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Abstract: Despite the discovery and development of an array of antimicrobial agents, multidrug
resistance poses a major threat to public health and progressively increases mortality. Recently, several
studies have focused on developing promising solutions to overcome these problems. This has led to
the development of effective alternative methods of controlling antibiotic-resistant pathogens. The use
of antimicrobial agents in combination can produce synergistic effects if each drug invades a different
target or signaling pathway with a different mechanism of action. Therefore, drug combinations
can achieve a higher probability and selectivity of therapeutic responses than single drugs. In this
systematic review, we discuss the combined effects of different antimicrobial agents, such as plant
extracts, essential oils, and nanomaterials. Furthermore, we review their synergistic interactions
and antimicrobial activities with the mechanism of action, toxicity, and future directions of different
antimicrobial agents in combination. Upon combination at an optimum synergistic ratio, two or more
drugs can have a significantly enhanced therapeutic effect at lower concentrations. Hence, using
drug combinations could be a new, simple, and effective alternative to solve the problem of antibiotic
resistance and reduce susceptibility.

Keywords: multidrug resistance; bacterial infections; synergistic effects; antimicrobial agents;
pathogen inactivation

1. Introduction

The rapid emergence and spread of multidrug-resistant (MDR) bacteria has become a
serious global public health threat [1]. Long-term exposure and increased use and abuse
of antibiotics could result in bacterial tolerance, which renders them less effective or even
ineffective, and the mechanism includes changing the targets of antibiotics [2]. MDR
species are not only restricted to hospitals or healthcare environments; they are also found
in humans, animals, plants, food, water, soil, and air. Moreover, they can be passed from
person to person and between animals and persons. Antibiotic resistance is observed in
various extracellular, intracellular, pathogenic, and nonpathogenic bacterial species. Among
Gram-positive MDR species, Staphylococcus aureus, Streptococcus pneumoniae, Enterococcus
faecium, and Enterococcus faecalis are the most common. Among Gram-negative strains,
Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii
are the most common MDR species [3]. However, methicillin-resistant Staphylococcus
aureus causes pneumonia, bacteremia, soft tissue infections, and other fatal diseases [4].
Similarly, multiple antibiotic-resistant Acinetobacter spp. and Klebsiella spp. are the most
commonly reported.

Recent studies suggest that biofilm-associated infections account for more than 65%
of all infections, and antibiotics lack effectiveness against biofilm-associated bacteria [5].
Biofilms can shield bacteria from host defenses, disinfectants, antibiotics, and many antimi-
crobial agents. This leads to a reduced bacterial growth rate, decreased metabolic activity,
and promotion of tolerance to antibiotics [6]. Moreover, the excessive use of antibiotics is
often not tolerated by the host organism, whereas lower doses are ineffective. In addition,
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conventional antibiotics support antibiotic resistance in viable bacteria [7]. Pathogens grow-
ing in biofilms exhibit both adaptive resistance to all antimicrobial agents and the host im-
mune system by 10- to 1000-fold compared to their free-living, planktonic counterparts [8].
Hence, there is urgent need to search for alternative, novel, efficient antimicrobial agents
and more targeted treatment strategies to overcome antibiotic resistance. An alternative
strategy currently in practice or under trials includes using different antimicrobial agents
in combination to produce synergistic effects [9]. Combination therapy is an attractive
and optional treatment because it represents potential adjuvant targets of non-overlapping
signaling pathways and decreases the risk of developing cross-resistance [10].

Many plants have been used as sources of natural products to maintain good health,
especially antimicrobial compounds [11]. Plants have evolved many alternative strategies
against pathogens, which involve various phytochemicals, secondary metabolites, and
other chemical compounds [12]. Bioactive compounds derived from plants, such as alka-
loids, phenols, flavonoids, tannins, peptides, and other medicinally important compounds,
are responsible for their antimicrobial ability against MDR pathogens [13]. Combining two
or more plant extracts or their phytochemical components produces mutual antimicrobial
enhancement, an unlimited pool of compounds, and the expansion or strengthening of their
effects when combined as a multidrug [14]. Combinations of different drugs elicit several
advantages over their use as individual moieties, including enhancing the effectiveness of
other antimicrobial agents, reduction in dosage, fewer side effects, better synergistic effect,
attack of multiple target sites, reduced risk, and exhibition of potent and rapid antibacterial
effects against MDR pathogens [15]. The pharmacological effects of these combinations
could be initiated by multiple mechanisms of action of herbal–herbal interactions.

Similarly, combining plant extracts or active phytochemicals with antibiotics improves
their efficacy against resistant bacterial pathogens [16]. Synergism due to this combination
helps minimize the minimum inhibitory concentrations (MICs) of these agents and reduces
the economic cost and sensory impact [17]. Another strategic approach to combat MDR
bacteria involves using essential oils (EOs) combined with conventional antibiotics or plant-
derived phytochemicals. EOs have been widely used for their unique flavors; fragrances;
and antibacterial, antioxidant, antifungal, anti-inflammatory, and anticarcinogenic proper-
ties [18]. Combining two or more EOs or their components or interactions between EOs
and their components with antibiotics is a promising alternative strategy to increase their
additive and synergistic antimicrobial effects. EOs and antibiotics, in combination, produce
stronger bacterial inhibition compared to when they are individually administered because
they target different pathways to create multifaceted effects against powerful bacterial
defenses, consequently needing a decreased dose of each component [19]. The synergism
between EOs and antibiotics may be attributed partly to the EO-induced permeabilization
of the cell membrane, resulting in the immediate transport of antibiotics into the interior of
the cell [20].

Antimicrobial nanomaterials represent another strategic approach to fighting MDR
bacteria in clinical practice. Metal and metal oxide-based nanoparticles (NPs) have been
widely investigated over the last decade, owing to their favorable chemical, physical,
magnetic, electrical, thermal, optical, and biological properties [21]. Consequently, nano-
materials have emerged as new tools to combat deadly bacterial infections due to their
specific features, such as size, shape, morphology, stability, and surface charge [22]. A
combination of EOs and nanomaterials might establish functional materials with modified
surfaces, improved inhibitory effects, and the ability to bind target microorganisms to
achieve maximum synergistic performance [23]. Thus, combining nanomaterials with
either EOs or plant extracts may improve their interaction with the bacterial cell membrane,
thereby inducing the disruption, damage, and killing of bacteria [22]. This review high-
lights the effects of different antimicrobial agents and the synergistic effects of combinations
of plant extracts, EOs, and nanomaterials. Furthermore, we discuss their antimicrobial
activities, mechanisms of action, and future perspectives on using different combinations
of antimicrobial agents.
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2. Antibacterial Activities of Plant-Derived Compounds

Although different kinds of synthetic antimicrobial agents have been introduced to
the market in many countries, natural medicine from plants might effectively treat certain
diseases such as diarrhea, cold, labor pain, and dental diseases. Globally, approximately
60,000 plant species are used for medicinal purposes, of which approximately 28,000 are
well-documented, and only 3000 are estimated to be traded internationally [24]. As a result,
the search for herbal medicines with relevant biological activity has gained additional value
as they are associated with fewer side effects and are much cheaper and affordable [25].
Plants usually produce two types of metabolites, primary and secondary, that can be
found in extracts of their flowers, roots, leaves, bulbs, seeds, and bark (Figure 1). Primary
metabolites are crucial for plant growth and development, whereas secondary metabolites
are involved in plant defense, physiology, and environmental communication [26]. Sec-
ondary metabolites include many specialized and active compounds derived from primary
metabolites. These compounds show promising results in controlling the development
of resistance against bacterial pathogens, including MDR bacteria, and combating other
bacterial infections. Plant secondary metabolites are classified into three categories on the
basis of their biosynthetic origins: terpenoids, phenolics, and alkaloids [27].
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Figure 1. The extracts of plant organs, namely, the root, bark, bulbs, leaf, flower, and seed, may
encompass distinctive phytochemicals with antimicrobial properties.

2.1. Terpenoids

Terpenes are an extensive and diverse group of naturally occurring, highly enriched
compounds of secondary plant metabolites. On the basis of the number of their isoprene
structures or units, they are classified as monoterpenes, diterpenes, triterpenes, tetrater-
penes, or sesquiterpenes. Terpenes are also called isoprenoids, and their derivatives that
contain additional elements, such as oxygen, are usually termed terpenoids. Monoter-
penes are the smallest terpenes, comprising two isoprene units. Monoterpenes contain
volatile compounds found in EOs extracted from different flowers, fruits, and leaves and
are commonly used in fragrances and aromatherapy. The antimicrobial properties of
these compounds have been studied for two decades, and several studies have reported
that thymol, carvacrol, eugenol, and menthol exhibit significant activity against many
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pathogens [28]. Geraniol and thymol have shown the most activity against Enterobacter
species and S. aureus and E. coli, respectively [29,30]. Diterpenes are naturally occurring
chemical compounds that contain active groups such as vitamin A. Phytol is an acyclic
diterpene alcohol that acts as an antitumor, cytotoxic, and anti-inflammatory agent. Diter-
penes also inhibit the growth of Staphylococcus aureus, Pseudomonas aeruginosa, Vibrio cholerae,
and Candida spp. [31]. Triterpenes contain six isoprene units derived from mevalonic acid
and have been shown to inhibit the growth of Mycobacterium tuberculosis. The combination
of rifampicin and oleanolic acid has shown synergistic antibacterial effects against some
pathogens [32]. Tetraterpenes are also known as carotenoids because beta-carotene is a yel-
low pigment in carrots. Similarly, yellow, orange, and red organic pigments are produced
by plants, and these substances have effective antifungal and antibacterial properties [33].
Sesquiterpenes are the most diverse group of terpenoids, consisting of three units of iso-
prene with a lower vapor pressure than monoterpenes because of their high molecular
weight. Farnesol, a natural sesquiterpene, demonstrated antibacterial activity against S.
aureus and S. epidermidis [34].

2.2. Phenolics

Phenols are the simplest bioactive phytochemicals. They are monomeric components
of polyphenols and acids with a single substituted phenolic ring and are typically found
in plant tissues such as melanin and lignin. The components catechol, orcinol, tarragon,
pyrogallol, phloroglucinol, pyrocatechol, resorcinol, and thyme are effective against viruses,
bacteria, and fungi [35]. Both catechol and pyrogallol are hydroxylated phenolic com-
pounds that are toxic against microorganisms; catechol has two hydroxyl groups, while
pyrogallol has three. The microbial toxicity of phenolic compounds depends mainly on the
number and position of their hydroxyl groups, as hydroxylation increases toxicity [36]. The
presence of two or more hydroxyl groups located at ortho, para, or meta positions to each
other is the key factor for their antimicrobial activity. The presence of a hydroxyl group at
the meta position of thymol makes it a more effective antibacterial agent than carvacrol,
which has a similar structure, whose hydroxyl group is in the ortho position.

2.3. Alkaloids

Alkaloids are cyclic-nitrogen-containing organic compounds that have various chem-
ical structures. More than 18,000 alkaloids have been discovered and studied phyto-
chemically from different sources. Alkaloids are grouped into several classes, as natural,
semi-synthetic, or synthetic, on the basis of their heterocyclic ring systems and biosynthetic
precursors [37]. Alkaloids have various pharmacological activities, including antitumor,
antihyperglycemic, anti-allergic, antidiabetic, antihyperlipidemic, and antibacterial. Piper-
ine, berberine, quinolone, reserpine, sanguinarine, tomatidine, chanoclavine, conessine,
and squalamine are the most important alkaloids with potent antibacterial activity. Piper-
ine isolated from Piper nigrum and Piper longum inhibited the growth of mutant S. aureus
when co-administered with ciprofloxacin [38]. A list of plants whose parts were reported
to have antimicrobial activity against various pathogens, as well as their corresponding
mechanisms of action, are summarized in Table 1.

Table 1. A list of plants whose parts have been reported to have antimicrobial activity against various
pathogens, as well as their corresponding mechanisms of action.

Plants Parts Pathogens Mechanism Ref.

Alchornea cordifolia flower E. coli damage of cell wall [39]

Origanum majorana leaves S. aureus, K. pneumoniae membrane damage [40]

Psidium guajava leaves B. subtilis, S. aureus cell wall damage [41]

Justicia flava leaves E. coli, P. aeruginosa changes in internal pH [42]

Allium sativum bulbs P. aeruginosa, S. aureus cell membrane integrity [43]
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Table 1. Cont.

Plants Parts Pathogens Mechanism Ref.

Lannea welwitschii leaves E. coli, P. aeruginosa cell wall integrity [42]

Eucalyptus
camaldulensis leaves, bark S. aureus, B. subtilis leakage of cell constituents [44]

Matricaria
chamomilla flowers S. aureus, P. aeruginosa cell wall degradation [45]

Mentha piperita leaves S. aureus, B. subtilis damage of cytoplasmic
membranes [46]

Foeniculum vulgare seeds A. flavus, C. albicans cellular DNA damages [47]

Melissa officinalis leaves S. aureus, P. aeruginosa disrupt the membrane structure [48]

Arctium lappa roots P. aeruginosa, S. aureus damage by oxidative stress [49]

Malva sylvestris flower, leaves S. aureus, E. faecalis damaging the membrane [50]

Thymus vulgaris leaves E. coli, S. aureus chemical affinity for
membrane lipids [51]

Syzygium
aromaticum buds E. coli membrane damage and

intracellular content leakage [52]

Tribulus terrestris leaves Escherichia coli,
Salmonella

membrane damage and
leakage of cellular materials [53]

Cinnamomum
zeylanicum bark S. aureus, E. coli inhibiting of various

cellular enzymes [54]

Zingiber officinale rhizome E. coli, S. aureus damage to cell membrane [55]

Curcuma longa rhizome S. aureus, B. subtilis loss of membrane integrity [56]

Eryngium foetidum leaves P. aeruginosa, C. albicans disruption of the
cell membrane [57]

Portulaca oleracea roots E. cloacae, B. subtilis inhibiting the efflux pumps [58]

Momordica
charantia peels S. aureus, B. cereus disintegrates the membrane [59]

Lawsonia inermis leaves S. aureus, E. coli inactivating microbial
adhesions [60]

Azadirachta indica leaves S. pyogenes inactivating microbial enzymes [60]

Achyranthes aspera leaves S. pyogenes inhibiting energy metabolism [60]

Acacia nilotica seeds S. aureus cell membrane permeability [61]

Platanus hybrida fruits E. faecalis, E. faecium Inhibiting the
biofilm production [62]

Cistus salviifolius aerial parts S. aureus cell wall alterations [63]

Punica granatum peels S. aureus cell wall alterations [63]

Piper betle leaves S. aureus destruction of the bacteria
cell wall [64]

Ficus sycomorus leaves, fruits E. coli, S. aureus permeability of the
cell membranes [65]

Myrtus communis leaves E. coli proteins in the outer membrane
specifically involved [66]

Asphaltum
punjabianum mineral resin E. coli proteins involved specifically

in the outer membrane [66]

Marrubium vulgare leaves
A.

actinomycetemcomitans,
E. corrodens

affect cytoplasmic membrane [67]

Ocimum
basilicum leaves P. aeruginosa bacterial cells will lose cations

and macromolecules [68]

Clitoria ternatea flowers Streptococcus mutans quorum sensing inhibition [69]
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Table 1. Cont.

Plants Parts Pathogens Mechanism Ref.

Elettaria
cardamomum Seeds P. gingivalis cell membrane disrupted [70]

Cinchona officinalis bark E. coli, P. aeruginosa structural damage of
bacterial cells [71]

Panax ginseng roots B. cereus, S. aureus changes in the
membrane potential [72]

3. Antimicrobial Efficacy of EOs

EOs are aromatic, lipophilic, and complex mixtures of volatile secondary metabolites
that are mainly obtained from different parts of plants, such as leaves, herbs, flowers, buds,
fruits, twigs, wood, bark, roots, and seeds [73]. EOs are extracted using hydrodistillation or
steam distillation. EOs are lighter than water, with a strong flavor and odor reminiscent
of their plant origin. The chemical composition of EOs is highly complex, with the main
components being flavonoids, flavones, flavonols, phenols, polyphenols, tannins, alka-
loids, quinones, coumarins, terpenoids, polypeptides, and lectins [22]. These compounds
show potential pharmacological activities such as hepatoprotective, anti-inflammatory,
antioxidant, anticancer, antiseptic, insecticidal, anti-parasitic, anti-allergic, antiviral, and
antimicrobial properties [74]. Essential-oil-based products are in high demand in aro-
matherapy; as flavor-enhancers in food, beverages, cosmetics, perfumes, soaps, plastics,
and resins; and in the pharmaceutical industries [75]. EOs have more than 50 components;
however, only two or three of them are the major components present in high proportions.
The other minor components are present in low amounts.

The amount of the different components of EOs varies with the parts and species of
plants, as they are chemically derived from compounds and their derivatives [76]. The
major constituents of EOs are terpenes and terpenoids, while other important compounds
include aromatic and aliphatic constituents. The volatile components of EOs include a
variety of chemicals such as alcohols (such as menthol, borneol, nerol, and linalool), acids
(such as geranic acid and benzoic acid), aldehydes (such as citral), esters (such as linalyl
acetate, citronellyl acetate, and menthyl), ketones (such as carvone, camphor, and pulegone),
hydrocarbons (such as α-pinene, α-terpinene, myrcene, camphene, and p-cimene), ketones
(such as camphor, pulegone, and carvone), phenols (such as carvacrol and thymol), lactones
(such as bergapten), and peroxides (such as ascaridole), all of which play major roles in
the composition of EOs (Figure 2) [77]. EOs show strong antibacterial activity against
various pathogenic bacteria, including MDR pathogens, by penetrating the membrane of
bacterial cells and disrupting their cellular structure. The antibacterial effectiveness of
EOs differs across plant species and target bacteria depending on their cell wall structure
(Gram-positive or Gram-negative). The association of some major constituents of EOs, such
as eugenol, thymol, carvacrol, carvone, p-cymene, terpinene-4-ol, and cinnamic aldehyde,
which easily penetrate and split in the lipid membrane, could disrupt the cell membrane;
prevent cellular respiration; and lead to the loss of cell membrane integrity, removal of
cellular contents, and finally cell death [78].

EOs of Thymus serrulatus and Thymus schimperi were shown to possess strong an-
tibacterial activity against Lactobacillus and S. mutans, with higher contents of thymol and
carvacrol compounds reported to be the cause of this inhibition [79]. Similarly, EOs have
been isolated from various parts of Eugenia caryophylata, such as the buds, leaves, and stems,
with the main components being eugenol, β-caryophyllene, and eugenyl acetate. These EOs
are effective against S. aureus, E. coli, B. subtilis, and S. typhimurium [80]. Likewise, tea tree
EO has been reported to cause changes in the membrane permeability and mycelial mor-
phology of Monilinia fructicola [81]. Furthermore, a recent study of lavender EO against A.
hydrophila, A. caviae, A. dhakensis, C. freundii, P. mirabilis, and S. enterica showed the presence
of the major compounds linalool and linalyl acetate [82]. In another study, winter savory
EO exhibited the strongest inhibitory effect against clinical oral isolates of Candida spp.,
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with thymol as the major compound [83]. It has been reported that among the commercially
available EOs, such as anise, cinnamon, clove, cumin, laurel, Mexican lime, and Mexican
oregano, oregano EO has the highest antibacterial activity against S. typhimurium and E. coli,
with thymol as its major compound [84]. Some of the most important and active EOs, their
major constituents, mechanisms of action, and antimicrobial potential against pathogenic
microbes are summarized in Table 2.
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Table 2. Antimicrobial properties of various EOs with their respective plant sources and mechanisms
of action.

Essential
Oils Plant Source Major Com-

ponents Pathogens Modes of Action Ref.

Basil Ocimum
basilicum linalool S. aureus disrupt the

permeability barrier [85]

Thyme Thymus
vulgaris thymol P. aeruginosa,

A. niger
interferes with

membrane functions [86]

Clove Syzygium
aromaticum eugenol S. aureus,

S. Typhimurium sensitivity to eugenol [87]

Cinnamon Cinnamomum
zeylanicum cinnamaldehyde E. coli,

L. innocua
facilitate intracellular
compounds leakage [88]

Tea tree Melaleuca
alternifolia terpinen-4-ol P. aeruginosa,

C. glabrata
alterations of the

biological membrane [89]

Rosemary Rosmarinus
officinalis α-pinene C. albicans

rupture of the
membranes and cell

wall
[90]

Dill Anethum
graveolens carvone S. aureus, E. coli lesion in the plasma

membrane [91]

Cumin Cuminum
cyminum

p-mentha-
1,3-dien-7-al S. aureus, E. coli deformation of the cell

membrane [91]

Cardamom Elettaria
cardamomum

α-terpinly
acetate E. coli, S. aureus damage the cell

membrane [91]

Peppermint Mentha piperita menthol E. coli, S. aureus lysis and loss of
membrane integrity [92]
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Table 2. Cont.

Essential
Oils Plant Source Major Com-

ponents Pathogens Modes of Action Ref.

Anise Pimpinella
anisum anethole S. aureus, B. subtilis alter the cell membrane

permeability [93]

Black
pepper Piper nigrum α-pinene E. coli

leakage, disorder, and
death by breaking cell

membrane
[94]

Sage Salvia officinalis α-thujone P. aeruginosa
changed the cell

membrane
permeability

[95]

Lavender Lavandula
angustifolia linalool S. aureus, E. coli,

C. albicans
damaging the cell wall

and membrane [92]

Mustard Brassica nigra allyl isothio-
cyanate A. fumigatus, A. nomius disrupt the cell wall

thus causing cell lysis [96]

Citron Citrus medica limonene S. aureus, E. coli destruction of the cell
membrane [97]

Eucalyptus Eucalyptus
globulus 1,8-cineole E. coli, S. aureus

penetrate the
membrane and damage

cell organelles
[98]

Fennel Foeniculum
vulgare

trans-
anethole S. aureus, E. coli

cell deformation and
integrity of cell

membranes
[99]

Rose
geranium

Pelargonium
roseum citronellol S. salivarius

interaction with
nitrogen in proteins

and nucleic acids
[100]

Caraway Carum carvi carvone E. coli, B. bronchiseptica alteration in the
structure of cell wall [101]

Coriander Coriandrum
sativum linalool S. tyhimurium, E. coli

cell wall damage by
over expression

of genes
[101]

Turmeric Curcuma longa α-turmerone S. aureus
inducing leakage of

ions and important cell
contents

[102]

Palmarosa Cymbopogon
martinii geraniol B. subtillis alteration in cytoplasm

and swelling [103]

Dill Anethum
graveolens

α-
phellandrene S. aureus disrupt the

permeability barrier [104]

Armoise Artemisia
herba-alba thujone S. aureus,

S. Typhimurium
changing the

membrane potential [105]

Laurel Laurus nobilis 1,8-cineole S. aureus. P. aeruginosa

disrupt cellular
membranes and

increase membrane
permeability

[106]

Ginger Zingiber
officinale zingiberene S. aureus, E. coli

destroy membrane
structure, increase cell

membrane
permeability

[55]

Costmary Tanacetum
balsamita β-thujone L. monocytogenes,

S. sonnei
damage to the cellular

membranes [107]

Guava
Psidium

cattleianum
Sabine

α-pinene S. aureus, N. gonorrhoeae
propagate through cell
membranes and cause

the death
[108]

Marjoram Origanum
majorana terpinen-4-ol S. aureus, K. clocae

exhibited membrane
and DNA damaging

effects
[109]

Oregano Origanum
vulgare thymol S. aureus, S. enterica

alteration of the
bacterial plasma

membrane
[110]
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4. Antimicrobial Nanomaterials

With the emergence of bacterial resistance and biofilm-associated infections, clini-
cal research is needed to develop novel, effective, long-term antibacterial and biofilm-
preventative agents. Metals have been extensively studied among the most promising
novel antimicrobial agents [111]. Recently, metal-based nanomaterials have become the
most extensively and rapidly emerging materials in the field of medicine. Different types of
metallic NPs have demonstrated strong antibacterial activity in many recent studies [112].
Generally, NPs have fascinating characteristics, such as a high surface area-to-volume
ratio, size, shape, and surface activity, and exhibit superior electrical, catalytic, and optical
properties. Due to their unique properties, NPs have a more well-developed surface than
their microscale counterparts, affecting their antimicrobial efficiency and effectiveness [113].
Similar to antibiotics, metals can selectively inhibit metabolic pathways by interacting
with bactericidal activity and ultimately kill MDR bacteria [112]; however, cells deviate
from metal transport systems and metalloproteins [114]. Hence, NPs showed noticeable
antimicrobial activity against both Gram-negative and Gram-positive pathogens such as E.
faecalis, B. subtilis, S. epidermidis, multidrug-resistant S. aureus, and E. coli strains.

Metal NPs such as Ag, Au, Cu, Zn, Ti, Ga, Al, and Pt [115] and metal oxide NPs such as
CuO, MgO, ZnO, TiO2, NiO2, SiO2, and Fe3O4 are known to display various antimicrobial
properties, which have been known and applied for decades [116]. In addition, graphene
oxide (GO) and carbon nanotubes (CNTs), such as single-walled carbon nanotubes (SWC-
NTs) and multi-walled carbon nanotubes (MWCNTs), are also excellent candidates due to
their antimicrobial activities (Figure 3). Recently, metal–organic frameworks (MOF) and
metal sulfide nanomaterials, such as FeS-, Ags-, ZnS-, and CdS-MOFs and Zn-, Cu-, and
Mn-based MOFs, have also been proven to have antibacterial activities [117]. Multimetallic
NPs, particularly NPs formed by at least two metals, such as bimetallic, trimetallic, and
quadrametallic NPs, display rich optical, electronic, and magnetic properties. The proper-
ties of multimetallic NPs, including size, shape, surface area, and zeta potential, enhance
their interaction with bacterial cell membranes. They could disrupt cell membranes, pro-
duce reactive oxygen species (ROS), damage the DNA, induce protein dysfunction, and
may be potentiated by the host immune system [23].
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Metallic biopolymer-based nanocomposite systems are well-known candidates as
antimicrobial nanomaterials. In particular, cationic chitosan-based NPs bind to anionic
cell membranes, resulting in alterations to the cell membrane, leakage of intracellular
compounds, and eventually cell death [118]. Antimicrobial peptides (AMPs) have attracted
great interest because of their high biocompatibility and low probability of inducing
bacterial resistance. AMP-conjugated nanomaterials can hinder the growth of pathogens
and kill bacteria on the basis of the inherent action of typical combination strategies [119].

AgNPs are considered the most common antimicrobial agents that can destroy a wide
range of Gram-negative and Gram-positive bacteria. Ag ions combine with disulfide or
sulfhydryl groups of enzymes, disrupt normal metabolic processes, and ultimately lead
to cell death [120]. The bactericidal efficacy of Au NPs might have a greater chance of
penetrating the bacterial cell wall by generating holes, leading to increased permeability
and higher oxidative stress within the cytoplasm. Similarly, ZnO NPs displayed vigorous
antimicrobial activity by releasing Zn2+ ions and generating ROS, owing to their electro-
static interaction and internalization. In contrast, smaller ZnO NPs increased the interaction
and abrasiveness of the bacterial cell wall [121]. Cu and CuO NPs showed excellent antimi-
crobial activity against different strains of bacteria by releasing Cu2+ ions and stimulating
ROS production [122]. Various studies have revealed the visible-light-induced antibacterial
properties of Fe-, Cu-, Ni-, and Ag-doped TiO2 NPs against E. coli and S. aureus [123,124];
however, TiO2 NPs adversely affect human cells and tissues, so their use remains limited.
SiO2 NPs, especially mesoporous NPs, have attracted considerable attention because their
properties, such as size, matrix, and surface functions, which can be tuned to improve their
interaction with and penetration of biofilm-producing bacteria [125].

Compared to monometallic NPs, multimetallic NPs, such as bi-, tri-, and quadrametal-
lic NPs, have gained great importance and interest due to their unique physical, chemical,
electrical, optical, and catalytic properties and applications in different fields [126]. Mul-
timetallic NPs can be altered or tuned by controlling their structure, morphology, and
chemical composition to achieve strong synergistic interactions and performance [127].
When at least two metals are formed as NPs, combinatorial approaches, such as structural
changes, deduction of the lattice parameters, and total electronic charge shift improve-
ments, are expected [128]. Recently, bimetallic Ag/Cu and Cu/Zn [129], and trimetallic
Cu/Cr/Ni [130] and CuO/NiO/ZnO [131] NPs have exhibited remarkably improved
antimicrobial performance compared to monometallic NPs. Recent studies on the antimi-
crobial activities of metal and metal oxides, including mono-, bi-, and trimetallic NPs,
against various bacterial strains and their respective mechanisms of action are shown in
Table 3.

Table 3. Antimicrobial activities of different metal and metal oxide nanomaterials against various
pathogens and their respective mechanisms of action.

NPs Size (nm) Bacteria Modes of Action Ref.

Ag 10 V. natriegens rupture of cell membrane and DNA
damage [132]

Ag2O 10 L. acidophilus, S. mutans prevents the growth of pathogen [133]

Ag2S 65 Phormidium spp. cell membrane inhibition [134]

Ag-MOF - S. aureus stable in water and the existence of
Ag+ ions [135]

Al2O3 30 S. typhi, F. oxysporum disintegration of outer membrane
by ROS [136]

Au 20 S. pneumoniae cellular disruption [137]

Bi 40 M. arginini, E. coli inhibits protein synthesis [138]

Cu 15 B. subtilis, S. aureus synergistic effects of functional groups [139]
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Table 3. Cont.

NPs Size (nm) Bacteria Modes of Action Ref.

CaO 58 S. aureus, E. coli destruction of the cell membrane [140]

CuO 60 B. cereus damage of several
biochemical processes [141]

CeO2 5 B. cereus, E. coli oxidative stress induced by the
pro-oxidants [142]

CdS 25 S. aureus, Lactobacillus sp. CdS NPs impregnated and surrounded
by the bacterial cell [115]

Fe 474 E. coli
strong affinity between positively

charged NPs and negatively charged
cell membrane

[143]

Fe3O4 25 E. coli, S. aureus plasma membrane disruption [144]

FeS 35 E. coli, S. aureus internalization of nanomaterials on
cell membrane [145]

Ga 305 M. tuberculosis reduction of mycobacterium
growth rate [146]

Mn 50 E. coli, S. aureus protein inactivation and membrane
permeability decreases [147]

MgO 27 E. coli, Bacillus sp. loss of membrane integrity and leakage
of intracellular molecules [148]

Mn3O4 130 P. aeruginosa, K. pneumonia disrupting bacterial cell membrane [149]

Mg-MOF - E. coli, S. aureus peptide–nalidixic acid
conjugation formed [150]

Mn-MOF - E. faecalis, P. aeruginosa peptide–nalidixic acid
conjugation formed [150]

Ni 60 P. aeruginosa destruction of cell membrane [151]

NiO 40 E. coli, B. subtilis oxidative stress generated at the NPs
interface resulted in membrane damage [152]

Pd 13 S. pyrogens, B. subtilis cell membrane damage and apoptosis [153]

Pt 2 A. hydrophila, E. coli generation of ROS and decrease
cell viability [154]

Se 85 S. aureus, E. coli ROS causing cell membrane damage [155]

Si 90 P. aeruginosa, S. aureus direct mechanical damage to the
cell membrane [156]

TiO2 9.2 E. coli outer cell membrane damaged by
attacking hydroxyl radicals and ROS [157]

ZnO 30 A. baumannii production of ROS increases [158]

ZrO2 2.5 S. mitis, S. mutans, R.
dentocariosa

NPs enhance the interaction with
bacterial constituents [159]

Zn-MOF - P. aeruginosa causing cell damage by interaction with
hydroxyl group of peptidoglycan [160]

Ag/ZnO 43 P. aeruginosa, S. aureus leaching of silver as Ag+ [161]

Au/CuS 2 B. anthracis cell membrane damage [162]

CuO/ZnO 50 and 82 S. aureus, E. coli membrane depolarization caused due
to lectrostatic interaction of NPs [163]

Fe3O4/ZnO 200 E. coli, S. aureus plasm membrane disruption includes
oxidative stress [164]

Au/Pt/Ag 20 E. faecalis, E. coli ROS production [165]

Cu/Zn/Fe 42 E. coli, E. faecalis cell disruption by released ions [166]

Core–shell quantum dots (CSQDs) are a new type of fluorescent antibacterial nanoma-
terial with unique physical and chemical properties. Owing to their high electron transfer,
CSQDs produce a large number of free electrons and holes that accumulate ROS inside the
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cell, inhibiting their respiration and replication [167]. CSQDs exert antimicrobial effects by
destroying cell walls, binding with genetic material, and inhibiting energy production. The
antimicrobial activities of some CSQDs and their mechanisms of action are listed in Table 4.

Table 4. Antimicrobial activities of core–shell quantum dots against various pathogens with their
respective mechanisms of action.

NPs Size (nm) Bacteria Modes of Action Ref.

ZnS and
CdSe/ZnS

quantum dot
1.9 E. coli, B. subtilis

toxic composition of CdSe
QDs demonstrating

antimicrobial behavior
[168]

CdSe/CdS/ZnS
multi-core–shell
quantum dots

12–38 K. pneumoniae, P. aeruginosa
rupturing of the membrane
wall and cause of the decay

of bacteria
[169]

Ag-PdS/ZnS/CdS
core–shell

quantum dots
8 S. saprophyticus, E. coli

establishment of the
catalyst–microorganism

complex and a
catalyst-related ROS

[170]

ZnSe@ZnS
core–shell

quantum dots
3.6 and 4.8 E. coli, S. aureus

high affinity towards the thiol
groups of bacterial cell

surface proteins
[171]

Peptide-loaded
CdSe quantum dot 9 and 14 E. coli, S. aureus

AP loaded on CdSe NPs had a
higher water solubility and

bioavailability
[172]

P-doped carbon
quantum dots 2.75–4.25 E. coli, S. aureus cell walls wrinkled and broken [173]

Ag@Ag2O
core–shell 19–60 P. aeruginosa, S. aureus blockage of DNA replication

and repair processes [174]

Additionally, the antibacterial properties of graphene involve both chemical and phys-
ical modes of action. The chemical action is associated with oxidative stress generated
by charge transfer and ROS, while the physical action is induced by the direct contact of
graphene with bacterial membranes [175]. Similarly, CNTs are more effective and cost-
efficient, exhibiting strong antimicrobial properties owing to their remarkable structure.
This mechanism is based on the interaction of CNTs with microorganisms and the disrup-
tion of their metabolic processes, cellular membranes, and morphology. Table 5 summarizes
the various reported antimicrobial activities of graphene and CNTs.

Table 5. Antimicrobial activities of graphene and CNTs against various pathogens and their corre-
sponding mechanisms of action.

NPs Size (nm) Bacteria Modes of Action Ref.

rGO-TiO2 32 E. coli, S. aureus improve the contact between
TiO2 surface and bacteria [176]

GO-ZnO 14–26 E. coli induces ROS to kill the bacteria [177]

GO-Cu2O 30 E. coli, S. aureus copper ions react with
cytoplasmic constituents [178]

DMS-GO-DMA – E. coli, S. aureus
GO induces membrane stress
on contact by disrupting and

damaging cell membranes
[179]

MWCNT-LVX – S. aureus, P. aeruginosa inhibition of bacterial
DNA replication [180]

F-MWNTs – E. coli, S. aureus

smaller diameter of MWNTs
can endorse damage to cell

membrane through the
cell–surface interaction

[181]
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Table 5. Cont.

NPs Size (nm) Bacteria Modes of Action Ref.

Ag-doped ZnO
on SWCNTs 12–15 E. coli, S. aureus

production of ROS on the
interaction samples with

bacterial membrane
[182]

Au-doped ZnO
on MWCNTs 12–18 E. coli, S. aureus

the toxicity of carbon nanotube
is mainly affected by diameter,

length, and surface
functional group

[182]

Dendrimers are macromolecules with highly branched tree-like dendritic structures,
narrow sizes, relatively large molecular masses, and well-defined globular structures [183].
Dendrimers peripherally cationic and highly water soluble due to numerous peripheral
hydrophilic groups compatible with water [184]. Dendrimers can incorporate biologically
active agents in the interior or periphery; therefore, they serve as carriers of biologically
active agents [185]. Antimicrobial polymers or their composites can prevent or suppress
the growth of microbes on their surfaces or in the environment. Positively charged polymer
surface groups are attracted to negatively charged cell membranes, leading to cell mem-
brane damage and cell death [186]. A few recent publications on the antimicrobial activities
of dendrimers and polymer nanocomposites are summarized in Table 6.

Table 6. Antimicrobial activities of dendrimers and polymer composites against various pathogens
with their mechanisms of action.

NPs Size
(nm) Bacteria Modes of Action Ref.

Van-PAMAM-AgNP
dendrimers – S. aureus

heterofunctionalized
Van-PAMAM-AgNP

dendrimers for intra-cellular
entry through the cell wall and

bacterial killing

[185]

G4-PAMAM dendrimer 10 E. coli, B. subtilis

disrupting of the cell
membrane function and

inhibiting cell wall synthesis,
nucleic acid synthesis, and

protein synthesis

[187]

PAMAM-G7 dendrimer 20 P. mirabilis, S. aureus

dendrimers are mediated by
disrupting the bacterial outer

and inner membrane by
terminal amine groups

[188]

Amino-acid-modified
polycationic dendrimers – P. aeruginosa

loss of membrane potential,
inhibition of biosynthetic

pathways, and free
radical production

[189]

Triclosan-loaded polymeric
composite – S. aureus, K. pneumoniae

at high concentrations,
triclosan destroys the bacterial
membrane, leading to its death

[190]

PBAT/Cu-NPs 100–
200 A. baumannii, E. faecalis

polymer and metal
nanocomposites increase the
number of ions released from

the nanoparticles into the
polymer matrix

[191]

Piperazine polymer
nanocomposite 559.7 E. coli, S. aureus

nanoparticles are distributed
within the suitable

polymer matrix
[192]

PVA/GO/Ag
nanocomposites – E. coli, S. aureus

physical interactions of the
bacterial cell with
the nanoparticle

[193]
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5. Synergistic Antimicrobial Activity of Plant Extracts, EOs, and Nanomaterials

A synergistic effect is a process in which chemical substances or biological structures
interact or combine to create an effect greater than the sum of the effects of the individual
components. Synergy is the concept wherein the performance of two or more antimicrobial
agents is combined and the effects of such mixtures are greater than those of the separate or
individual components, enhancing solubility. In recent years, the synergistic combination of
different antimicrobials and plant extracts has been considered a unique strategy to increase
the spectrum of antimicrobial activity of these substances and prevent the development
of resistant strains [194]. Plant extracts, EOs, and nanomaterials are commonly used as
antimicrobial agents for the treatment of many infectious diseases. However, these antimi-
crobials are not very effective against acute infections because they lack a standardized
and clinically applicable pharmaceutical form. Consequently, various antibiotics have been
discovered as synthetic antimicrobials; however, these drugs are highly toxic and have poor
tolerability, so bacteria develop resistance against them. Hence, a possible approach to im-
prove and enhance antibacterial activity is to use combinations of different antimicrobials.
These combinatorial approaches can be used alone or with other antimicrobials against
a wide range of pathogens [195]. Compared to the individual substances or components,
multicomponent antimicrobials display increased antimicrobial activity; therefore, other
molecules present in the antimicrobial agents could control the function of the main compo-
nents and improve their synergistic effects. Moreover, combining different antimicrobials
offers many advantages, including a reduction in dosage, fewer side effects, decreased
toxicity, extensive antibacterial action, and the ability to attack multiple target sites with
increased efficacy [196]. Some combinations of antimicrobial agents, such as plant extracts,
EOs, antibiotics, and NPs, are summarized in Table 7.

Table 7. Antimicrobial activity of combinations of plant extract, EOs, antibiotics, and NPs against
different pathogens.

Antimicrobial Agents Combinations Pathogens Ref.

EOs/EOs Melaleuca alternifolia/Cupressus
sempervirens E. coli [195]

EOs/antibiotics Eucalyptus globulus/oxacillin S. aureus [195]

EOs/NPs Lemongrass/chitosan NP E. coli, S. aureus [197]

Plant extract/antibiotics Salvadora persica/amoxicillin P. gingivalis, T. forsythia [198]

Plant extract/EOs Origanum vulgare/carvacrol S. aureus [199]

Plant extract/NPs Vatica diospyroides/Ag NPs S. aureus, B. subtilis [200]

NPs/antibiotics AgNPs/fluconazole S. aureus, E. coli [201]

β-Lactam/β-lactamase
inhibitor

amoxicillin/potassium
clavulanate S. aureus [202]

Combinations of antimicrobial agents, such as EOs/EOs, plant extract/plant extract,
and NPs/NPs, already have confirmed antimicrobial activities [203]. Ncube et al. evaluated
the bulb and leaf extracts of three medicinal plants, independently and in combination,
against S. aureus. Their results showed the strongest synergistic effect compared with
the effects observed with individual extracts [12]. Similarly, a combination of Bulbine
frutescens and Vernonia lasiopus plant extracts showed improved antimicrobial activity
against E. coli [204]. Obuekwe et al. found the largest zones of inhibition against S. aureus
using a combination of Ocimum gratissimum and Ficus exasperate, and Bryophyllum pinnatum
and Ocimum gratissimum against E. coli [205]. Recently, EO–EO associations showed a
synergistic effect against vancomycin-resistant enterococci (VRE), methicillin-resistant S.
aureus (MRSA), and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli [195].
A mixture of R. abyssinicus and D. penninervium EOs showed strong synergistic effects
against MRSA and P. aeruginosa [206].
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The synergistic antibacterial activities of cumin, cardamom, and dill weed EOs against
C. coli and C. jejuni have been reported [91]. In a previous study, a combination of cinnamon
and clove EOs showed synergistic antibacterial activity against foodborne S. aureus, L.
monocytogenes, S. typhimurium, and P. aeruginosa [207]. Garza-Cervantes et al. examined the
synergistic antimicrobial activities of silver in combination with other transition metals (Zn,
Co, Cd, Ni, and Cu). Their results exhibited synergism since the antimicrobial effects of
the combinations against E. coli and B. subtilis increased up to eightfold when compared
to the individual metals [208]. Similarly, β-lactam is the most common bactericidal agent
recommended for the treatment of several infectious diseases. However, the increasing
emergence of β-lactam resistance due to β-lactamase enzyme production is one of the most
serious public health threats. Hence, current clinical trials suggest the use of proper combi-
nations of β-lactam and β-lactamase inhibitors [209]. β-Lactam inhibitors are associated
with β-lactam antibiotics because they are hydrolyzed by β-lactamases, and their main
objective is to protect the associated antibiotics. β-Lactam inhibitors prevent the hydrolytic
action of β-lactam antibiotics by binding to the active site of β-lactamase enzymes [210].

6. Currently Available Conventional Antibiotics

Currently, there are 32 antibacterial agents in clinical development phases 1–3 targeting
WHO priority pathogens, 12 of which have activity against Gram-negative pathogens.
Since 2018, several new products have entered phase 1 trials, and two new recombinant
topoisomerase inhibitors, zoliflodacin and gepotidacin, have moved from phase 2 to phase
3 trials. Similarly, lefamulin and relebactum moved from phase 3 trials to FDA approval,
and omadacycline and eravacycline have moved from NDA submission to gaining FDA
approval. An additional product of β-lactam (cefideocol) is more stable against a variety of
β-lactamases and has activity against all three critical priority pathogens [211]. β-Lactams
are well-established and widely used antibiotics, including penicillins, cephalosporins,
carbapenems, and monobactams. β-Lactams interrupt cell wall formation and subsequently
disrupt peptidoglycan biosynthesis. However, the emergence of bacteria that produce β-
lactamase enzymes that hydrolyze β-lactam antibiotics has rendered many antimicrobial
agents ineffective. β-Lactamases are a diverse class of enzymes produced by bacteria
that break the β-lactam ring open, inactivating the antibiotic. Table 8 summarizes several
mechanisms of resistance to different target drugs with different modes of action.

Table 8. Mode of action of different classes of antibiotics with their resistance profiles and
target bacteria.

Antibiotics Specific Drug Modes of Action Resistance Profiles Target
Bacteria Ref.

β-Lactams
Penicillin G,
amoxicillin,

cephalosporin C

Cell wall
synthesis
inhibition

Hydrolysis, efflux,
altered target,

reduced
permeability

S. aureus,
P. aeruginosa [212]

Aminoglycosides Streptomycin,
gentamicin

Inhibition of
translation and
cell membrane

synthesis

Modifying enzyme
inactivation by

phosphorylation

P. aeruginosa,
V. cholerae [213]

Tetracyclines Minocycline,
doxycycline

30S ribosomal
subunit

Monooxygenation,
ribosomal

modification

Staphylococci,
Streptococci [214]

Glycopeptides Vancomycin,
teicoplanin

Peptidoglycan
biosynthesis Altered target S. haemolyticus,

E. faecium [214]

Macrolides Erythromycin,
azithromycin

Inhibition of
protein synthesis

Glycosylation,
efflux, methylation

Streptococci,
Staphylococci [215]

Phenicols Chloramphenicol Inhibition of
protein synthesis

Acetylation by
chloramphenicol
acetyltransferase

B. subtilis,
S. pneumoniae [216]
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Table 8. Cont.

Antibiotics Specific Drug Modes of Action Resistance Profiles Target
Bacteria Ref.

Rifamycin Rifampin
Inhibition of
nucleic acid

synthesis

ADP-ribosylation,
efflux

V. cholerae,
E. coli [213]

Quinolone Ciprofloxacin,
levofloxacin

Inhibitors of
DNA synthesis

Altered DNA
gyrase

S. aureus,
P. aeruginosa [212]

Cationic
peptides

Polymyxin B,
colistin

Disrupt
membranes

Altered target,
efflux

E. coli,
S. typhimurium [213]

7. Antibacterial Mechanisms of Plant Extracts, EOs, and Nanomaterials

The antimicrobial mechanism of plant extracts is more strongly correlated with the
levels of their constituent phenolic compounds, especially flavonoids and their derivatives.
The interaction of polyphenols with lipid bilayers can trigger and disrupt plasma membrane
function, change its permeability, and form small pores. These could lead to the leakage
of cell components, altering the surface electrical charge potential and bacterial polarity,
modifying membrane fluidity, delocalizing membrane lipids and proteins, as well as
other phenomena responsible for antibacterial activity. These alterations can cause severe
damage to the bacteria by partitioning their membrane and cell wall, interrupting DNA
and RNA synthesis and function, disrupting normal cell communication, and preventing
biofilm formation [217]. Some studies have shown that secondary metabolites of plant
extracts, such as alkaloids, terpenoids, and phenolic compounds, interfere with enzymes
and proteins of the microbial cell membrane and inhibit enzymes necessary for amino acid
biosynthesis. Other studies have ascribed the inhibitory effect of these plant extracts to
their hydrophobicity since they can react with proteins and mitochondria, disturbing their
structures and altering their permeability [218].

The antibacterial mechanism of EOs does not comprise a single action; however,
various biochemical and structural mechanisms are simultaneously engaged at multiple
sites in the bacterial cell membrane and cytoplasm. The primary antimicrobial effects of
EOs are correlated with an increase in membrane permeability and plasma membrane
disruption. The bioactive components found in EOs, such as thymol, eugenol, and carvacrol,
might attach to the cell surface and penetrate the target region, especially the phospholipid
bilayer of the cell membrane [76]. It has been shown that EO accumulation can disrupt
membrane integrity and membrane proteins, increase membrane permeability, induce the
leakage of cellular contents, and reduce the intracellular ATP pool. This consequently
leads to cytoplasmic coagulation and the denaturation of enzymes, inhibiting the synthesis
of DNA and proteins required for bacterial growth. Furthermore, the sustained loss of
metabolites and ions due to EO administration can further disturb bacterial metabolic
processes, leading to cell death [219].

The bactericidal mechanism of nanomaterials mainly depends on the type of NPs used,
such as metals, metal oxides, and other nanocomposites. NPs bind to the bacterial cell wall,
form membrane-penetrating pores, and release metal ions due to deposition. The adhesion
of nanomaterials and microbial cells can be achieved through electrostatic attractions,
hydrophobic interactions, Van der Waals forces, and receptor–ligand interactions, leading
to cell wall destruction [220]. Furthermore, the positively charged surfaces of nanomaterials
could promote the attachment of negatively charged bacterial surfaces, which may exert
and strengthen their bactericidal effect. In addition, the generation of free radicals and ROS
can destroy the cell membrane, disrupting the antioxidant defense system and causing
mechanical damage to the cell membrane. Thereafter, nanomaterials interact with important
cellular organelles such as DNA, enzymes, ribosomes, and lysosomes, resulting in oxidative
stress, changes in membrane permeability, heterogeneous alterations, electrolyte balance
disorders, changes in gene expression, and protein deactivation [220]. Possible modes of
action when combining plant extracts, EOs, and nanomaterials are illustrated in Figure 4.
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8. Concluding Remarks and Prospects for Future Research

Although the pharmaceutical industry has introduced many new antibiotics, the
increasing prevalence of serious clinical complications related to MDR pathogens is a
great challenge for researchers, clinicians, and the pharmacological industries. Therefore,
searching for the most promising novel antibacterial agents with alternative strategies
to combat bacterial infections is an ideal solution to treat infections that threaten human
health. The ultimate goal is to offer appropriate and effective antimicrobial drugs to infected
patients. The use of combination therapies is an effective way to improve the treatment
of many health conditions, prevent the development of MDR pathogens, and reduce the
treatment duration. Combination therapies can target and interact in multiple pathways
and exhibit greater therapeutic efficacy than single antimicrobial-agent-based therapies.
Moreover, they have recently been regarded as promising, cost-effective, and potentially
able to mitigate side effects to the body with lower drug concentrations. There is plenty
of evidence to support the effectiveness of medicinal plants in the treatment of infectious
diseases. However, very few studies have reported the synergistic effects of plant extracts
and phytochemical combinations of herbal remedies.

Combinations of different plant species or mixtures of different phytochemicals have
been shown to exert potential antimicrobial activity against several human pathogens with
diverse mechanisms of action. The curative effects of plant extract combinations showed
both intrinsic and antibiotic-resistance-modifying activities. Some plant extracts are not
effective as antibiotic agents alone; however, when combined with other antibacterial plant
extracts, their bioavailability and antibacterial activity are enhanced. Similarly, there is
much evidence suggesting the antimicrobial effects of individual EOs against different
pathogens in vitro, but very few studies have reported the effects of EO combinations.
Compared to a single EO or its chemical constituents, combining more than two EOs can
increase and improve their antimicrobial activities due to an increased diversity of compo-
nents and multiple sites of action. Furthermore, many studies have reported the potential
antimicrobial activities of different nanomaterials against MDR pathogens. However, only a
small percentage of studies have discussed the synergistic effects of multimetallic NPs, such
as bi-, tri-, and quadrametallic and metal oxide nanocomposites. The synergistic effects
of these multimetallic NPs have attracted considerable attention, owing to their diverse
and tunable physicochemical properties and favorable catalytic properties compared with
monometallic NPs.
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The present review describes the synergistic effects of plant extracts/plant extracts,
EOs/EOs, and nanomaterials/nanomaterials as efficient alternative strategies for pathogen
inactivation or infectious diseases. However, further research is needed to assess the syner-
gistic effects of combinations of plant extracts/EOs, plant extracts/nanomaterials, and nano-
materials/EOs to achieve better antimicrobial results. In addition, more effort is required
to investigate the synergistic effects of combinations of plant extracts/EOs/nanomaterials.
Consequently, β-lactam/β-lactamase inhibitor combinations are more effective on the
different bacterial species. Combinations comprising three different antimicrobial agents
might have enhanced synergistic antimicrobial activity compared to the effects of a com-
bination of only two antimicrobial agents. Furthermore, the concentrations of the plant
extracts, EOs, nanomaterial types, proper dosage, and choice of materials are essential
to maximizing their therapeutic benefit. It is also important to consider environmental
issues, health and safety concerns, risk assessments, potential toxicity, and hazards before
considering them novel antimicrobial agents. These new, modern, and creative therapeutic
strategies may exert a critical synergistic effect and serve as alternatives to conventional
antibiotics for controlling the spread of pathogens. Finally, we believe this review provides
necessary information about the combination of different antimicrobial agents to produce
synergistic effects for the control and treatment of a wide range of pathogenic infections
and may also play an essential role in many medical applications.
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