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A B S T R A C T   

A wide range of research has illustrated that carotenoids play a key role in human health through their versatile 
beneficial biological functions. Traditionally, the majority dietary sources of carotenoids for humans are ob-
tained from vegetables and fruits, however, the contribution of animal-derived foods has attracted more interest 
in recent years. Livestock products such as eggs, meat, and milk have been considered as the appropriate and 
unique carriers for the deposition of carotenoids. In addition, with the enrichment of carotenoids, the nutritional 
quality of these animal-origin foods would be improved as well as the economic value. Here, we offer an 
overview covering aspects including the physicochemical properties of carotenoids, the situation of carotenoids 
fortified in livestock products, and the pathways that lead to the deposition of carotenoids in livestock products. 
The summary of these important nutrients in livestock products will provide references for animal husbandry and 
human health.   

1. Introduction 

Carotenoids are a class of widespread isoprenoid compounds bio-
synthesized mainly by photosynthetic organisms such as plants, cya-
nobacteria and algae, while some fungi and bacteria as well as certain 
invertebrate animals also have this ability (Meléndez-Martínez et al., 
2022; Rodriguez-Concepcion et al., 2018). In addition to pigmentation 
and provitamin A activity (α-carotene, β-carotene and β-cryptoxanthin 
are the main representatives), carotenoids have been proposed to confer 
many other functions, such as anti-oxidant, anti-inflammatory, photo-
protective, and stimulation of gap junctional communication (De Souza 
Mesquita et al., 2021; Junji, 2023; Saini et al., 2020; Stahl & Sies, 2012; 
Tanumihardjo, 2012). On this basis, many studies have shown that ca-
rotenoids play a positive role in the prevention or treatment of various 
diseases (Bohn, 2019; Cooper, 2004; Milani et al., 2017). Therefore, 
sufficient intake of these nutritional components is vital for the main-
tenance of human body health. Nowadays, despite plant-derived food 
including fruit and vegetables still being the main dietary sources of 

carotenoids in the human diet, nevertheless, livestock products should 
not be overlooked as an excellent strategy to ingest carotenoids 
(Meléndez-Martínez et al., 2022; Meléndez-Martínez, 2019). In partic-
ular, fortification and enrichment of edible eggs with carotenoids have 
been proposed for a long time (Surai & Sparks, 2001), and more and 
more consumers have accepted and are interested in these functional 
foods. Meanwhile, with the widely application of carotenoids in animal 
husbandry, the research about the deposition of carotenoids in meat, 
milk and other livestock products such as some animal offal (liver) has 
gradually increased. It is should note that aquatic animals are also rich in 
certain important carotenoids, especially some fish and shellfish, and 
the review of Tan et al. provided a detailed demonstration about this 
topic (Tan et al., 2022). However, there is no doubt that the production 
and consumption of livestock products are much higher than those of 
aquatic products all over the world (Scanes, 2018; Edwards et al., 2019). 
Hence, it is necessary to give more attention about the deposition and 
enrichment of carotenoids in livestock products, which will make a great 
significance for human rational diet. 
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Like humans, poultry and livestock are incapable of synthesizing 
carotenoids in vivo. The deposition of carotenoids in animals body is 
through the uptake of these compounds in diet, hence feed is an 
important factor that affects the carotenoid levels in the livestock 
products (Álvarez et al., 2015; Meléndez-Martínez, Esquivel, & 
Rodriguez-Amaya, 2023). Specifically, carotenoids need to be released 
from the feed, solubilized into digestive juice, and form mixed micelles, 
then absorbed by enterocytes, after a series of metabolic reactions, 
transferred to the blood and finally accumulated in target tissues and 
organs (Álvarez et al., 2015; Geng et al., 2022). Moreover, the metabolic 
pathway of uptake of carotenoids by humans is very similar to the above 
process, whether the carotenoids are derived from plant food or animal 
food. However, it is worth noting that carotenoid bioavailability from 
livestock products is generally considered to be high (Schweiggert & 
Carle, 2017), this further suggests that livestock products are an 
important vehicle for these bioactive compounds. For instance, Chung 
et al. conducted an intervention study with a crossover design to 
compare the bioavailability of lutein in four different dietary sources. 
The results showed that the lutein bioavailability from eggs was higher 
than that from other sources such as lutein supplements, lutein ester 
supplements, and spinach under the equivalent intake dose. (Chung 
et al., 2004). The study of Morifuji et al. in a randomized crossover trial 
demonstrated that the co-ingestion of β-carotene and fermented milk 
resulted in a significant increase in the absorption of this carotenoid in 
both humans and rats (Morifuji et al., 2020). Some studies have pointed 
out that dietary lipid intake can improve carotenoid absorption by 
several mechanisms, where the unique fat composition in livestock 
products may be the reason for promoting the stability and bioavail-
ability of carotenoids (Conboy Stephenson, Ross, & Stanton, 2021; 
Desmarchelier & Borel, 2017). 

In general, maize, alfalfa and other feedstuff contain a certain 
amount of carotenoids, but the species and contents are limited and hard 
to meet the needs to produce carotenoid nutrient-fortified livestock 
products. Therefore, many strategies have been developed to increase 
the amount of carotenoids in the diet of livestock and poultry. Among 
them, the most direct method is dietary supplementation with carot-
enoid additives in the diet. The production, encapsulation and applica-
tion of some carotenoid additives, such as β-carotene, lutein, 
canthaxanthin, and astaxanthin, is now relatively mature. Carotenoids 
as feed additives can either be obtained through chemical synthesis, 
extracted from natural sources, and produced by microorganisms (Langi 
et al., 2018). Comparatively speaking, the microbial production of ca-
rotenoids has received more attention in recent years owing to its being 

natural, efficient, low-cost, and environmental-friendly (Mussagy et al., 
2021). Currently, β-carotene is produced mainly in the microalgae 
Dunaliella salina and the fungus Blakeslea trispora (Zhang, 2018). The 
microalgae Haematococcus pluvialis is considered as the best source of 
natural astaxanthin. To date, with the application of genetic modifica-
tion of natural microbial system, the production of astaxanthin and 
other carotenoids in the microalgal species has been further improved 
(Zhu et al., 2023). Meanwhile, metabolic engineering strategies on 
Escherichia coli has also been widely developed to achieve the heterol-
ogous production of many carotenoid additives, such as lycopene, 
β-carotene, astaxanthin and zeaxanthin (Mussagy, Winterburn, Santos- 
Ebinuma, & Pereira, 2019; Zhu et al., 2023). In addition to the use of 
feed additives, fruit and vegetable by-products are other sources of ca-
rotenoids in the feeding of poultry and livestock. Processing by-products 
from orange, carrot, and tomato has been applied in animal diet, which 
contains several carotenoids including α-carotene, β-carotene, lutein, 
zeaxanthin, β-cryptoxanthin, and not only realized the further utiliza-
tion of by-products but also improved the level of carotenoids in the 
animal’s body (Akdemir et al., 2012; Seidavi et al., 2020; Titcomb et al., 
2019; Xue, Li, & Pan, 2013). Furthermore, based on metabolic engi-
neering, a breed of high-carotenoid biofortified maize has been ach-
ieved, these kinds of crops have been used as feed to supplement 
carotenoids for animals (especially poultry). Liu et al. modified the ca-
rotenoids biosynthesis pathway in maize seed to generate astaxanthin- 
rich maize, subsequently the astaxanthin-rich maize was fed to laying 
hens and successfully produced astaxanthin-fortified eggs (Liu et al., 
2021). Another study has shown that high-carotenoid maize, compared 
with common maize, had no adverse effects on poultry health, but could 
significantly improve the amount of several carotenoids in chickens’ 
livers and pigmentation effect in muscle after supplementing it in the 
diet (Díaz-Gómez et al., 2017). With the progress of technology, it is 
more convenient to supplement carotenoids in the diet of poultry and 
livestock while the cost is becoming reduced, which laid a foundation for 
the development of carotenoid-fortified livestock products. 

In this review, we introduce several kinds of key carotenoids and 
describe their characteristics. Then, several current scientific studies of 
the deposition and enrichment of different carotenoids in animal- 
derived foods are listed. Moreover, we briefly summarize the meta-
bolism and bioconversion of carotenoids in animal’s body. This work 
will help people systematically understand the deposition and enrich-
ment of carotenoids in livestock products, and the specific process. 

Fig. 1. Chemical structures of various carotenoids. A, Major carotenoids(all-trans configuration) in livestock products. B, Different geometrical isomers of β-carotene. 
C, Optical isomers of zeaxanthin. 
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Table 1 
The deposition and enrichment of different carotenoids in livestock products.  

Carotenoid Specie Product Dietary Source Supplemental Level Duration Deposition Amount Reference 

Lycopene Laying 
Hens 

Eggs Tomato oleoresins 
(containing 15 % 
lycopene) 

100, 200, 300 mg/kg lycopene in 
feed 
(adding tomato oleoresins into diet) 

21 days 1.58, 1.67, 1.71 μg/g 
yolk 
(no detected in control 
group) 

(Honda et al., 2019) 

Lycopene Laying 
Hens 

Eggs Tomato powder 
(containing 6 % 
lycopene) 

300 and 600 mg/kg lycopene in feed 
(adding tomato powders into diet) 

90 days 6.53 and 8.05 μg/g yolk 
(no detected in control 
group) 

(Akdemir et al., 
2012) 

Lycopene Laying 
Hens 

Eggs Commercial additive 
product 

20 mg/kg lycopene in feed 90 days 2.40 μg/g yolk 
(no detected in control 
group) 

(Orhan et al., 2021) 

Lycopene Laying 
Hens 

Eggs Commercial additive 
product 

10 and 20 mg/kg lycopene in feed 28 days 0.80 and 0.88 μg/g yolk 
(no detected in control 
group) 

(An et al., 2019) 

Lycopene Pigs Meat Commercial additive 
product 

20 mg/kg lycopene in feed 28 days about 6–8 μg/g belly 
meata 

(no detected in control 
group) 

(An et al., 2019) 

Lycopene Chickens Liver Commercial additive 
product 

75 mg/kg lycopene in feed 36 days 2.82 μg/g liver DM b 

(0.27 μg/g in control 
group） 

(Englmaierováet al., 
2011) 

Lycopene Chickens Liver Commercial additive 
product 

10 and 20 mg/kg lycopene in feed 28 days 1.67 and 3.69 μg/g liver 
(no detected in control 
group) 

(Lee et al., 2016) 

α-Carotene Laying 
Hens 

Eggs Purple haze carrots 
(chopped into 5–10 
mm pieces) 

4.63 mg/day α-carotene per hen 
(70 g/day carrot for per henc) 

28 days 1.29 μg/g yolk 
（0.01 μg/g in control 
group） 

(Hammershøj et al., 
2010) 

β-Carotene Laying 
Hens 

Eggs Purple haze carrots 
(chopped into 5–10 
mm pieces) 

7.88 mg/day β-carotene per hen 
(70 g/day carrot for per hend) 

28 days 3.39 μg/g yolk 
（0.03 μg/g in control 
group） 

(Hammershøj et al., 
2010) 

β-Carotene Laying 
Hens 

Eggs Commercial additive 
product 

15, 30, 60, 120 mg/kg β-carotene in 
feed 

49 days 1.04, 2.60, 5.97, 13.48 
μg/g yolk 
(no detected in control 
group) 

(Miao et al., 2023) 

β-Carotene Laying 
Hens 

Eggs Commercial additive 
product 

5, 10, 20, 40 mg/kg β-carotene in 
feed 

21 days 1.81, 2.68, 5.19, 4.81 
μg/g yolk 
(0.14 μg/g in control 
group） 

(Jiang et al., 1994) 

β-Carotene Laying 
Hens 

Eggs Engineered high- 
carotenoid 
biofortified maize 

3.18 mg/kg β-carotene in freeze- 
dried feed 
(biofortified maize account for 62 % 
in feed) 

20 days 0.45 μg/g yolk 
（0.05 μg/g in control 
group） 

(Moreno et al., 2020) 

β-Carotene Steers Meat Commercial additive 
product 

750 mg/day of β-carotene for per 
steer 

28 days 0.154 μg/g M. 
semimembranosus 
（0.023 μg/g in control 
group） 

(Muramoto et al., 
2003) 

β-Carotene Steers Meat Commercial additive 
product 

5.5, 27.5, 137.5 mg/kg β-carotene in 
feed 

Unspecifiede 0.202,0.969, 0.985 μg/g 
longissimus muscle 
(0.115 μg/g in control 
group） 

(Condron et al., 
2014) 

β-Carotene Steers Meat Commercial additive 
product 

600, 1200, 1800 mg/day of 
β-carotene for per steer 

90 days 0.19, 0.28, 0.33 μg/g 
muscle 
(0.18 μg/g in control 
group 

(Jin et al., 2015) 

β-Carotene Cows Colostrum Commercial additive 
product 

800 mg/day of β-carotene for per 
cow 

21 days 1.49 μg/mL milk 
（0.65 μg/mL in control 
group 

(Prom et al., 2022) 

β-Carotene Laying 
Hens 

Liver Commercial additive 
product 

15,30,60,120 mg/kg β-carotene in 
feed 

49 days 1.67, 2.30, 7.97, 16.90 
μg/g liver 
(no detected in control 
group) 

(Miao et al., 2023) 

β-Carotene Pigs Liver Commercial additive 
product 

10 mg/kg β-carotene in feed 98 days 0.49 μg/g liver 
(no detected in control 
group) 

(Schweigert et al., 
2001) 

β-Carotene Steers Liver Commercial additive 
product 

5.5, 27.5, 137.5 mg/kg β-carotene in 
feed 

Unspecifiede 0.531, 1.207, 2.225 μg/g 
liver 
(0.578 μg/g in control 
group） 

(Condron et al., 
2014) 

β-Carotene Steers Liver Commercial additive 
product 

600, 1200, 1800 mg/day of 
β-carotene for per steer 

90 days 7.43, 8.39, 9.32 μg/g 
liver 
(2.52 μg/g in control 
group 

(Jin et al., 2015) 

α-Cryptoxanthin Laying 
Hens 

Eggs Engineered high- 
carotenoid 
biofortified maize 

5.38 mg/kg α-cryptoxanthin in 
freeze-dried feed 

20 days 13.93 μg/g yolk 
（0.03 μg/g in control 
group） 

(Moreno et al., 2020) 

(continued on next page) 
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Table 1 (continued ) 

Carotenoid Specie Product Dietary Source Supplemental Level Duration Deposition Amount Reference 

(biofortified maize account for 62 % 
in feed) 

β-Cryptoxanthin Laying 
Hens 

Eggs Engineered high- 
carotenoid 
biofortified maize 

3.12 mg/kg β-cryptoxanthin in feed 
(biofortified maize account for 60 % 
in feed) 

40 days 4.88 μg/g yolk 
(1.07 μg/g in control 
group)f 

(Heying et al., 2014) 

β-Cryptoxanthin Laying 
Hens 

Eggs β-Cryptoxanthin 
biofortified maize 

2.60 mg/kg β-cryptoxanthin in feed 
(biofortified maize account for 60 % 
in feed) 

20 days 2.32 μg/g yolk 
（0.30 μg/g in control 
group） 

(Liu et al., 2012) 

β-Cryptoxanthin Laying 
Hens 

Eggs Engineered high- 
carotenoid 
biofortified maize 

3.29 mg/kg β-cryptoxanthin in 
freeze-dried feed 
(biofortified maize account for 62 % 
in feed) 

20 days 2.64 μg/g yolk 
（0.08 μg/g in control 
group） 

(Moreno et al., 2020) 

β-Cryptoxanthin Chickens Liver Engineered high- 
carotenoid 
biofortified maize 

2.09 mg/kg β-cryptoxanthin in 
freeze-dried feed 
(biofortified maize account for 58 % 
in feed) 

27 days 7.42 μg/g liver 
(no detected in control 
group) 

(Díaz-Gómez et al., 
2017) 

β-Cryptoxanthin Laying 
Hens 

Liver Engineered high- 
carotenoid 
biofortified maize 

3.12 mg/kg β-cryptoxanthin in feed 
(biofortified maize account for 60 % 
in feed) 

40 days about 3.04 μg/g liver 
(about 0.28 μg/g in 
control group)g 

(Heying et al., 2014) 

Lutein Laying 
Hens 

Eggs Red carrot leaves Red carrot leaves account for 0.4 % 
in feed 

28 days 3.37 μg/g yolk 
（2.04 μg/g in control 
group） 

(Titcomb et al., 
2019) 

Lutein Laying 
Hens 

Eggs Marigold powder Marigold powder account for 0.05 % 
in feed 

28 days 5.30 μg/g yolk 
（2.04 μg/g in control 
group） 

(Titcomb et al., 
2019) 

Lutein Laying 
Hens 

Eggs Mixture of marigold 
flower meal and 
spinach mealh 

11.1, 14.6, 17.5 g/kg mixture in feed 14 days 81.0, 84.0, 109.0 μg/g 
yolk DM 
(11.2 μg/g in control 
group） 

(Sünder et al., 2022) 

Lutein Laying 
Hens 

Eggs Marigolds flower 
extract 

2.36, 3.85, 4.86, 9.01, 9.52 mg/kg 
lutein in feed 
(adding 150,350,550,750,950 mg/ 
kg marigold flower extract in feed) 

70 days 18.56, 29.11, 30.27, 
30.80, 36.33 μg/g yolk 
DM 
(12.34 μg/g in control 
group） 

(Skřivan et al., 2016) 

Lutein Laying 
Hens 

Eggs Microalgae powder 4.441 mg/kg lutein in feed 
(adding 3.2 % dried D. tertiolecta 
mp3 powder. in feed) 

21 days 38.9 μg/g belly yolk 
(10.4 μg/g control 
group) 

(Kim & Shin, 2022) 

Lutein Quails Eggs Marigolds extract 10.56 mg/kg lutein in feed 
(marigold extract account for 0.2 % 
in feed) 

23 days 31.14 μg/g yolk 
（1.65 μg/g in control 
group 

(Karadas et al., 
2006) 

Lutein Cows Bovine 
Milk 

Marigolds extract 
(containing 2 % 
lutein) 

2, 3, 4 g/day of lutein for per cow 
(adding marigolds extractive into 
diet) 

84 days 7.0, 12.0, 15.0 μg/L milk 
（5.9 μg/L in control 
group） 

(Xu et al., 2014) 

Lutein Cows Bovine 
Milk 

Marigolds extractive 
(containing 2 % 
lutein) 

4 g/day of lutein for per cow 
(adding marigolds extractive into 
diet) 

56 days 10.25 μg/L milk 
（6.45 μg/L in control 
group） 

(Wang et al., 2018) 

Zeaxanthin Laying 
Hens 

Eggs Mixture of marigold 
flower meal and 
spinach meali 

11.1, 14.6, 17.5 g/kg mixture in feed 14 days 14.3, 14.4, 14.4 μg/g 
yolk DM 
(5.5 μg/g in control 
group） 

(Sünder et al., 2022) 

Zeaxanthin Laying 
Hens 

Eggs Heterotrophic 
Chlorella 

10 and 20 g/kg dry chlorella biomass 
in feed 

54 days 10.44 and 15.94 μg/g 
yolk 
(7.09 μg/g in control 
group） 

(Kotrbáček et al., 
2013) 

Zeaxanthin Laying 
Hens 

Eggs Engineered high- 
carotenoid 
biofortified maize 

12.14 mg/kg zeaxanthin in freeze- 
dried feed 
(biofortified maize account for 62 % 
in feed) 

20 days 29.89 μg/g yolk 
(0.60 μg/g in control 
group) 

(Moreno et al., 2020) 

Zeaxanthin Laying 
Hens 

Eggs Marigolds flower 
extract 

1.55, 2.46, 3.42, 6.55, 7.16 mg/kg 
zeaxanthin in feed(adding 150, 350, 
550, 750, 950 mg/kg marigold 
flower extract in feed) 

70 days 10.27, 14.93, 18.92, 
20.81, 25.59 μg/g yolk 
DM 
(5.92 μg/g in control 
group） 

(Skřivan et al., 2016) 

Zeaxanthin Laying 
Hens 

Eggs Microalgae powder 7.071 mg/kg lutein in feed 
(adding 3.2 % dried D. tertiolecta 
mp3 powder. in feed) 

21 days 26.0 μg/g belly yolk 
(9.9 μg/g control group) 

(Kim and Shin, 2022) 

Zeaxanthin Chickens Liver Engineered high- 
carotenoid 
biofortified maize 

10.33 mg/kg zeaxanthin in freeze- 
dried feed 
(biofortified maize account for 58 % 
in feed) 

35 days 7.19 μg/g freeze-dried 
liver 
(1.30 μg/g in control 
group） 

(Díaz-Gómez et al., 
2017) 

Meso- 
Zeaxanthin 

Chickens Meat Oil containing meso- 
zeaxanthin diacetate 

70 mg/kg meso-zeaxanthin in feed 
(adding oil into diet) 

56 days about 0.02 μg/g in 
muscle7 

(no detected in control 
group) 

(Phelan et al., 2018) 

(continued on next page) 
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2. Basic features of carotenoids 

Because of lipophilicity, carotenoids have very low solubility in 
water and are soluble in most organic solvents. To date, more than 1100 
different carotenoids have been identified from various natural sources 
(Yabuzaki, 2017). However, only a small proportion of carotenoids are 
present in human foods, and even fewer carotenoids can be found in 
animal-derived food or applied as feed additives. The most concerned 
and researched carotenoids mainly include α-carotene, β-carotene, 
lycopene, lutein, zeaxanthin, β-cryptoxanthin, astaxanthin, and 
canthaxanthin, which are also the focus subjects of this paper. As shown 
in Fig. 1A, some carotenoids mentioned above contain 40 carbon atoms 
with a long carbon chain skeleton that contains a variable number of 
conjugated double bonds. The special structure of carotenoids that gives 
them the property to absorb visible light conferring on them the pigment 
character in the yellow to red range (Ribeiro et al., 2018). Hence, ca-
rotenoids provide chromatic colors for many plants, as well as animals, 
especially the color of yolk is deeply affected by these pigments. In 
addition, the presence of conjugated double bonds is also the basis for 
the antioxidant capacity of carotenoids, which allows these compounds 
to quench free radicals efficiently (Zerres & Stahl, 2020). 

There are many ways of classifying carotenoids depending on 
different definition. According to the chemical composition, those 
formed only by carbon and hydrogen atoms are termed carotenes 

(α-carotene, β-carotene, lycopene), whereas carotenoids containing ox-
ygen besides carbon and hydrogen are known as xanthophylls (lutein, 
zeaxanthin, β-cryptoxanthin, astaxanthin, and canthaxanthin) (Jing 
et al., 2022). In xanthophylls, oxygen can be present in different func-
tional groups, such as hydroxyl, carbonyl, epoxide, and other oxygen-
ated groups, these structures lead to a more polar nature than carotene 
(Saini et al., 2022). Carotenoids can also be divided into provitamin A 
and non-provitamin A compounds based on whether they can be enzy-
matically converted into vitamin A. The provitamin A carotenoids 
possess at least one β-ionone ring along with the polyene chain, and 
theoretically, β-carotene has the highest vitamin A activity among them 
because it possesses two β-ionone rings (Debelo et al., 2017). Of note, 
when the provitamin A carotenoids are ingested by poultry and live-
stock, they can be converted into vitamin A in the animals’ bodies, and 
can also be accumulated intact in many animal products. We discussed a 
few relevant literatures in Section 5 of this paper. 

In general, natural carotenoids are mostly in their all-trans (all-E) 
configuration, which seems to be the most stable (Rodriguez-Con-
cepcion et al., 2018). However, each carotenoid can potentially form 
multiple geometrical isomers due to a conjugated system of double 
bonds characteristic of these kinds of compounds (Boon et al., 2010). 
The most common cis-isomers (Z-isomers) are 9-cis, 13-cis, and 15-cis 
carotenoids, Fig. 1B showed the different cis β-carotene. Several re-
searchers have investigated the differences in biological functions of 

Table 1 (continued ) 

Carotenoid Specie Product Dietary Source Supplemental Level Duration Deposition Amount Reference 

Astaxanthin Laying 
Hens 

Eggs Commercial additive 
product 

42 mg/kg astaxanthin in feed 28 days 21.77 μg/g yolk 
(no detected in control 
group) 

(Wang et al., 2022) 

Astaxanthin Laying 
Hens 

Eggs Commercial additive 
product 

7.1, 14.2, 21.3, 42.6 mg/kg 
astaxanthin in feed 

56 days 2.43,6.65,10.67, 22.13 
μg/g yolk 
(no detected in control 
group) 

(Dansou et al., 2021) 

Astaxanthin Laying 
Hens 

Eggs Commercial additive 
product 

15, 30, 45, 60 mg/kg astaxanthin in 
feed 

84 days 15.9, 31.9, 38.2, 64.3 
μg/g yolk 
(no detected in control 
group) 

(He et al., 2023) 

Astaxanthin Laying 
Hens 

Eggs Commercial additive 
product 

10, 20, 40, 80 mg/kg astaxanthin in 
feed 

21 days 13.2, 15.8, 15.7, 36.2 
μg/g yolk 
(no detected in control 
group) 

(Magnuson et al., 
2018) 

Astaxanthin Laying 
Hens 

Eggs Commercial additive 
product 

25, 50, 100 mg/kg astaxanthin in 
feed 

42 days 12.87, 21.06, 44.20 μg/g 
yolk 
(no detected in control 
group) 

(Gao et al., 2020) 

Astaxanthin Laying 
Hens 

Eggs Astaxanthin 
biofortified maize 

24.32 mg/kg astaxanthin in feed 28 days 14.15 μg/g yolk 
(no detected in control 
group) 

(Liu et al., 2021) 

Astaxanthin Chickens Meat Commercial additive 
product 

15 and 30 mg/kg astaxanthin in feed 21 days 0.17, 0.20 μg/g 
pectoralis major (no 
detected in control 
group) 

(Akiba et al., 2001) 

Astaxanthin Chickens Liver Commercial additive 
product 

15 and 30 mg/kg astaxanthin in feed 21 days 0.85,1.14 μg/g liver 
(no detected in control 
group) 

(Akiba et al., 2001) 

Astaxanthin Laying 
Hens 

Liver Commercial additive 
product 

10, 20, 40, 80 mg/kg astaxanthin in 
feed 

42 days 3.39, 3.50, 4.92, 5.78 
μg/g liver 
(no detected in control 
group) 

(Magnuson et al., 
2018)  

a . The exact amount was not specified in the paper, these data are estimated from Fig. 1 in the paper. 
b . Dietary supplemental 75 mg/kg lycopene with 100 mg/kg vitamin E in the diet at the same time, DM means dry matter. 
c . The α-carotene intake was 4.63 mg/day per hen which can be calculated based on production performance data and contents of carotenoids in carrot. 
d . The β-carotene intake was 7.88 mg/day per hen which can be calculated based on production performance data and contents of carotenoids in carrot. 
e . The paper did not clearly indicate the feeding time. The cows’ average weight was 351.3 ± 12.1 kg at the beginning of the experiment, and it was 591 ± 13.9 kg 

when slaughtered. 
f . The control group in this study was designated as yellow maize + lutein fortification 
g . The control group in this study was designated as yellow maize + lutein fortification, and the exact amount was not specified in the paper, these data are estimated 

from Fig. 2A in the paper. 
h . Produced marigold flower meal (Tagetes erectus, TE) and spinach (Spinacia oleracea, SO) as carotenoid sources (mixture of 25% TE and 75% SO). 
i . The exact amount was not specified in the paper, these data are estimated from Fig. 1 in the paper. 
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different geometrical isomers carotenoids. Some of them pointed out the 
cis-isomers of lycopene, β-carotene, and lutein had higher bioavailability 
and tissue accumulation efficiency than the all-trans isomers in rats 
(Honda et al., 2021). Moreover, the cis-isomers exhibited greater anti- 
oxidant and anti-inflammatory activities compared with the all-trans 
isomers, hence the cis-isomers carotenoids might lead to more remark-
able health benefits (Honda, 2023; Yang et al., 2019). In addition, there 
are some carotenoid molecules that contain chiral centers and can be 
present in the form of the optical isomers, where zeaxanthin is shown in 
Fig. 1C. Several kinds of geometric or optical isomers of carotenoids 
have been found in livestock products. For example, a study in our 
laboratory showed that when supplemented with astaxanthin micro-
capsules powder (byproduct from Haematococcus pluvialis) in the diet of 
laying hens, the ratio of 9-cis and 13-cis astaxanthins accounted for 
about half of the total astaxanthin in astaxanthin-fortified eggs, and the 
different astaxanthin geometric isomers were all increased in yolks 
following the supplementation dose (Dansou et al., 2021). Honda et al. 
prepared tomato oleoresins having different lycopene cis-isomers con-
tents and then added to the diet of laying hens. They found that as the 
cis-isomers content in diet increased, the total lycopene and cis-isomers 
lycopene in the egg yolks were also increased (Honda et al., 2019). Levin 
et al. demonstrated that the 9-cis isomer could be stored in the livers of 
chicks when they were fed oil-soluble mixtures of all-trans and 9-cis 
β-carotene (Levin et al., 1994). Rasmussen et al. reported that a small 
amount of meso (3R,3′S)-zeaxanthin could be detected in egg yolks from 
hens fed on meso (3R,3′S)-zeaxanthin-containing feeds (Rasmussen 
et al., 2012). Because of the high cost and difficulty in determining the 
different carotenoid isomers, most research on carotenoids in animal- 
derived foods still focuses on the detection of all-trans carotenoids, 
which can be seen in next section. In addition to being present as 
different isomers, carotenoids can also be associated with other mole-
cules. In particular, a part of xanthophylls that have at least one hy-
droxyl group can be associated with fatty acids and form xanthophylls 
esters (Mariutti & Mercadante, 2018). These kinds of xanthophylls, such 
as lutein, zeaxanthin, β-cryptoxanthin, and astaxanthin, can be found in 
many fruits and flowers in the free form or acylated with fatty acids. 
Mass spectrometry or nuclear magnetic resonance spectroscopy is 
frequently required for identification of xanthophyll esters, and appro-
priate extraction conditions and instrument parameters need to be 
explored for different samples. Moreover, almost no standards for 
xanthophyll esters are commercially available, the standards mentioned 
in a few studies were obtained by synthesis, making it very difficult to 
quantitate such kinds of compounds accurately (Mercadante et al., 
2017). In the current study involving xanthophyll esters, researchers 
mostly chose plants as the subject, available information in animal- 
derived foods is very limited. In the future, it is believed that more 
and more information about these carotenoid isomers and esters will be 
available as detection techniques improve. 

3. Deposition characteristics of carotenoids in livestock 
products 

Carotenoids have been widely used as feed additives in animal 
husbandry, and these bioactive compounds produced by microorgan-
isms has reached a high level of maturity in recent years, gradually 
replacing chemically synthesized carotenoids and playing a better role 
in health benefits (Jing et al., 2022; Mapelli-Brahm et al., 2020; Saini & 
Keum, 2019). Numerous studies have confirmed that this class of 
bioactive compounds can exert positive effects on promoting the growth 
and reproduction of poultry and livestock (Kerr et al., 2015; Nabi et al., 
2020; Noziere et al., 2006), β-carotene and other provitamin A carot-
enoids are of great significance in preventing vitamin A deficiency in 
poultry and livestock caused by rapid growth and production pressure 
(Green & Fascetti, 2016). However, much research only focuses on the 
physiological functions and health benefits of carotenoids when used as 
dietary supplementation in the diet of animals, while neglecting the 

deposition and distribution of carotenoids in the body after animal up-
take. Strikingly, there is an increasing interest in broadening new dietary 
sources for carotenoids (Meléndez-Martínez et al., 2022), eggs and milk 
have received great attention as excellent carriers of carotenoids. Some 
studies have also involved the content of carotenoids in different meat, 
meanwhile, some animal offal, especially the liver, are also regarded as 
rich in carotenoids. Therefore, the laws and characteristics of the 
deposition of carotenoids in poultry and livestock have been gradually 
revealed by more and more studies. This section will be combined with 
relevant literatures to introduce and summarize the current situation of 
carotenoids in livestock products. 

For the various studies listed in Table 1, research on the deposition of 
carotenoids in egg yolks accounted for the vast majority, from which it 
can be seen that eggs have a special advantage as carriers for the 
enrichment of these lipid-soluble nutrients. Moreover, the experimental 
procedures of all studies are basically consistent. Namely, after dietary 
supplementation of carotenoids in the diet of animals for a period of 
time, the samples of eggs or milk, as well as meat or liver (after 
slaughter) were collected. Then, different organic solvents were selected 
as extraction reagents for different samples, and the techniques of high- 
performance liquid chromatography or supercritical fluid chromatog-
raphy (or both of them further supplemented with tandem mass spec-
trometry) were applied subsequently to identify and detect the 
corresponding carotenoids. Based on the results of various studies in 
Table 1, we have summarized some laws and characteristics of the 
deposition and enrichment of carotenoids in livestock products. First, 
when poultry and livestock have noncarotenoids fortified feed, the va-
rieties and amounts of carotenoids in the products are very limited. 
However, with increasing levels of carotenoids supplemented into the 
diet, regardless of the dietary source, the amount of carotenoids in 
livestock products was increased accordingly within limits. The different 
results of lycopene (Honda et al., 2019), β-carotene (Condron et al., 
2014; Jin et al., 2015; Miao, Yang, et al., 2023), lutein (Skřivan, Mar-
ounek, Englmaierova, & Skřivanová, 2016; Xu et al., 2014), zeaxanthin 
(Skřivan et al., 2016) and astaxanthin (Dansou et al., 2021; He et al., 
2023) in egg yolks, meat or milk proved this rule generally. Second, 
there seems to be a certain upper limit for the deposition of carotenoids 
in livestock products. When the carotenoids in the diet are at a high 
level, the deposition amount rate of increase slows and efficiency be-
comes low. The results of Jiang et al. showed that after 21 days of 
feeding, the amounts of β-carotene in yolk were higher when the sup-
plementation levels were 20 mg/kg feed than 40 mg/kg (Jiang et al., 
1994). Other research involved in the enrichment of astaxanthin in eggs 
pointed out that the deposition rate of astaxanthin in eggs became lower 
when the diet was supplemented with astaxanthin at 42.6 mg/kg 
compared with 21.3 mg/kg under the same feeding time (Dansou et al., 
2021). In addition, Jin et al. found that there was no significant differ-
ence in the β-carotene amount in the liver of steers that received sup-
plementary β-carotene at concentrations of 600, 1200, or 1800 mg/day 
for 90 days (Jin et al., 2015). Hence, when carotenoid intake by animals 
was too high, this may lead to its deposition in the body reaching a 
plateau, and excess carotenoids could be excreted from the body. Third, 
according to the research about the amount carotenoids in egg yolks 
with feeding time, the deposition of supplementation carotenoids in egg 
yolks increased gradually with the feeding time at the early stage of the 
experiment, and it would take approximately two weeks for carotenoid 
amounts to reach a steady plateau in the egg yolk (Miao et al., 2023; 
Ortiz et al., 2021; Zhao et al., 2023).Whether this law applies to other 
livestock products, further research is needed for verification. Finally, in 
view of the egg yolk amounts of lutein and astaxanthin being more than 
that of lycopene and β-carotene under the same addition level in feed, it 
is supposed that the xanthophyll may be easier to absorb and deposit in 
laying hens than carotene. Our previous study also showed that even 
with the fortification of β-carotene in eggs, lutein and zeaxanthin in eggs 
still account for a large proportion of carotenoids (Miao et al., 2023). 
However, the situation may be the opposite in cows, a study has pointed 
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out that β-carotene is the dominant carotenoid in bovine milk, 
comprising 75 %–90 % of the total carotenoids (Conboy et al., 2021). 
These might be related to the different bioaccessibility and bioavail-
ability of carotenoids in different animal species (Desmarchelier & 
Borel, 2017; Lee et al., 1999), although more evidence is needed to 
validate this hypothesis. 

At present, although more and more different carotenoids have been 
applied in poultry and livestock diets, they still only account for a small 
portion of the entire carotenoid family. A lot of research has proven that 
livestock products can serve as excellent carriers of carotenoids, espe-
cially for carotenoids that are not easily available in human diets. For 
instance, the main source of astaxanthin was previously considered to be 
marine food products (Higuera-Ciapara et al., 2006), but now it has 
broad accessibility in carotenoid-enriched eggs. In the future, as more 
varieties of carotenoid additives become available for industrial pro-
duction, more carotenoid-enriched livestock products will emerge. 

4. Metabolic pathways of carotenoids in animals 

As mentioned above, after the uptake of carotenoids by animals from 
feed, these nutrient substances undergo a series of metabolic processes 
before being deposited in the livestock products, including ingestion, 
digestion, absorption, bioconversion, and transportation. After years of 
research, these processes have been studied relatively clearly, mean-
while, the functions of many genes and proteins involved in these pro-
cesses have also been revealed. In this section, we have provided a brief 
description to introduce the pathways of carotenoids from feed to live-
stock products. 

At an early stage after the animals eat feed, through oral mastication, 
stomach peristalsis, and digestive enzyme action, carotenoids can be 
released from the food matrix, then they are encapsulated into lipid 
droplets or globules and transferred to the proximal parts the of small 
intestine (Desmarchelier & Borel, 2017; Geng et al., 2022). In the small 
intestine, the main site of carotenoids’ absorption (Von Lintig et al., 
2020), the released carotenoids are combined with bile salts, choles-
terol, fatty acids, phospholipids, and other lipid components to form 

mixed micelles (Bohn et al., 2019). Next, they are delivered to the apical 
surface of the enterocytes (Rodriguez-Concepcion et al., 2018). Of note, 
xanthophyll esters can be hydrolyzed to the free form by some lipases in 
the small intestine lumen for better absorption (Chitchumroonchokchai 
& Failla, 2006). When the mixed micelles contact the intestine mucous 
membrane, carotenoids present in them can be absorbed by simple 
diffusion through the brush border membrane into the enterocytes, and 
also can be mediated by some receptor-binding proteins (Shilpa et al., 
2020). Research has proved that the scavenger receptor class B type 1 
(SR-B1) and cluster determinant 36 (CD36) are the two key membrane 
proteins that facilitate the absorption of carotenoids from mixed mi-
celles. Once taken into the enterocyte, a part of the carotenoids un-
dergoes cleavage by the enzymes β-carotene-15,15′oxygenase (BCO1) or 
β-carotene-9′,10′-oxygenase (BCO2), resulting in the formation of 
different cleavage products (Bohn et al., 2022). BCO1 is responsible for 
catalyzing the bioconversion of provitamin A carotenoids into vitamin 
A, this process is detailed in the next section. The other part of the ca-
rotenoids is unprocessed and can be packaged with other lipid compo-
sitions together into chylomicrons intactly, then chylomicrons as well as 
their encapsulated carotenoids are released into the lymphatic system, 
and next delivered to the bloodstream, eventually reaching the liver in 
the form of chylomicron remnants (Rodriguez-Concepcion et al., 2018; 
Shete & Quadro, 2013; Von Lintig et al., 2020). The liver is regarded as 
the main site that stores carotenoids and distributes them to the pe-
ripheral tissues (Bohn et al., 2019). Carotenoids are in association with 
various kinds of lipoproteins to be transported to target tissues and or-
gans (such as muscle, ovary, and mammary gland) by the bloodstream 
(Ribeiro et al., 2018; Rodriguez-Concepcion et al., 2018). In particular, 
because of the polar nature of lutein and zeaxanthin, they are more 
evenly distributed between low-density lipoprotein (LDL) and high- 
density lipoprotein (HDL) fractions, whereas the β-carotene and other 
nonpolar carotenoids are found mostly incorporated into very low- 
density lipoprotein (VLDL) and LDL (Bohn et al., 2019; Rodriguez- 
Concepcion et al., 2018). Finally, these lipid-soluble bioactive com-
pounds accompany the formation of livestock products and are depos-
ited in them. Fig. 2 briefly illustrated the absorption and transport 

Fig. 2. Simplified schematic if absorption and transport of carotenoids from the digestion to the target organs and tissues (β-carotene and lutein as examples). 
Carotenoids in the food matrix pass through the esophagus and are digested in the stomach. Then in the small intestinal tract, carotenoids in the food matrix are 
released and solubilized in mixed micelles. Next, the carotenoids in the mixed micelles pass the enterocytes through the membrane transporters such as SR-B1 and 
CD36 as well simply passive diffusion. Once in the enterocytes, the intact carotenoids can be packaged into chylomicrons and delivered to the liver by lymph and 
blood. In addition to being deposited and stored in the liver, a part of intact carotenoids can be transported in the bloodstream to target tissues and organs (such as 
ovary, muscle and mammary gland) with the assistance of different lipoproteins. Finally, some carotenoids are excreted from the body through the large intestine. 
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processes of carotenoids in animals body, taking β-carotene and lutein as 
examples. 

In recent years, the concepts of release rate, micellization rate, bio-
accessibility, and bioavailability have been widely discussed as key 
parameters for evaluating the efficiency of carotenoid use in the body 
(Geng et al., 2022). Each of these indicators is influenced by several 

factors, and many excellent reviews have summarized the related 
research (Castenmiller & West, 1998; Desmarchelier & Borel, 2017; 
Geng et al., 2022; Saini et al., 2022; Shilpa et al., 2020; Yonekura & 
Nagao, 2007). Among these, this paper focuses on the interaction be-
tween carotenoids, especially competitive inhibition of different carot-
enoids. Our laboratory has found that with the increasing uptake of 

Table 2 
The change in vitamin A amounts in livestock products by supplementation with provitamin A carotenoids.  

Carotenoid Specie Product Dietary Source Supplemental Level Duration Change of vitamin Aa Reference 

β-Carotene Laying 
Hens 

Eggs Commercial 
additive product 

15, 30, 60, 120 mg/kg 
β-carotene in feed 
(vitamin A level in feed was 
8000 IU/kg) 

49 days 5.53, 6.01, 6.21,5.73 μg/g retinol, 
0.11,0.13,0.17,0.19 μg/g retinyl propionate, 
1.01,1.31,1.63,1.82 μg/g retinyl palmitate, 
0.80,0.86,1.16,1.19 μg/g retinyl stearate, 
and 9.80, 10.50, 10.71, 10.50 μg/g total 
vitamin A in yolk 
(5.26 μg/g retinol, 0.07 μg/g retinyl 
propionate, 0.87 retinyl palmitate, 0.71 μg/g 
retinyl stearate, and 9.48 μg/g total vitamin 
A in control group) 

(Miao et al., 
2023) 

β-Carotene Laying 
Hens 

Eggs Commercial 
additive product 

5, 10, 20, 40 mg/kg 
β-carotene in feed 
(vitamin A level in feed was 
9900 IU/kg) 

21 days 11.50, 12.03, 13.93 12.88 μg/g total vitamin 
A in yolk 
(11.62 μg/g in control group) 

(Jiang et al., 
1994) 

β-Carotene Steers Meat Commercial 
additive product 

5.5, 27.5, 137.5 mg/kg 
β-carotene in feed 
(vitamin A level in feed was 
2200 IU/kg) 

Unspecifiedb 114.3, 126.8, 143.0 ng/g retinol, 
23.4,25.7,29.7 ng/g retinyl palmitate, 
16.3,18.2,24.2 ng/g retinoic acid in 
longissimus muscle 
(85.5 ng/g retinol, 21.6 ng/g retinyl 
palmitate, 15.9 ng/g retinoic acid in control 
group） 

(Condron 
et al., 2014) 

β-Carotene Steers Meat Commercial 
additive product 

600, 1200, 1800 mg/day of 
β-carotene for per steer 
(vitamin A level in feed was 
12500 IU/kg) 

90 days 36.79, 38.03, 38.85 μg/g total vitamin A in 
yolk 
(36.33 μg/g in control group) 

(Jin et al., 
2015) 

β-Carotene Cows Colostrum Commercial 
additive product 

800 mg/day of β-carotene for 
per cow 
(vitamin A level in feed DM 
was 6600 IU/kg) 

21 days 4.83 μg/mL milk 
(4.35 μg/mL in control group) 

(Prom et al., 
2022) 

β-Carotene Laying 
Hens 

Liver Commercial 
additive product 

15,30,60,120 mg/kg 
β-carotene in feed 
(vitamin A level in feed was 
8000 IU/kg) 

49 days 5.64,5.72,5.84,4.76 μg/g retinol and 
1.01,1.53,2.96,3.61 mg/g retinyl palmitate 
in liver (4.55 μg/g retinol and 0.67 mg/g 
retinyl palmitate in control group) 

(Miao et al., 
2023) 

β-Carotene Pigs Liver Commercial 
additive product 

10 mg/kg β-carotene in feed 
(vitamin A level in feed was 
4000 IU/kg) 

98 days 13.0 μg/g retinol, 242 μg/g retinyl palmitate, 
65 μg/g retinyl oleate, 36 μg/g retinyl 
stearate in liver 
(8.3 μg/g retinol, 143 μg/g retinyl palmitate, 
36 μg/g retinyl oleate, 23 μg/g retinyl 
stearate in control group) 

(Schweigert 
et al., 2001) 

β-Carotene Steers Liver Commercial 
additive product 

600, 1200, 1800 mg/day of 
β-carotene for per steer 
(vitamin A level in feed was 
12500 IU/kg) 

90 days 478.24, 622.30, 740.34 μg/g total vitamin A 
in liver 
(305.09 μg/g in control group) 

(Jin et al., 
2015) 

β-Cryptoxanthin Laying 
Hens 

Eggs Engineered high- 
carotenoid 
biofortified maize 

0.13 mg/kg α-carotene, 2.86 
mg/kg total β-carotene, 3.12 
mg/kg β-cryptoxanthin in 
feed 
(biofortified maize account 
for 60 % in feed and no 
supplementation vitamin A 
additive) 

40 days 4.81 μg/g total vitamin A in yolk 
(4.46 μg/g in control group)c 

(Heying 
et al., 2014) 

β-Cryptoxanthin Laying 
Hens 

Liver Engineered high- 
carotenoid 
biofortified maize 

0.13 mg/kg α-carotene, 2.86 
mg/kg total β-carotene, 3.12 
mg/kg β-cryptoxanthin in 
feed 
(biofortified maize account 
for 60 % in feed and no 
supplementation vitamin A 
additive) 

40 days about 5.16 mg/g total vitamin A liver 
(about 2.15 mg/g in control group)d 

(Heying 
et al., 2014)  

a . The data of retinol detected in samples after saponification were defined as the total vitamin A content, if the different forms of vitamin A had also been detected in 
unsaponifiable samples there would be an additional annotation. 

b . The paper did not clearly indicate the feeding time. The cows’ average weight was 351.3 ± 12.1 kg at the beginning of the experiment, and it was 591 ± 13.9 kg 
when slaughtered. 

c . The control group in this study was designated as yellow maize + lutein fortification 
d . The control group in this study was designated as yellow maize + lutein fortification, and the exact amount was not specified in the paper, these data are estimated 

from the Fig. 1B in the paper. 
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β-carotene in laying hens, there is a significant decrease of lutein and 
zeaxanthin in egg yolks (Miao et al., 2023). The research by Wang et al. 
showed that the continuous supplementation of large amounts of any 
one of the three carotenoids (β-carotene, lutein and zeaxanthin) for 28 
days could depress the amount of the other carotenoids in plasma, liver 
and other tissues and organs (Wang et al., 2010). Similarly, after a 
certain amount of β-carotene was administered to humans, the amount 
of plasma lutein decreased by more than 50 % (Kostic et al., 1995), this 
phenomenon has also been reported in the study of mice (Mamatha & 
Baskaran, 2011). However, not all research results showed competition 
between carotenoids in animals, Zhao et al. demonstrated that the 
deposition of astaxanthin in egg yolks might lower the content of lutein, 
whereas it did not affect zeaxanthin (Zhao et al., 2023). Another study 
also showed that the enrichment of astaxanthin in egg yolks did not 
significantly affect the zeaxanthin content (Wang et al., 2022). In an in 
vitro experiment using caco-2 cells to investigate the competitions be-
tween carotenoids for their uptake, the results showed that lutein uptake 
was not significantly affected by the addition of phytoene and phyto-
fluene. But the β-carotene uptake was reduced by 12.9 % and 21.6 %, 
respectively, after the same treatment (Mapelli-Brahm et al., 2018). The 
regulatory mechanism related to competition between carotenoids has 
not been fully explored, some hypotheses suggest that the competition 
mainly occurs in the process such as incorporation into mixed micelles, 
sharing the common membrane transporter (SR-B1), formation of 
chylomicron remnants, and association with lipoproteins (Mapelli- 
Brahm et al., 2018; Shilpa et al., 2020; Tyssandier et al., 2002; Van den 
Berg, 1999). 

In fact, when the carotenoids are applied to animal husbandry, the 
factors that affect the metabolism of carotenoids in the animal body and 
the deposition of livestock products may become more complex, in 
consideration of the wide difference in the aspects of species, breeds, 
age, environment, feed composition, and management style. Therefore, 

there is still a lot of work to be done to achieve accurate feeding and 
efficient utilization of carotenoids in poultry and livestock. 

5. Bioconversion of provitamin A carotenoids 

In addition to being deposited intact in the tissues and organs after 
the carotenoids are taken into enterocytes, there are also various 
cleavage products called apocarotenoids generated under the action of 
enzymes (Harrison & Quadro, 2018). Specifically, the provitamin A 
carotenoids can be further converted into different forms of vitamin A, 
thereby altering vitamin A levels in animals’ bodies. We have summa-
rized the effects of provitamin A carotenoids on the vitamin A amount in 
livestock products which were shown in Table 2. For the dietary sup-
plementation with provitamin A carotenoids in the diet of poultry and 
livestock, it is not surprising that the different forms of vitamin A in the 
egg yolks, milk, and meat show increase (Condron et al., 2014; Heying 
et al., 2014; Jiang et al., 1994; Jin et al., 2015; Miao et al., 2023; Prom 
et al., 2022). However, the absolute increased amount of vitamin A was 
still very limited in most cases. By contrast, the change in vitamin A 
levels in liver was more obvious (Heying et al., 2014; Jin et al., 2015; 
Schweigert et al., 2001), especially for the retinyl esters. This is because 
the liver is the main storage site of vitamin A, and retinyl esters (retinyl 
palmitate) are the main storage form (Blaner, 2019). 

Fig. 3 is a schematic diagram of the provitamin A carotenoids’ 
bioconversion and interaction with retinoids metabolism (using 
β-carotene as an example). In theory, the central cleavage of β-carotene 
at the 15,15′ double bond is catalyzed by the BCO1 enzyme and results in 
the generation of two molecules of retinal (RAL, also called β-apo-15- 
carotenal), whereas α-carotene and β-cryptoxanthin only undergo 
asymmetric cleavage and produce one molecule of RAL. So as mentioned 
earlier, the β-carotene is always thought to have the highest vitamin A 
activity (Nie et al., 2019). RAL is considered to be an important 

Fig. 3. Overview of β-carotene bioconversion. The β-carotene can be catalyzed by the BCO1 enzyme and results in the generation of retinal, which is subsequently 
incorporated into vitamin A metabolism. Furthermore, β-carotene can also be converted by mitochondrial BCO2 into apocarotenoids different from retinoids. 
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intermediate product of the retinoids’ metabolism (Russo et al., 2021). It 
can be reversibly reduced to retinol (ROL) by short-chain dehydroge-
nase/reductase (ROL can also be reversibly metabolized to RAL via the 
retinol dehydrogenases family), then the ROL is further converted to 
different forms of retinyl esters (RE) after esterification to fatty acids by 
the action of lecithin: retinol acyltransferase (LRAT) (Rodriguez-Con-
cepcion et al., 2018; Von Lintig et al., 2020). Meanwhile, RAL can also 
be further oxidized irreversibly to retinoic acid (RA) under the cata-
lyzation of a series of aldehyde dehydrogenases (ALDH). RA combines 
with the retinoic acid receptors (RARs), next the complex can hetero-
dimerize with other class of transcription factors called retinoid X re-
ceptors (RXR) and then bind to retinoic acid response elements (RAREs) 
to regulate the expression of more than 500 genes (Blaner, 2019). In 
addition, RA can undergo further oxidative metabolism catalyzed by 
cytochrome P450 enzymes (CYP26A1, CYP26B1 or CYP26C1) forming 
several oxidized products for elimination from the body (Thatcher & 
Isoherranen, 2009). The various forms of retinoids formed by biocon-
version of provitamin A carotenoids would be packed in chylomicron for 
body distribution together with those intact carotenoids and other lipid 
compounds for the body. Besides the central cleavage of β-carotene to 
yield retinal, another feasible route is the eccentric cleavage. The 
enzyme responsible for catalyzing this process is BCO2, the main func-
tion of BCO2 is asymmetric cleaving at the 9,10′ double bond both for 
the provitamin A and non-provitamin A carotenoids which leads to the 
production of apocarotenoids. This enzyme is different from the BCO1 
that is located in cytoplasm, whereas BCO2 is found in mitochondria 
(Raghuvanshi et al., 2015). The apocarotenoids that possess one β-ion-
one ring in the structure, such as β-apo-10′-carotenal, which can be 
further converted under catalyzing by BCO1 and eventually produce one 
molecule of retinal. In addition to the biological actions of provitamin A 
activity, apocarotenoids also have the potential to regulate cellular 

functions, especially for the activation of important antioxidant 
signaling pathways (Sharoni et al., 2012; Barros et al., 2018; Harrison & 
Quadro, 2018), but these molecules have not been thoroughly studied in 
animal products yet. 

As shown in Table 2, the bioconversion efficiency of β-carotene into 
vitamin A decreased with increasing doses in the diet (Jiang et al., 1994; 
Jin et al., 2015; Miao et al., 2023), which meant that there was a certain 
upper limit of the provitamin A carotenoids bioconversion. The key 
transcription factor, intestine-specific homeodomain transcription fac-
tor (ISX) which could be induced by RA via RARs, has been proven 
responsible for the regulation of negative feedback control of the 
bioconversion of provitamin A, this special mechanism could maintain 
the vitamin A homeostasis in the body and avoid hypervitaminosis A 
(Lobo et al., 2010; Von Lintig, 2012). When the intake of vitamin A or 
provitamin A carotenoids are in excess, the ISX can be activated and the 
expression of the genes BCO1 and the SR-B1 in epithelial cells of the 
intestine are repressed to control the vitamin A production by reducing 
the carotenoids absorption and cutting off the bioconversion pathway 
(Von Lintig, 2012; Von Lintig et al., 2020). The proposed regulation 
route is shown in Fig. 4. In modern animal husbandry, preformed 
vitamin A is always added to the diet as the formation of synthetic RE at 
a high level to improve immunity and alleviate stress (Chassaing et al., 
2016; Shojadoost et al., 2021), hence the elevation of vitamin A amount 
in livestock products by supplementation with provitamin A carotenoids 
will always be limited. 

6. Conclusion and prospect 

As a class of multifunctional bioactive compounds, carotenoids have 
been widely applied in animal husbandry with different roles for a long 
time, including colorants, provitamins, and antioxidants. The 

Fig. 4. Simplified schematic of the β-carotene bioconversion under appropriate or excess conditions. When the β-carotene level is too high, the negative feedback 
mechanism can be activated. RA moves into the cell nucleus, binds to the RARs, and then heterodimerizes with RXR. Next, the ISX was induced to repress the 
expression of the genes BCO1 and SR-B1. 

Q. Miao et al.                                                                                                                                                                                                                                    



Food Chemistry: X 21 (2024) 101245

11

carotenoids can be given more stability and bioavailability due to 
unique fat composition of livestock products, and have received special 
attention from researchers and consumers. There is no doubt that 
available information about the deposition and enrichment of caroten-
oids in livestock products has made some progress in recent years. The 
characteristics of different carotenoids have mostly been revealed, and 
the dietary sources of carotenoids for poultry and livestock have been 
widened, as well, the production of carotenoids additives or bio- forti-
fied maize has also gradually become easier and cheaper. In addition, 
the metabolism pathway of the carotenoids from feed to livestock 
products has been basically clarified, although some regulatory mech-
anisms have not yet been thoroughly explored. Meanwhile, the enrich-
ment law of several kinds of livestock products, especially for eggs, has 
also been summarized. On the whole, there will be a broad prospect to 
produce carotenoid nutrition-fortified food with livestock products as 
carriers. 

Currently, there are still only a few carotenoids that are enriched as 
nutrients in livestock products. New carotenoids should be used in the 
diet of poultry and livestock, especially for those carotenoids that are not 
commonly found in vegetables and fruit. Moreover, except for the all- 
trans carotenoids, the carotenoid isomers, xanthophylls esters, and 
apocarotenoids may have special aspects in metabolism and function, 
future research should contribute to developing a simple, rapid, and 
accurate determination method for most carotenoids and their de-
rivatives in livestock products. Even more important, although the 
production of carotenoids has come a long way, more carotenoids 
products with high bioaccessibility and bioavailability in animals body 
are needed to meet the demands for carotenoid enrichment in livestock 
products. The technologies such as nanoparticles delivery systems can 
be used as a good method and have broad prospects for development. In 
addition, because animal species handle carotenoids differently with 
respect to ingestion, absorption, transportation, deposition, and 
bioconversion, more comparative and mechanistic studies are required 
to achieve more efficiency for the enrichment of carotenoids in different 
livestock products in the future. Finally, after the production of livestock 
products fortified in carotenoids, further evaluations of clinical benefits 
are required to establish the reduction of diseases related to nutrition. It 
is believed that carotenoids will continuously show excellent biological 
activity in the fields of functional food, food additives, animal feed and 
so on in the future. 
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Doubek, J. (2013). Retention of carotenoids in egg yolks of laying hens 
supplemented with heterotrophic Chlorella. Czech Journal of Animal Science, 58(5), 
193–200. https://doi.org/10.17221/6747-cjas 

Langi, P., Kiokias, S., Varzakas, T., & Proestos, C. (2018). Carotenoids: From plants to 
food and feed industries. In C. Barreiro, & J.-L. Barredo (Eds.), Microbial carotenoids: 
Methods and protocols (pp. 57–71). New York, NY: Springer, New York.  

Lee, C. M., Boileau, A. C., Boileau, T. W., Williams, A. W., Swanson, K. S., Heintz, K. A., & 
Erdman, J. W., Jr (1999). Review of animal models in carotenoid research. The 
Journal of Nutrition, 129(12), 2271–2277. https://doi.org/10.1093/jn/129.12.2271 

Lee, K.-W., Choo, W.-D., Kang, C.-W., & An, B.-K. (2016). Effect of lycopene on the 
copper-induced oxidation of low-density lipoprotein in broiler chickens. SpringerPlus, 
5, 1–8. https://doi.org/10.1186/s40064-016-2035-6 

Levin, G., Ben-Amotz, A., & Mokady, S. (1994). Liver accumulation of soluble all-trans or 
9-cis β-carotene in rats and chicks. Comparative Biochemistry and Physiology Part A: 
Physiology, 107(1), 203–207. https://doi.org/10.1016/0300-9629(94)90294-1 

Liu, X., Ma, X., Wang, H., Li, S., Yang, W., Nugroho, R. D., & Fan, Y. (2021). Metabolic 
engineering of astaxanthin-rich maize and its use in the production of biofortified 
eggs. Plant Biotechnology Journal, 19(9), 1812–1823. https://doi.org/10.1111/ 
pbi.13593 

Liu, Y.-Q., Davis, C., Schmaelzle, S., Rocheford, T., Cook, M., & Tanumihardjo, S. (2012). 
β-Cryptoxanthin biofortified maize (Zea mays) increases β-cryptoxanthin 
concentration and enhances the color of chicken egg yolk. Poultry Science, 91(2), 
432–438. https://doi.org/10.3382/ps.2011-01719 

Lobo, G. P., Hessel, S., Eichinger, A., Noy, N., Moise, A. R., Wyss, A., & Von Lintig, J. 
(2010). ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β, 
β-carotene absorption and vitamin A production. The FASEB Journal, 24(6), 1656. 
https://doi.org/10.1096/fj.09-150995 

Magnuson, A., Sun, T., Yin, R., Liu, G., Tolba, S., Shinde, S., & Lei, X. (2018). 
Supplemental microalgal astaxanthin produced coordinated changes in intrinsic 
antioxidant systems of layer hens exposed to heat stress. Algal Research, 33, 84–90. 
https://doi.org/10.1016/j.algal.2018.04.031 

Mamatha, B. S., & Baskaran, V. (2011). Effect of micellar lipids, dietary fiber and 
β-carotene on lutein bioavailability in aged rats with lutein deficiency. Nutrition, 27 
(9), 960–966. https://doi.org/10.1016/j.nut.2010.10.011 

Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Khaneghah, A. M., & 
Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the 
production, retention and bioavailability of carotenoids: An overview. Trends in Food 
Science & Technology, 99, 389–401. https://doi.org/10.1016/j.tifs.2020.03.013 

Mapelli-Brahm, P., Desmarchelier, C., Margier, M., Reboul, E., Meléndez Martínez, A. J., 
& Borel, P. (2018). Phytoene and phytofluene isolated from a tomato extract are 
readily incorporated in mixed micelles and absorbed by caco-2 cells, as compared to 
lycopene, and SR-BI is involved in their cellular uptake. Molecular Nutrition & Food 
Research, 62(22), 1800703. https://doi.org/10.1016/j.tifs.2020.03.013 

Mariutti, L. R., & Mercadante, A. Z. (2018). Carotenoid esters analysis and occurrence: 
What do we know so far? Archives of Biochemistry and Biophysics, 648, 36–43. 
https://doi.org/10.1016/j.tifs.2020.03.013 

Meléndez-Martínez, A. J., Esquivel, P., & Rodriguez-Amaya, D. B. (2023). 
Comprehensive review on carotenoid composition: Transformations during 
processing and storage of foods. Food Research International. , Article 112773. 
https://doi.org/10.1016/j.foodres.2023.112773 
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