

There were some limitations to this study. First, the data available
was limited. Further studies are needed to confirm the efficacy of this
predictive model. Secondly, as an isolated modality, 1H-MRS could be
combined with other advanced imaging techniques such as perfusion

and diffusion MR information to improve the diagnostic accuracy.
In conclusion, we found that some 1H-MRS metabolic features could

help in predicting the grade of gliomas. Using the mRMR algorithm and
the SVM classifier, we established a machine-learning model that
achieved a better prediction performance in identifying the tumor
grade than those achieved using individual features. This indicates that
it could complement the traditionally used 1H-MRS metabolic features

Fig. 1. The values of NAA, Lip2, (Lac + Lip1+ Lip2)/Cr1 ratio, and Cho/NAA ratio within the tumor regions in the training (A-D) and validation sets (E-H). The
Student's t-test was used to obtain the statistical difference between the high- (red) and low-grade gliomas (green). The data are presented as means± standard
deviation of the parameters, NAA (A and E), Lip2 (B and F), (Lac + Lip1+Lip2)/Cr1 ratio (C and G), and Cho/NAA ratio (D and H).
* indicates P < 0.05; ** indicates P < 0.01.
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in predicting glioma grades.
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