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Abstract

Melanoma is the most lethal skin cancer characterized by its high metastatic potential.
It is urgent to find novel therapy strategies to overcome this feature. Metformin has
been confirmed to suppress invasion and migration of various types of cancer. How-
ever, additional mechanisms underlying the antimetastatic effect of metformin on
melanoma require further investigation. Here, we performed microarray analysis and
uncovered an altered mRNA and miRNA expression profile between melanoma and
nevus. Luciferase reporter assay confirmed that miR-5100 targets SPINK5 to activate
STAT3 phosphorylation. Migration and wound healing assays showed that the miR-
5100/SPINK5/STAT3 axis promotes melanoma cell metastasis; the mechanism was
proven by initiation of epithelial-mesenchymal transition. Co-immunoprecipitation
(Co-IP) further confirmed an indirect interaction between SPINK5 and STAT3. Fur-
thermore, metformin dramatically inhibited miR-5100/SPINK5/STAT3 pathway, and
decreased B16-F10 cell metastasis to lung in C57 mouse module. Intriguingly, pretreat-
ment of metformin before melanoma cell injection improved this effect further. These
findings exposed the underlying mechanisms of action of metformin and update the
use of this drug to prevent metastasis in melanoma.

Keywords: EMT, miR-5100, Metformin, SPINK5, STAT3

Introduction
Cutaneous melanoma is the most aggressive skin cancer derived from melanocytes,
accounting for 90% of skin-cancer-related deaths [1, 2] and about one-third of patients
diagnosed with metastatic melanoma [3]. Although targeted therapy and immunother-
apy has greatly improved objective response rate of patients with advanced melanoma
[4], an important subset of patients with melanoma do not respond to these treatments
or develop resistance over time [5]. Therefore, it is critical to identify the molecular
mechanisms underlying melanoma metastasis.

It has been confirmed that epithelial-mesenchymal transition (EMT) enables the
progression and metastasis of melanoma [6]. EMT is a reversible cellular biological
process during which epithelial cells lose their polarity features and cell-cell adhesion
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concomitantly, enabling the cells to acquire motile and invasive features to become mes-
enchymal cells [7].

MicroRNAs (miRNAs/miRs) are small noncoding RNAs that regulate target genes
by recognizing a complementary mRNA sequence and subsequently repressing its
translation [8]. A growing number of studies have uncovered the key regulatory role
of miRNAs in cancer metastasis [9-11]. On the basis of miRNA assay, we found that
miR-5100 expression is increased in melanoma. Moreover, expression profile microar-
ray revealed that serine peptidase inhibitor Kazal type 5 (SPINK5) is decreased in mela-
noma. SPINK5, a member of the serine protease inhibitor family, has been considered
as a tumor suppressor [12, 13]. It is expressed in the stratified epithelial tissues of the
skin, and inhibition of SPINK5 leads to enhanced activity of serine protease [14]. Signal
transducer and activator of transcription 3 (STAT3) is a critical transcription factor [15].
Studies have suggested that p-STAT3 (Try 705), as the activated form, modulates cancer
EMT signals [16], which could be activated by serine proteases [17, 18]. Thus, we sus-
pect that miR-5100 targets SPINK5 and, consequently, activates STAT3.

Metformin (1,1-dimethylbiguanide hydrochloride), a commonly used drug to treat
type 2 diabetes, has been found to be associated with a decreased incidence and mor-
tality in several cancers [19]. Moreover, it showed antimetastatic effects in a variety of
cancer cells [20]. However, the effect of metformin administration on the EMT process
in melanoma has yet to be illuminated.

In the present study, we demonstrated the effects of metformin on the EMT process
in melanoma cells. The results showed that metformin inhibited the melanoma EMT
process by modulating the miR-5100/SPINK5/STAT3 signaling pathway, suggesting the
potential of metformin to serve as an effective antimetastatic drug for melanoma.

Materials and methods

Human tissues

Ten formalin-fixed and paraffin-embedded (FFPE) melanoma and nevus samples (five
of each) were used for microarrays. For immunohistochemistry staining, we collected
another 47 melanoma and 56 nevus tissues from the Third Affiliated Hospital of Kun-
ming Medical University between 2012 and 2018. Of the 47 melanoma and 56 nevus tis-
sues, 18 samples of each group acquired qualified RNA for RT-PCR. All patients received
no chemotherapy, radiotherapy, or biotherapy before operation to avoid changes in pro-
tein expression resulting from treatment. This study protocol was approved by the Medi-
cal Ethics Committee of the Third Affiliated Hospital of Kunming Medical University.
Written informed consent was obtained from all patients. The procedures for the collec-
tion and use of tissues were performed in accordance with the guidelines of the Declara-
tion of Helsinki, 2013.

miRNA and mRNA microarray expression analysis

The RecoverAll Total RNA Isolation Kit (Ambion, Canada) was used to extract total
RNA (including miRNA) from ten paraffin-embedded melanoma and nevus speci-
mens. Differentially expressed miRNAs were detected using the Agilent Human miRNA
Microarray (Agilent V16.0). mRNA expression was detected by Affymetrix microarrays
(Affymetrix Almac Xcel Array). Fold change > 2 or <0.5 was considered as significantly
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differential expression. The microarray data presented in the present study are availa-
ble online at the Gene Expression Omnibus of the National Center for Biotechnology
Information (NCBI). (https://www.ncbi.nlm.nih.gov/geo/; accession no. GSE183115,
GSE183116.

Cell culture and transfection

293T, human melanoma cell line A2058, G361 and murine melanoma cell line B16-F10
were obtained from the ATCC. The cells were cultured in DMEM medium (Gibco, USA)
containing 10% FBS (Gibco, USA). Cells were incubated at 37 °C with 5% CO,. siRNA
and expression vectors (RiboBio, China) using Lipofectamine® 2000 reagent (Invitrogen,
USA) at a final concentration of 50 nM, according to the manufacturer’s instructions. A
total of 48 h after transfection, cells were collected for the further experiments. The IC,
values were determined as previously reported [21].

Extraction of RNA and quantitative RT-PCR

Eighteen samples of melanoma and nevus group were employed for RT-PCR (not
including samples for microarray test). Total RNA was extracted from cells by using
TRIzol (Invitrogen, USA) method according to the kit’s technical manual. Total RNA
of the cell was converted into cDNA with miScript Reverse Transcription Kit (Qiagen
GmbH), then expression analyses were performed by Roche Lightcycler 480 Real-Time
PCR system (Roche Diagnostics, Switzerland) according to the predetermined condi-
tions. Primer sequences and samples clinical parameters are shown in Additional file 1:
Data S1. The results were analyzed using the 2~ AACt ethod [22]. All samples were ana-
lyzed at least in triplicate.

Western blot analysis

The protein samples were extracted from the cells and tissue was extracted using RIPA
buffer (Pierce, USA) and quantitatively measured with a BCA Protein Assay Kit (Thermo,
USA). Western blotting was conducted as previously described [23]. Antibodies against
SPINKS5 (ab138511), STAT3 (ab68153), p-STAT3-Y705 (ab267373), E-cadherin (ab1416),
N-cadherin (ab76011), Snail (ab216347), Vimentin (ab92547), and GAPDH (ab181602)
were purchased from Abcam (Cambridgeshire, UK).

Luciferase reporter assay

Melanoma cells were cotransfected with pGL3-basic luciferase reporter vector (wild
type or mutant), miR-5100 mimic, or the control. After 48 h of transfection, luciferase
assay was performed using the Dual Luciferase Reporter Assay System (Promega, USA)
according to the manufacturer’s instructions.

Wound-healing assays

The cells were seeded into six-well plates, and the wound was scratched by plastic tips
when a monolayer formed. To remove the detached cells and debris, the main cells were
washed by PBS. The size of the wounds was measured at different timepoints. The exper-
iments were performed at least three times.
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Transwell assays

Transwell migration assays were performed using transwell migration chambers (8.0 um
pore inserts, BD Biosciences, USA). A total of 3 x 10° cells with DMEM without FBS
were seeded into the inner chamber, and DMEM medium with 10% FBS was added to
the bottom chambers as an attractant. After 24 h of incubation, migratory cells on the
lower surface were stained with 0.1% crystal violet solution (Sigma-Aldrich, USA), and

colonies were counted immediately.

Immunofluorescent staining

Cells were seeded in six-well pate, after washing with PBS and fixation with 4% para-
formaldehyde. Then, the cells were permeabilized with 0.5% Triton X-100, and blocked
in 10% goat serum at room temperature. Primary antibodies were incubated overnight,
and the next day, cells were incubated with fluorescent secondary antibodies. Then, we
imaged the nuclei of DAPI-labeled cells by confocal fluorescence microscopy (Nikon Al,

Japan).

Co-immunoprecipitation (Co-IP)

293T cells were collected and lysed using RIPA Lysis Buffer (Pierce, USA). Then, protein
A/G beads (Santa Cruz, USA) were co-incubated with the primary antibody or IgG at
4.°C for 6 h. Cell lysate was added to the mixture of beads and antibody overnight at 4 °C.
The beads—antibody—protein complexes were washed with precooled PBS solution three
times (each time for 10 min). Finally, samples were detected by western blot analysis.

Hematoxylin-eosin (HE) and immunohistochemistry (IHC) staining

For HE staining, sections were subjected to hematoxylin and eosin staining and observed
with a light microscope (Leica, Japan). The representative images were taken by fluo-
rescence microscope. Paraffin-embedded tissue sections were stained with an antibody
against SPINK5 (Abcam, ab138511, USA), the slides were incubated with ABC (Vector
Laboratories, USA) and overlaid with 3-30-diaminobenzidine (DAB; Dako, USA), and
the nuclei were stained with hematoxylin, following a previously described method [21].
The slides were viewed using a BZ9000 microscope (Zeiss, Germany).

In vivo tumor metastasis assay

Six- to eight-week-old SPF female C57BL/6 mice were purchased from the Beijing Lab-
oratory Animal Center (Beijing, China) and randomly divided into three groups: (A)
control group (n=5), mice were treated with PBS after B16-F10 cell injection; (B) met-
formin treatment group, to measure the therapy function, mice were treated by 3 mg/
kg of metformin for 14 days (intraperitoneally) after cell injection; (C) metformin pre-
vent and treatment group, to evaluate the chemopreventive effects, mice were treated
by 3 mg/kg of metformin for 7 days before and 14 days after cell injection. To establish a
murine melanoma pulmonary metastasis model, 4 x 10° B16-F10 cells were injected via
the tail vein. Two weeks later, mice were sacrificed and lungs were carefully harvested,
the tissues were fixed in a neutral-buffered formaldehyde solution, and the metastasis
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foci were counted as black or white forms on the tissue surface. This study was approved
by the Experimental Animal Ethics Committee of the Third Affiliated Hospital of Kun-
ming Medical University.

Statistics

Data are presented as mean =+ standard deviation (SD). SPSS for Windows version 18.0
(SPSS Inc., Chicago, IL, USA) was used for y* test and Student’s ¢-test. A p-value <0.05
was considered significant.

Results

miR-5100 modulates melanoma EMT process

To identify miRNA and mRNA differently expressed between melanoma and nevus,
miRNA and mRNA expression microarray were employed (GSE183115, GSE183116),
of which miR-5100 expression exhibited elevation in melanoma by qPCR (p<0.001,

Fig. 1A). On the contrary, IHC showed a lower expression of SPINK5 in melanoma
(Fig. 1B, Tables 1, 2). Moreover, TargetScan (http://www.targetscan.org/) uncovered
that SPINKS5 is a potential target of miR-5100, and western blotting showed that the
miR-5100 mimic decreased SPINK5 expression and the miR-5100 inhibitor elicited the
opposite effect (Fig. 1C). Dual-luciferase reporter assays revealed that miR-5100 over-
expression decreased the luciferase activity of pGL3-SPINK5-Wt but not that of pGL3-
SPINK5-Mut (Fig. 1D). Furthermore, TCGA data revealed an increased expression of
miR-5100 in metastatic melanoma, whereas SPINK5 exhibited the opposite trend by
online bioinformatics analysis (http://ualcan.path.uab.edu/, data from TCGA, Addi-
tional file 2: Data S2).

We then investigated the effect of miR-5100 on melanoma cell metastasis. Following
transfection of melanoma cells with the miR-5100 mimic or inhibitor, wound-healing
and transwell assays showed that miR-5100 mimic caused an obvious increase in migra-
tion cells of A2058 and G361 compared with the control group, while miR-5100 inhibi-
tor had the opposite effect (Fig. 1E, F).

We next focused on identifying a mechanistic basis for how miR-5100 promotes a
metastatic phenotype. Studies have reported that EMT has implications for tumor cell
metastasis by triggering the loss of cell-cell adhesion [24]. The levels of EMT makers
were examined by western blot. The expression of epithelial marker E-cadherin was
decreased while mesenchymal markers N-cadherin, Snail, and Vimentin expression lev-
els increased after miR-5100 mimic transfection; meanwhile, the opposite result was
observed after the interference of miR-5100 inhibitor (Fig. 1G).

It has been shown that the initiation of EMT was mostly modulated by STAT3 activa-
tion [25]. In this study, miR-5100 mimic promoted STAT3 expression and phosphoryla-
tion at tyrosine 705 (Fig. 1H, I). These data suggest that miR-5100 modulates melanoma
EMT probably via the SPINK5-STAT3 pathway.

SPINK5-STAT3 pathway modulates melanoma EMT process

To explore the functions of SPINK5 in melanoma cells, its effects on the migration of
A2058 and G361 cells was examined. We found that knockdown of SPINK5 appar-
ently elevated the metastasis ability of melanoma cells. Conversely, SPINK5 expression
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Fig. 1 miR-5100 modulates melanoma cell EMT by targeting SPINK5-STAT3 pathway. A, B Expression
of miR-5100 and SPINK5 was measured by RT-gPCR and IHC in melanoma and nevus specimens. C, D

The miR-5100 binding site in the 3/-UTR of SPINK5 and matched mutations; miR-5100 modulates SPINK5
expression. Furthermore, a luciferase reporter assay was conducted in 293T cells to verify the interaction
between miR-5100 and the SPINK5 binding site. E, F The metastasis inhibition effects of miR-5100 were
measured by wound-healing and transwell assays. G miR-5100 modulates melanoma cell EMT process shown
by EMT-related markers determined by western blot analysis. H, I Immunoblotting and IF analysis of STAT3,
and phosphorylation of STAT3 in A2058 and G361 cell lines transfected with either a mimic or an inhibitor of

miR-5100. *p < 0.05, **p <0.01, ***p <0.001 versus control
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inhibited cells’ metastasis capacity (Fig. 2A—C). In line with the cell motility change,
knockdown of SPINK5 decreased E-cadherin protein expression but increased mesen-
chymal markers. As expected, SPINK5 overexpression induced a mesenchymal—epithe-
lial transition phenotype (Fig. 2D).

STAT3 is one of the pivotal proteins involved in the EMT process. The present study
uncovered that SPINK5 knockdown induced STAT3 phosphorylation and nucleus loca-
tion, and contrary findings were observed after SPINK5 expression vector transfection
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Table 1 Clinicopathologic characteristics of patients with melanoma

Clinicopathologic characteristics Number of
samples (%)

Age, years
<50 18 (38.30)
>50 29 (61.70)
Gender
Male 30 (63.83)
Female 17 (36.17)
Ulceration
Positive 23 (69.70)
Negative 10(21.28)
Lymph node metastasis
Positive 17 (36.17)
Negative 18 (38.30)
Pathologic grade
I 10 (25.00)
Il 13(32.50)
Il 14 (35.00)
v 3(7.50)
Table 2 Expression of SPINK5 in melanoma and nevus specimens
Disease Total SPINK5 p
Positive (%) Negative (%)
Melanoma 47 16 (34.04) 31 (65.96) 0.001
Nevus 56 38 (67.86) 18 (32.14)

p<0.05, statistically significant difference

(Fig. 2E, F). Moreover, after cotransfection, we performed Co-IP assay to verify the inter-
action between SPINK5 and STAT3. IgG (negative control) blocked the antigen—anti-
body binding reaction. In the input (positive control), we detected STAT3 and SPINK5
by western blot, but in the IP group only STAT3 was detected. These findings confirm
that SPINK5 cannot interact with STAT3 (Fig. 2G, H) and indicate that SPINK5 modu-
lates melanoma EMT by STAT3, indirectly.

Metformin inhibits EMT by regulating the miR-5100/SPINK5/STAT3 axis

The antitumor activity toward melanoma cells was evaluated for metformin. ICy; values
were obtained from the MTT assay. In this experiment, metformin exhibited ICs, values
of 16.61 and 15.10 mM for A2058 and G361 cells, respectively, at 48 h (Fig. 3A). On the
basis of the IC;, results, the antimetastatic effect of metformin on melanoma cells was
examined by wound-healing and transwell assays. As demonstrated, metformin signifi-
cantly inhibited the motility of the melanoma cells (Fig. 3B, C). Meanwhile, metformin
treatment reduced mesenchymal cell markers, including Snail, Vimentin, and N-cad-
herin, but restored E-cadherin expression (Fig. 3D), indicating that metformin inhibited

migration of melanoma cells by reversing the EMT process.
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were used to detect SPINK5 expression after transfection with either an siRNA or an expression vector. B,
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Then, to explore the potential mechanism by which metformin mediated inhibition
of the metastasis of melanoma cells, the expression of miR-5100, SPINK5, and STAT3
was detected after treatment with metformin for 48 h. As shown, metformin inhibited
expression of miR-5100 and pSTAT3 but upregulated SPINKS5 (Fig. 3D, E). Moreover,
miR-5100 mimic neutralized the inhibitory effect of metformin on cell metastasis and
EMT process partly (Fig. 3F-H).

These data indicate that metformin suppressed melanoma cell migration by regulating
the miR-5100/SPINK5/STAT3 axis.

Metformin inhibits melanoma cells metastasis in vivo

To corroborate our in vitro results, C57 mice were injected with B16F10 cells
(1.0 x 10° cells per mouse) into the tail vein. To confirm that metformin served as a
metastasis inhibitor for BI6F10 tumor cells, 14 days after melanoma cell injection, all
mice were sacrificed and lung was removed to count the metastasis foci. Moreover, we
treated mice with metformin before B16F10 injection (Fig. 4A). Notably, we found that
metformin restored the metastatic capacity of B16F10. Interestingly, metformin pre-
treatment improved this effect further (Fig. 4B).

Discussion

On the basis of high-throughput microarray technology, we acquired amount of differ-
ently expressed miRNAs. In the present study, we focused on molecules participating in
melanoma metastasis regulation. Integrating our results with TCGA data, we found that
miR-5100 expression was upregulated in melanoma tissues. In concordance with previ-
ous studies [26, 27], our results demonstrated that miR-5100 could modulate melanoma
cells’ EMT process. miRNA could regulate many different target mRNAs, according to
our microarray results and TCGA database, and we uncovered that SPINK5 expres-
sion is opposite to that of miR5100. Furthermore, TargetScan also indicated a regulative
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Fig. 3 Metformin inhibits EMT by regulating the miR-5100/SPINK5/STAT3 axis. A ICs, were detected in A2058
and G361 cells (16.61 and 15.1 mM, respectively). B, C Wound-healing and transwell assays were used to
determine the effects of metformin in melanoma cell metastasis. D, E Western blot and RT-gPCR were used
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relation between these two molecules. In this study we confirmed that SPINKS5 served as
a direct target of miR-5100.

SPINKS5, a serine protease inhibitor that contains 15 Kazal-type serine protease
inhibitory domains [28], has been considered as a tumor suppressor in various can-
cers [29, 30]. Moreover, SPINK5 was considered as marker for prediction of lymph
node metastasis in HNSCC [31]. Herein, we found that SPINK5 was remarkably
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Fig. 3 continued

decreased in melanoma compared with nevus tissues, suggesting that SPINK5 may be
a potential tumor suppressor in melanoma. Furthermore, silencing of SPINK5 promi-
nently increased the metastasis abilities of melanoma cells, whereas SPINK5 overex-
pression exhibited the opposite trend. These were further confirmed by measurement
of EMT markers. Thus, our data suggest that SPINK5 inhibits melanoma cells motility
by modulating the EMT process.

EMT is considered to be a critical event in cancer cell migration, which is driven by
the STAT3 pathway [32]. STAT3 activity is dependent on two phosphorylation sites:
phosphorylation of tyrosine 705 (Try 705) and serine 727 (Ser 727). Recently, a study
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revealed that the pY705-STAT3 pathway elicits EMT and pS727-STAT3 signaling
induces MET process [16].

Mechanistically, activated Janus kinase (JAK) leads to an increase in STAT3 phospho-
rylation at Y705 [33]. It has been confirmed that expression of Kallikrein-related pepti-
dases (KLKs) could induce the activation of JAK [34]. KLKs constitute a large family of
secreted trypsin and chymotrypsin-like serine proteinases that are expressed in multi-
ple tissues [35]. However, this process is inhibited by SPINKS5 directly [36]. In concord-
ance with this, our results confirmed that SPINK5 expression inhibited STAT3 Tyr705
phosphorylation. Disappointingly, Co-IP demonstrated an indirect interaction between
SPINKS5 and STATS3. Thus, further study is required to uncover the underlying modula-
tion mechanisms between SPINK5 and STATS3.

Metformin has been revealed to serve as a potent antitumor drug for the treatment
of multiple cancers, including melanoma [21, 37-39]. Some cohort studies have shown
that metformin suppresses the invasion and migration of various types of cancer [40,
41]. Researchers have documented that metformin blocks melanoma cell invasion and
metastasis through AMPK activation [42], which decreases cancer cell mTOR signaling
and protein synthesis [43]. We have proven that metformin could inhibit the prolifera-
tion and stemness of NSCLC [21]. Moreover, studies have uncovered that melanoma
cell growth and motility were hampered by metformin treatment through modulation
of various microRNA expression [44]. However, the underlying antimetastatic mecha-
nism of metformin on the regulation of miRNAs in melanoma remains unclear. Thus,
we employed metformin to measure its antimetastatic function. We show here that
metformin treatment inhibited melanoma cell migration and EMT process. Notably,
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metformin suppressed miR-5100 but elevated SPINK5 expression, importantly, which
inhibited STAT3 expression and Tyr705 phosphorylation. However, the underly-
ing mechanisms by which metformin modulates miR-5100 expression remain to be
discussed.

Studies have shown that patients with diabetes who had taken metformin had a reduc-
tion of incidence and mortality of various cancers [38, 39, 45]. Moreover, it is reported
that metformin could reduce the risk of metastasis in breast cancer [46, 47]. Consist-
ently, our in vivo study showed that metformin suppressed melanoma cell metastasis.
More importantly, metformin pretreatment abolished the pulmonary metastasis of B16-
F10 cells. We suspect metformin pretreatment not only impacts intracellular pathways
to inhibit metastasis, but also modulates the extracellular microenvironment, e.g., adhe-
sion molecules [48], vascular leakiness [49], and extracellular matrix remodeling [49]
in distant organs. Of note, metformin also led to the activation of antitumor immune
and metabolic reprogramming in both lab experiments and clinical trials [50-53]. Thus,
metformin pretreatment reinforced these effects and showed fewer metastasis foci.

As the metastasis foci are too tiny and scattered to be collected for further study, we
failed to provide in vivo evidence that metformin modulates miR-5100, SPINKS5, STATS3,
and EMT protein expression. However, studies have uncovered that metformin reduced
the number of metastases in animal models [41]. Moreover, it has been confirmed that
metformin could inhibit EMT protein expression in a xenograft mouse model bearing
tumors [54], decrease the circulating tumor cell (CTC) adhesion to activated endothelial
cells, and alleviate lung vascular permeability [55]. These findings provide indirect evi-
dence that metformin inhibits lung metastasis by modulating the EMT process in our
in vivo model.

In summary, metformin suppressed melanoma cell migration and EMT. Moreover,
this effect is partly dependent on the miR-5100/SPINK5/STAT3 pathway, indicating that
metformin is a potential oncotherapeutic agent. These findings may provide a possible
strategy for the clinical treatment of melanoma.
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