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Abstract. Alzheimer’s disease (AD) progressively destroys cognitive abilities in the aging population with tremendous effects
on memory. Despite recent progress in understanding the underlying mechanisms, high drug attrition rates have put a question
mark behind our knowledge about its etiology. Re-evaluation of past studies could help us to elucidate molecular-level details
of this disease. Several methods to infer such networks exist, but most of them do not elaborate on context specificity and
completeness of the generated networks, missing out on lesser-known candidates. In this study, we present a novel strategy
that corroborates common mechanistic patterns across large scale AD gene expression studies and further prioritizes potential
biomarker candidates. To infer gene regulatory networks (GRNs), we applied an optimized version of the BC3Net algorithm,
named BC3Net10, capable of deriving robust and coherent patterns. In principle, this approach initially leverages the power
of literature knowledge to extract AD specific genes for generating viable networks. Our findings suggest that AD GRNs
show significant enrichment for key signaling mechanisms involved in neurotransmission. Among the prioritized genes, well-
known AD genes were prominent in synaptic transmission, implicated in cognitive deficits. Moreover, less intensive studied
AD candidates (STX2, HLA-F, HLA-C, RAB11FIP4, ARAP3, AP2A2, ATP2B4, ITPR2, and ATP2A3) are also involved in
neurotransmission, providing new insights into the underlying mechanism. To our knowledge, this is the first study to generate
knowledge-instructed GRNs that demonstrates an effective way of combining literature-based knowledge and data-driven
analysis to identify lesser known candidates embedded in stable and robust functional patterns across disparate datasets.
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INTRODUCTION

Alzheimer’s disease (AD) is a very complex idio-
pathic disease contributing to immense personal and
societal burden, with ∼13.8 million people being
affected by 2050 [1] in the US alone. High failure rate
of AD drugs (98%) in Phase III trials have resulted in
no new FDA approved drugs since 2003 [2]. More-
over, the five previously approved AD drugs just
provide symptomatic relief [3]. Not all, but a substan-
tial proportion of these studies focused on amyloid-�
(A�) and tau accumulations as being synonymous to
the AD pathology [4], leading to an unprecedented
wealth of molecular and clinical data. Despite the dis-
appointing outcome of the clinical trials, neurology
researchers still believe in the definiteness of these
two hypotheses [5]. This reaffirms that pathological
mechanisms underlying AD are much more complex
than the current consideration, thus, opening up pos-
sibilities for new therapeutic targets. Working toward
unraveling dysregulated events heralding known and
unknown patterns could fill the gaps between AD
hallmarks [6].

Existing experimental data, not being fully
exploited, contain compelling evidence that have
the potential to contribute next groundbreaking dis-
coveries. The great challenge, however, lies in
harmoniously integrating these data and interpreting
them differently to derive new-novel insights while
maintaining the biological connections. The term
“Horizontal Meta-analysis” implies the integration of
results from several independent studies [7], thereby
increasing the statistical power of the derived con-
clusion. A more conventional gene-centric approach
is to intercross differentially expressed (DE) genes
across studies based on majority voting [8], merg-
ing gene ranks [9], and combining p-values [8].
However, differing factors can lead to a low over-
lap and discrepancies between studies such as
the applied statistical methods, different platforms
of the quantitative measurements, and heterogene-
ity of the patient cohorts [10]. Moreover, these
approaches do not shed light on the coordinated
genes that collectively orchestrates the underlying
(patho-)mechanism. A more consistent and robust
approach is through functional enrichment of the dys-
regulated genes using KEGG [11], MSigDB [12],
and other sources of pathway knowledge. However,
these approaches have a tendency to converge toward
genes that express in large magnitudes and generated
hypotheses are restricted by current understanding of
pathways.

Network-based approaches that rely on the coher-
ence of expression changes between functionally
dependent genes could provide an effective means
to overcome the above-mentioned challenges. Such
inferred networks have the capability to determine
subtle expression shifts between correlated gene pairs
that are linked to the dysregulation events. Particu-
larly, these signatures are largely consistent across
different studies; thus, emphasizing on its benefits
for large scale meta-analysis. In the last few years,
we have seen a swarm of methods that infer such
networks based on co-expression, regulation, and
causal information namely WGCNA [13], BC3Net
[14], MRNET [15], ARACNE [16], GENIE3 [17],
and CLR [18]. Among these, WGCNA and the bag-
ging version of C3Net (BC3Net) are popular and
computationally efficient methods. BC3Net is an
ensemble method that statistically infers GRNs based
on the strongest mutual dependencies between genes,
whereas WGCNA clusters genes on the basis of
calculated pairwise correlation coefficients. In the
meantime, BC3Net has been reported in providing
meaningful biological insights for large-scale studies
[19, 20].

Traditional GRNs identify patterns through dif-
ferential co-expression analysis [21–23], displaying
grouping of patterns based on dysregulated and coor-
dinated biomolecular changes. Integration of such
priors drastically improves the context specificity of
the inferred networks relative to using data as the
sole source [24–26]. However, these spurious dis-
criminative structures, in a given disease context,
may vary since DE genes are highly inconsistent
across studies [27]. Biologically speaking, one may
argue that the differences in functionally enriched
components, derived from DE genes, are more con-
sistent than gene-centric activities [28]. But this
approach misses out on less informative and less
studied non-DE genes, which act in groups, contribut-
ing to the observed phenotype or a part of cascade
effect. Furthermore, overlaying the inferred networks
with known interactions, cataloged in databases
or harvested from published literature expand the
knowledge space [29, 30]. However, an intriguing
question on completeness, veracity and context speci-
ficity of these interactions has proven to be a major
setback [31].

Here we propose a new approach to identify
common signature patterns across public AD stud-
ies and prioritize lesser known AD candidates
that unravel the general principles of the intrin-
sic patho-mechanisms. To identify AD mechanistic
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Fig. 1. The overall strategy applied to obtain robust gene expression patterns across public Alzheimer’s disease studies. Firstly, four gene
expression datasets were shortlisted from NeuroTransDB database. The selected studies underwent preprocessing and quality control. In
each dataset, the intensity values were limited to the seed gene list. To enrich the seed, functional enrichment was applied where genes from
the identified significant pathways from each dataset’s subnetwork (edge weight >0.5), generated using BC3Net10 approach, were included.
When no additional genes were identified, subnetworks from each iteration, separately for each dataset, were merged into an aggregated
network for further prioritization of the genes using genetic variant analysis.

footprints, we established an optimized workflow
around BC3Net to extract more robust and coherent
co-expressed gene patterns (named BC3Net10). The
approach allows us to converge lesser known can-
didates into the final generated GRNs. Moreover, to
generate context-specific GRNs, the main rationale
applied was to leverage the power of prior knowl-
edge and functionally enriched candidates in the data.
First, we identified the most frequently discussed
genes in the scientific literature using our literature
mining environment SCAIView; this is called the
“seed”. We are aware that the generated GRNs may
be biased due to the incomplete nature of the prior
knowledge. To overcome this limitation, we extended
the seed by adding all the genes from the enriched
pathways, determined for the high scoring inferred
interactions from BC3Net10. Several iterations are
performed until there are no more genes to be added
to the seed. Finally, an aggregated GRN from all the
iterations, for each dataset, is generated to prioritize
functional context and determine lesser known can-
didates from the genetic variant analysis. Figure 1
presents an overview of the strategy in this study, and
descriptions of the methodology are available in the

Material and Methods section. This work suggests a
context-specific strategy for future interpretation of
the GRNs. Taken together, our work demonstrates
that optimizing the GRN generation can provide a
powerful resource to prioritize novel candidate genes
(could serve as biomarkers) and common functional
components that axles the disease progression.

MATERIAL AND METHODS

Selection of datasets

We collated eight AD datasets (cf. Table 1) that are
composed of 50 or more samples (for diseased and
control phenotype) from the previously developed
value-added database, NeuroTransDB [32]. Briefly,
this database contains manually curated metadata
annotations for eligible neurodegenerative studies.
The datasets have been harvested from publicly avail-
able resources namely, Gene Expression Omnibus
(GEO) [33] and ArrayExpress [34], using a keyword-
based search approach.

Furthermore, datasets that fulfilled the following
criteria were retained for generating gene regulatory
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Table 1
List of datasets shortlisted from NeuroTransDB database for generating gene regulatory networks. Final selected studies are highlighted

in bold

GEO ID Number of Samples Sample Source Stage Platform

Diseased Control

GSE5281 87 74 Entorhinal cortex, Hippocampus, – Affymetrix HG U133 Plus 2
Primary visual cortex, Prefrontal
cortex, Medial temporal gyrus,
Superior frontal gyrus

GSE44768 129 101 Cerebellum LOAD Rosetta/Merck Human 44k 1.1 microarray
GSE44771 129 101 Visual cortex LOAD Rosetta/Merck Human 44k 1.1 microarray
GSE44770 129 101 Dorsolateral prefrontal cortex LOAD Rosetta/Merck Human 44k 1.1 microarray
GSE13214 52 40 Hippocampal, Cortex frontal Braak 4–6 Homo sapiens 4.8K 02-01 amplified cDNA
GSE15222 176 187 Cortical tissue LOAD Sentrix HumanRef-8 Expression BeadChip
GSE29676 350 200 Blood – Invitrogen ProtoArray v5.0
GSE33528 615 600 Blood LOAD Illumina Human- Hap650Yv2 Genotyping

BeadChip

networks: (1) oligonucleotide arrays for analysis con-
sistency, (2) availability of raw data to facilitate
uniform pre-processing, and (3) expression profiling
carried out on brain tissue. A list of four potential
datasets that comply with the above conditions is
eligible for further analysis: GSE5281, GSE44771,
GSE44770, and, GSE44768. An overview of the plat-
form, stage, and brain region information for the
same is given in Table 1. Among these, GSE44771,
GSE44770, and GSE44768 were from a single study
reported by Zhang et al. [35] for late-onset AD.

Pre-processing and gene annotation

The four selected datasets were processed identi-
cally to reduce variance and to maintain consistent
quality. All analysis was carried out with R (Ver-
sion 3.1.3) [36], an open-source statistical language,
using the packages from Bioconductor (Version
3.0) [37]. The overall step-by-step workflow is
shown in Fig. 1. To eliminate the variance effect
of non-specific hybridization, all the downloaded
raw data were uniformly normalized by performing
background correction, quantile normalization, and
averaging the expression values of duplicate probes
on log2-transformed intensity values. For Affymetrix
platform, robust multi-array average method (rma)
[38] available in Bioconductor package affy was
applied. Similar methods available in Bioconductor
package limma [39] were applied on Rosetta/Merck
Human 44k 1.1 microarray chip.

Affymetrix probes to gene symbols annotation
mapping were obtained from the “hgu133plus2.db”
Bioconductor package. In the case of Rosetta/Merck
chip, the gene symbol annotations were provided
directly along with the intensity values. For multiple
probes mapping to the same gene within an array,

average expression values were used. Unmapped
probes were excluded from further analyses. As a
result of this preprocessing step, we retained 20155 in
GSE5281, 11254 in GSE44771, 10437 in GSE44770,
and 12000 in GSE44768 genes for further analysis.

Quality control and outlier detection

Using the Bioconductor package arrayQuality-
Metrics [40], we assessed the array quality and
removed the outlier samples. Describing shortly,
arrayQualityMetrics determine outliers using three
different metrics: (1) distance between samples using
principal component analysis, (2) array intensity
distributions of all samples on the array; and (3) indi-
vidual array quality through MA-plots. If a sample
is detected as an outlier in either of the three met-
rics, we discard it from further analysis. In the four
selected datasets, 9 in GSE5281, 19 in GSE44771,
27 in GSE44770, and 12 in GSE44768 arrays were
outliers. The list of identified outlier arrays is pro-
vided in the Supplementary File 3. The remaining
arrays that passed the quality control were processed
as described earlier.

Leveraging stable gene regulatory networks

In order to derive AD relevant GRNs, we divided
the AD gene expression profile based on their pheno-
types, disease and normal. Subsequently, BC3Net10
algorithm was applied only on diseased samples for
AD seed genes, cf. Fig. 1. GRNs were generated
independently for each dataset, visualized as igraph
objects in Cytoscape tool [41]. Network topological
properties such as node degree, hub genes, etc. were
determined using the Bioconductor package igraph.
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Filter pre-processed data for seed gene list
Prior to GRN generation, each pre-processed

dataset was restricted to the genes in the seed.
Initially, it consists of a set of literature-derived
genes that have high probability of direct or indirect
involvement in AD pathogenesis (see the section on
Gathering initial seed genes). The rationale behind
applying this filtration is to maintain the disease
specificity and reduce high run time due to bootstrap-
ping in BC3NET. Further on, after every functional
enrichment iteration, we again restrict the expression
data to the new seed.

Gathering initial seed genes
The backbone of the seed comprises of the results

harnessed from our text-mining knowledge frame-
work, SCAIView [42]. SCAIView is a knowledge
discovery framework that supports named entity
recognition, information retrieval, and information
extraction on large textual sources. Its capability to
rank documents and biomedical entities based on the
relevancy score allows retrieval of significant players
in a disease context [43, 44]. Querying SCAIView
for AD related genes resulted in 4808 genes, as of 2
January 2016. Only the top 500 retrieved genes were
used as the initial seed, depicted as i = 1 in Fig. 1.

Optimized GRN construction
For the construction of GRNs, R package bc3net

was applied to the processed data with 100 bootstraps
(B = 100). Briefly explained, one aggregated network
was generated by applying the C3Net algorithm on
100 bootstrapped data, which were inferred from
given processed dataset. Statistically, non-significant
edges inferred by C3Net and BC3Net were dis-
carded using Bonferroni’s multiple testing correction,
� = 0.05. In the resulting aggregated network, edge
weights represent the frequency of a correlated gene
pair in 100 random sampling, ranging from 0 to 1.

During random sampling, true and most promi-
nent correlations are stochastically more likely to
be selected than the non-correlated ones. This is
reflected in BC3Net networks, where three inde-
pendently generated GRNs, inferred from the same
gene expression dataset (GSE5281), have an edge
overlap of ∼74% (for no edge weight cutoff) and
∼89% (for edge weight ≥0.5); the node overlap
always remained 100%. The BC3Net parameters
used for performing this analysis are: boot = 100,
estimator = “pearson”, disc = “equalwidth”, mtc1 =
TRUE, alpha1 = 0.05, adj1 = “bonferroni”, mtc2 =
TRUE, alpha2 = 0.05, adj2 = “bonferroni”, weighted

= TRUE, igraph = TRUE, verbose = FALSE and num-
ber of seed genes = 4808 (see the section on Gathering
initial seed genes). However, less frequently appear-
ing, yet plausible, edge interactions could offer the
potential for promising candidates that are buried in
expression data.

We observed that the intersection between indepen-
dently generated GRNs saturated after 5–10 repeti-
tions of the BC3Net algorithm on the same dataset.
Thus, in order to expand the knowledge space around
AD candidates and for completeness, we propose an
optimizationof the randomness todeviseamore recall
optimized GRNs. More specifically, we applied the
BC3Netalgorithmtothesamedataset10times,named
BC3Net10. Finally, we aggregated the 10 indepen-
dentlygeneratedGRNsintoone.Thefinaledgeweight
is now the mean of the computed edge score from 10
GRNs. This increases the prospect of deducing more
reasonable functional speculations in complex dis-
eases with the high probability of novelty for further
investigations.

Subnetwork selection and functional enrichment
analysis

Thechoiceofa thresholdcansignificantlyaffect the
integrity of the network and the co-expression mod-
ules derived from it. In this regard, computed edge
weight (mean weight >0.5) from BC3Net10 was used
as the filter criteria for selecting significant gene pairs
in the generated GRNs. This increases the signifi-
cance levelby50%for the inferred interactions ineach
dataset.

The overlap between the inferred interac-
tions/edges was very low (zero genes common
to all 4 subnetworks, see Fig. 2) when BC3Net was
applied on the initial seed. Several reasons can be
presumed for lack of common and stable genes
such as different platforms, distinct brain tissues,
diverse patient cohort, and treatment heterogeneity.
However, numerous studies have already shown
that the functional signatures are more stable rela-
tive to individual gene level information [45–48].
In this context, to extract the most representative
biological pathways for genes in the subnetworks
(separately for each dataset), we performed functional
enrichment analysis (based on one-sided Fisher’s
exact test) for KEGG pathway information using
ConsensusPathDB (CPDB) [49] (Release 30). Using
the Bioconductor package, org.Hs.eg.db [50], we
mapped the gene symbols to Entrez gene identifiers
obtained from CPDB.
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Fig. 2. Venn diagram depicting the gene overlap between the sub-
networks (edge weight >0.5) of the four datasets, generated using
the initial seed. The initial seed was compiled from top 500 genes
retrieved by querying SCAIView for Alzheimer’s disease related
genes. It is evident that there are no common genes among the
four dataset’s subnetworks. Differing factors between platforms,
analytical methods, tissue source, etc. could contribute to such a
behavior.

Identification of enriched candidates and seed
gene list enrichment

We devised a strategy to expand the seed through
functional enrichment analysis of the individual
network modules inferred by the GRNs, enabling us
to quantify the saturation of the inferred network.
We extracted significant pathways (for the p-value
<0.05) common between the determined subnetworks
of the four datasets, generated using the initial seed.
We added a new gene (called enriched candidate)
to the seed when the gene belongs to the respective
CPDB and KEGG pathway gene set that is signifi-
cantly enriched across all 4 inferred GRNs and is not
present in our initial seed. Further, we repeated the
functional enrichment analysis to determine overlap-
ping pathways for the enriched seed. We leveraged
the identified enriched candidates in these pathways
by subsequent inclusion in the seed iteratively until
saturation. Once the seed has reached its saturation,
we merge the networks of all iterations, separately for
each dataset, to generate an aggregated network. This
approach goes beyond just candidate enrichment, cor-
responding to a maximal AD specificity with minimal
noise and harvesting lesser known genes in GRNs.

Gene list prioritization by genetic variant analysis

For the consensus network, we identified genes
(involved in significant pathways and hub genes)

to prioritize them using genetic variant analysis.
Multiple genetic variants are attributed in the etiol-
ogy of complex diseases. To investigate the impact
of genetic variation, we extracted AD evidences
for single-nucleotide polymorphisms (SNPs) from
GWAScatalog[51],GWASCentral [52],andgwasDB
[53], resulting in 11,314 SNPs. Further, linkage dis-
equilibrium (LD) analysis was carried out to enrich
the list of AD associated genetic variants, which were
sorted based on their chromosome location. LD is
SNP’s property on a contiguous stretch of a chromo-
some that describes the degree to which an allele of
one genetic variant is inherited or correlated with an
allele of another genetic variant within a population.
The LD analysis was performed using HaploReg v2
(developed by Broad Institute of MIT) [54] based on
dbSNP-137 [55], motif instances (based on PWMs
provided by the ENCODE project database) [56],
enhancer annotations (adding 90 cell types from the
Roadmap Epigenome Mapping Consortium) [57],
and eQTLs (from the GTex eQTL browser) [58]. With
LD threshold cutoff of r2 = 0.8, we obtained 115,782
SNPs. Further on, these SNPs were filtered based on
theENSEMBLSNPEffectpredictor thatestimates the
influence of SNP variants on the respective transcripts
of a gene and their gene products [59], shortlisting
4,831 SNPs. Genes obtained from the aggregated net-
works were boiled down to those associated with
shortlisted SNPs. Finally, these refined genes were
ranked using a cumulative score of their SNPs from
RegulomeDB [60], dbSNP’s functional annotation
[55], ENSEMBL’s Variant Effect Predictor [61], and
regulatory feature annotation by ENSEMBL variant
database [62]. RegulomeDB’s ranking is based on
the functional annotations from ENCODE database
[63], chromatin states from the Roadmap Epigenome
Consortium [57], DNase-footprinting [64], position
weighted matrix for transcription factor binding [65],
and DNA methylation [66].

RESULTS AND DISCUSSION

Algorithm convergence and network properties

Under the premise that lesser known genes are not
prominently represented in literature, we extended
the set of seed genes through functional enrichment
(see the section on Subnetwork selection and func-
tional enrichment analysis). As depicted in Fig. 1,
BC3Net10 was applied on the identified four datasets
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Table 2
Statistics of the iterative functional enrichment approach

Iteration (i) Seed No. of overlapping No. of enriched candidate
pathways between the genes obtained from the
four datasets overlapping pathways

1 SCAIView (500) 10 820
2 i1+820 38 1148
3 i2+1148 30 361
4 i3+361 30 84
5 i4+84 32 41
6 i5+41 33 7
7 i6+7 37 –

for different seed lists to generate AD GRNs. Iter-
ation 1, where we generated GRNs for SCAIView
genes, resulted in 10 overlapping and significant path-
ways between the four datasets. From these pathways,
we obtained 820 genes that were earlier not present
in the seed. Hence, there is a clear need for further
enrichment of the seed, which is done by includ-
ing these newly identified candidates to the seed and
repeating the functional enrichment step. In the sec-
ond iteration, we identified 38 overlapping significant
pathways between the datasets. This iteration contin-
ues seven times until there are no newer candidates to
be added. Table 2 provides the statistics of the number
of pathways identified in each iteration, along with the
number of enriched candidate genes that were added
to the seed. A detailed list of the enriched candidates
(as HGNC symbols) identified in each iteration is pro-
vided in Supplementary File 1. A sharp increase in the
number of enriched candidates is observed in the first
two iterations, which drops to zero in the seventh itera-
tion.Weassumethat this indicates thecompletenessof
the gene set that belongs to AD, specific to the selected
four datasets.

Extension of the GRNs using enriched seed is a
knowledge guided approach, which relies on the func-
tional information derived from the gene expression
data. We note that the GRNs grow progressively, both
inferred interactions and the participating candidates,
but in the process, eliminates few of the previously
inferred interactions. A potential reason is that the
extension of the expression matrix with new seed con-
tributes to a shift in the significance of the inferred
interactions by BC3Net. It implies that although we
obtain a final GRN for saturated seed (iteration 7),
aggregating networks from earlier iterations could
capture interactions that were previously inferred as
potential. The fraction of nodes and edges from each
iteration that makes up the aggregated network, for
each dataset, is presented in Fig. 3. We observe that

theadditionofnodes, ineachiteration,acrossdatasets,
remained stable whereas the same cannot be said for
the edges. The variance in edges could be presumed
that the newly added set of genes bring in higher func-
tional relevance throughnewly inferred interactions in
one or the other iteration.

An assessment of the completeness of a GRN for
AD specific genes can be precisely estimated by plot-
ting the mean and the variance of the number of nodes
and edges present in each dataset for each iteration.
From Fig. 4a, it is evident that the enrichment of the
most relevant genes reach saturation. This increases
the statistical significance of the GRNs suggesting an
increment in the biological confidence. It is apparent
that not all the genes present in the seed agree across
platforms due to various differing experimental fac-
tors. However, we expect functional signatures across
the datasets to be more agreeable. Analyzing edges
(seeFig.4b),weobserve that theyorient three times, at
saturation, to the number of nodes. The relative higher
number of edges demonstrate that the gene sets are
highly related, showing immense inter-connectivity
between several functional modules. The high vari-
ance observed, in both nodes and edges, is contributed
by the large network size of GSE5281 relative to the
other three datasets. Details of the number of nodes
and edges present in each dataset at each iteration is
provided are Supplementary File 2.

Hub genes

Hub genes have a higher grade of lethality when
dysregulated in a pathological condition, referred to
as centrality lethality rule [67]. For each aggregated
GRN, a gene was defined as a hub gene when it
had a higher degree of distribution (>95% quantile).
By this criterion, we identified 29 in GSE5281, 8 in
GSE44768, 14 in GSE44770, and 1 in GSE44771 as
hub genes. Table 3 displays the list of identified hub



1244 S.B. Kawalia et al. / Analytical Strategy to Prioritize Alzheimer’s Disease Candidate Genes

Fig. 3. Stratification of the nodes and edges in four aggregated networks. Each stack in the bar plot represents the fraction of nodes added
in that iteration (IT) relative to the aggregated network (considered as 1). The addition of nodes remained stable across the datasets in each
iteration. However, the inclusion of edges varies, which could be presumed due to newly inferred interactions from the newly included nodes
in each iteration. (a) Fraction of added nodes in different iterations; (b) Fraction of added edges in different iterations.

Fig. 4. Mean and variance distribution across four datasets for the added nodes and edges in each iteration. Enrichment of nodes and edges
reach saturation after 7th iteration, suggesting the completeness of the generated GRNs. Relatively high number of edges (see y-axis range)
show immense inter-connectivity between the genes in the GRNs. (a) Boxplot for mean and variance distribution of nodes; (b) Boxplot for
mean and variance distribution of edges.

genes along with their node degree and pathway anno-
tation (only for significant pathways, see Functional
homogeneity across datasets section). Interestingly,
there were no common hub genes between the four

datasets. It was evident that six of the hub genes
were perturbed in multiple pathways. Many of the
hub genes were functionally enriched in neurotrophin
signaling, endocytosis, and estrogen signaling path-
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Table 3
Hub genes identified in the aggregated network for the four datasets. The genes are sorted by their hub degree

within each dataset. Only significant pathways are listed here (see Table 4 for the list)

GEO ID Gene Symbols Hub Degree Pathway Annotation (CPDB) Similar results in
other datasets?

GSE5281 HFE 244 – –
ATP2A3 162 Calcium signaling, pancreatic –

secretion
GLP1R 150 Insulin Secretion –
ADRBK1 145 Endocytosis GSE44770
CACNG4, CACNG6 141 – –
KCNJ5 132 Estrogen signaling –
P2RX2 130 Calcium signaling GSE44770
KPNA2 122 – –
NOX1 118 – –
CACNG5 113 – –
EPN1 113 Endocytosis –
WAS 112 – –
CASP10 111 Apoptosis –
HSPB6, EPHA4 109 – –
ADNP 108 – –
DNAH3 106 – –
GRIN2A 105 Calcium signaling –
UBQLN1 101 – –
IL34, ATP5A1, UBE2L3 100 – –
DPYSL2 99 – –
FOLR2 98 Endocytosis –
NPR1 96 – –
DNM1L, KLC1, ATP5G3 92 – –

GSE44768 RASGRF1 80 – –
DNAL4 63 – –
EPHA1 60 – –
CHRND 59 – –
TRPC1 54 Pancreatic secretion GSE5281, GSE44770
PAK7 50 – –
NDUFA4 44 – –
CHMP4B 44 Endocytosis –

GSE44770 IVNS1ABP 103 – –
FGF18 92 – –
ATF2 90 Estrogen signaling, Insulin secretion –
CTSG 88 – –
GABRE 86 – –
FBXL2 81 – –
GAPDH 75 – –
DIO1 72 Thyroid hormone signaling –
CACNB3, CDK2 66 – –
NFKBIB 66 Adipocytokine signaling, GSE44768

neurotrophin signaling, NOD-like
receptor signaling

PRDM4 64 Neurotrophin signaling –
MAPK9 63 Adipocytokine signaling, –

neurotrophin signaling, NOD-like
receptor signaling

PIK3CB 63 Apoptosis, estrogen signaling, GSE5281
neurotrophin signaling, thyroid
hormone signaling

GSE44771 HSPA2 18 Endocytosis, estrogen signaling –

ways. Additional associated pathways with hub genes
include calcium signaling, adipocytokine signaling,
NOD-like receptor signaling, insulin signaling, apop-
tosis, thyroid signaling, and pancreatic secretion. The

majority of these hub genes formed a connected sub-
network within each dataset, indicative of a possible
cooperative effect in AD pathology (see Supplemen-
tary Figure 1). In the case of GSE44771, due to the
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presence of a single hub gene, we extracted the largest
subnetwork associated with HSPA2.

Functional homogeneity across datasets

Are the core functional modules (set of
interconnected-genes) unique to a human brain
region or do they depict patterns reflecting the tight
linkage between different regions of the brain? To
address these questions, we compared the final
determined significant pathways across the four
aggregated GRNs (outlined in Methods). The func-
tional enrichment analysis revealed 187 in GSE5281,
120 in GSE44768, 170 in GSE44770, and 43 in
GSE44771 inferred modules within significant
KEGG pathways. We computed a simple overlap
between the four GRNs to assess the conserved
pathways, resulting in 34 pathways. Because this list
contained pathways that were not directly relevant
to the core pathophysiology of AD, we categorized
them into subsets based on their pertinence to AD,
see Table 4. Please refer to Supplementary File 4 for
details of summary statistics. From these, we chose to
focus on pathways that exacerbate the AD phenotype,
classified as “Potential”. Table 4 also provides the
statistics of the number of genes enriched for these
pathways in each dataset. Interestingly, there are
no common genes between the four datasets when
compared at the pathway level. However, many of
the genes are shown to be involved in more than one
potential pathway, providing the basis for functional
connectivity in AD.

Regulatory underpinning across Consensus
network

As described in the section on Functional homo-
geneity across datasets, the genes in different GRNs
are complementary for the top significant pathways.
Thus, toprovideabroadercoverage thanasingleGRN
and to infer stronger relationships through consen-
sus, we merged the four aggregated GRNs into one,
called consensus network. What we expect is to uplift
the most promising pathways due to the assembly of
more participating genes. To assess the concept of
functional enrichment, we plot the p-values of all the
significant pathways, listed in Table 4, for each of the
aggregated and consensus GRNs, see Fig. 5. From the
figure, it is evident that these pathways have attained
higher significance level (better p-values) in consen-
sus GRN due to the gene complementarity from the
aggregated GRNs.

Prioritizing through genetic variant analysis

Wecompiled608genesfromlistedsignificantpath-
ways across datasets (see Table 4) and hub genes.
We mapped these genes to the 4,831 shortlisted
ENSEMBL SNPs (see Methods). For the obtained
167 mapped genes, we ranked them based on the
calculated cumulative score for their potential func-
tional consequences in a disease context. Restricting
the ranked genes to the RegulomeDB score of 3, we
generated a final list of 44 high ranked genes. In addi-
tion, we looked into the AD GWAS meta-analysis
study carried out by Lambert et al. [68]. Among all
their listed genes carrying genetic AD risks, we found
three (AP2A2, DPYSL2, and EPHA1) of them to be
present in our 608 gene list, including one (EPHA1)
newly reported in their study; these three were added
to our final gene list. Please refer to Table 5 for detailed
ranking and RegulomeDB score. Additional inves-
tigation revealed 14 out of 47 genes from our final
gene list are either validated by eQTLs studies or
experimentally evident that the SNPs are linked to
the active promoter region of the gene. These genes
include IL1B, NSF, HLA-F, NOTCH4, VCL, PSAP,
STX2, GGA2, STK11, CSF3R, LMNA, CTNNA2,
HLA-C, and RAB11FIP4. When we performed a
comprehensive analysis of the biomedical literature,
we found that many of these genes had no evidence
of being linked to AD, but were rather known to be
involved in AD co-morbidity diseases (see Supple-
mentary Table 1).

Well known prioritized AD candidates

Apart from the new novel candidates, our method
also determined well-known candidates (nearly 50
articles inAD)suchasIL1B,NTRK2,GRIN2A,FYN,
and DPYSL2. The IL1B gene is a pro-inflammatory
cytokine that has been long studied for its modulatory
effect in AD. It is reported that the expression of IL1B
significantly increaseswith the increaseofAD-related
neurofibrillary pathology [69]. Synaptic plasticity,
such as long-term potentiation, is crucial for learning
and memory. A neurotransmitter modulator, BDNF,
mediates neuronal survival and plasticity by regulat-
ing neurotrophins through NTRK2. AD patients with
cognitive deficits have been accounted with reduced
levels of BDNF [70–72]. Similarly, GRIN2A is a sub-
unit of NMDA receptors, whose reduced expression
increases the vulnerability of neurons to excitotox-
icity in AD, correlated with cognitive impairment
due to reduced plasticity [73, 74]. A strong corre-
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Table 4
Landscape of significant pathways (p-value <0.05) determined across datasets

Common Pathway Category Total no. of genes Number of genes enriched for the pathway
Pathways in the pathway GSE5281 GSE44768 GSE44770 GSE44771 Consensus

Cancer Basal cell carcinoma 55 5 2 7 1 15
Cancer Colorectal cancer 62 6 2 8 1 14
Cancer Pathways in cancer 398 64 27 40 3 119
Cancer Small cell lung cancer 86 15 4 9 2 27
Comorbidity Amyotrophic lateral sclerosis 51 14 2 5 1 18
Comorbidity Arrhythmogenic right ventricular

cardiomyopathy
74 13 5 8 2 21

Comorbidity Dilated cardiomyopathy 90 17 6 7 2 26
Comorbidity Hypertrophic cardiomyopathy 83 14 7 7 2 23
Comorbidity Rheumatoid arthritis 91 10 4 7 1 20
Infection Epithelial cell signaling in

Helicobacter pylori infection
68 9 2 6 1 16

Infection Influenza A 177 25 4 22 2 46
Infection Shigellosis 61 12 3 7 1 19
Infection Toxoplasmosis 120 14 3 12 2 26
Infection Tuberculosis 179 21 4 23 3 46
Infection Vibrio cholera infection 54 9 2 2 1 13
Infection Viral myocarditis 60 12 2 5 2 19
Others Melanogenesis 101 18 3 10 1 30
Others Neuroactive ligand-receptor

interaction
275 57 24 30 3 98

Potential Apoptosis 86 14 2 6 1 20
Potential Calcium signaling pathway 180 43 12 16 2 62
Potential Endocytosis 213 47 10 21 4 70
Potential Neurotrophin signaling pathway 120 24 6 17 1 44
Potential NOD-like receptor signaling pathway 57 9 3 6 1 16
Potential PPAR signaling pathway 69 11 4 9 2 22
Potential Synaptic vesicle cycle 63 15 4 8 1 26
Potential Adipocytokine signaling pathway 70 17 6 8 1 27
Potential Insulin secretion 86 18 3 10 1 28
Potential Pancreatic secretion 96 21 5 9 1 30
Potential (hormones) Estrogen signaling pathway 100 23 4 7 1 32
Potential (hormones) Thyroid hormone signaling pathway 119 26 3 10 1 37
Potential (others) Lysosome 122 13 7 11 4 33
Potential (others) Phagosome 155 31 4 16 2 48

Fig. 5. The landscape of p-value for the final list of significant pathways. For easy visualization, we have used 1-p value instead of p-value
on Y-axis. Each line in the graph represents aggregated GRN for specified dataset (see chart legend). The listed pathways show higher
significance level in consensus GRN in comparison to the individual dataset aggregated GRNs.
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Table 5
List of genes prioritized using genetic variant analysis

Rank Gene RegulomeDB No. evidences Pathways involved
Symbol score for AD

1 IL1B 1b 1073 Apoptosis, NOD-like receptor signaling
2 NSF 1d 8 Synaptic vesicle cycle
3 HLA-F 1f 0 Endocytosis
4 NOTCH4 1f 3 Thyroid hormone signaling
5 VCL 1f 10 Shigellosis
6 PSAP 1f 3 Lysosome
7 STX2 1f 2 Synaptic vesicle cycle
8 GGA2 1f 4 Lysosome
9 STK11 1f 7 Adipocytokine signaling
10 CSF3R 1f 5 Pathways in cancer
11 LMNA 1f 11 Arrhythmogenic right ventricular cardiomyopathy,

Dilated cardiomyopathy, Hypertrophic
cardiomyopathy

12 CTNNA2 1f 3 Arrhythmogenic right ventricular cardiomyopathy
13 HLA-C 1f 1 Endocytosis
14 RAB11FIP4 1f 0 Endocytosis
15 GRIN2A 2a 52 Calcium signaling
16 RBX1 2a 0 Viral Myocarditis
17 KCNJ5 2a 0 Estrogen signaling
18 EPHA4 2b 18 Hub Genes
19 CACNG4 2b 0 Arrhythmogenic right ventricular cardiomyopathy,

Dilated cardiomyopathy, Hypertrophic
cardiomyopathy

20 PLA2G5 2b 7 Pancreatic secretion
21 ATP2B4 2b 1 Calcium signaling, pancreatic secretion
22 P2RY14 2b 0 Neuroactive ligand receptor interaction
23 P2RY13 2b 0 Neuroactive ligand receptor interaction
24 PTGER4 2b 11 Neuroactive ligand receptor interaction
25 ARAP3 2b 0 Endocytosis
26 FGF1 2b 22 Pathways in cancer
27 RPS6KA2 2b 0 Neurotrophin signaling
28 RAPGEF1 2b 0 Neurotrophin signaling
29 GABBR2 2b 1 Estrogen signaling
30 PRF1 2b 1 Viral myocarditis
31 ITGA8 2b 0 Arrhythmogenic right ventricular cardiomyopathy,

Dilated cardiomyopathy, Hypertrophic
cardiomyopathy

32 AP2A2 2b 0 Endocytosis, Synaptic vesicle cycle
33 ITPR2 2b 2 Calcium signaling, Estrogen signaling, pancreatic

secretion
34 MED13L 2b 0 Thyroid hormone signaling
35 COL4A1 2b 0 Pathways in cancer
36 KCNJ6 2b 3 Estrogen signaling
37 ATP2A3 2b 0 Calcium signaling, Pancreatic secretion
38 ASAP2 3a 1 Endocytosis
39 FYN 3a 70 Viral myocarditis
40 NTRK2 3a 124 Neurotrophin signaling
41 PAK1 3a 7 Epithelial cell signaling in Helicobacter pylori

infection
42 COL4A2 3a 0 Small cell lung cancer, Pathways in cancer
43 BMP4 3a 5 Thyroid hormone signaling
44 GABRB3 3a 0 Neuroactive ligand receptor interaction
45 CEBPB 3a 12 Tuberculosis
46 EPHA1 5 31 Hub Genes
47 DPYSL2 5 47 Hub Genes

lation between lower levels of BDNF and cognitive
deficits in AD patients was recently reported by Buch-
man et al. [75]. Recent research work has suggested

BDNF as an upstream regulator of FYN gene, a Src
family kinase, leading to enhanced cascade effect
of NMDA mediated excitotoxicity and regulates the
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(a)

(b) (c)

Fig. 6. Subnetworks of the three shortlisted potential pathways (extracted from consensus network) involved in neurotransmission. Nodes
in Cyan are involved in more than one pathways and the size of the nodes depends on the number of pathways involved. Triangle nodes
represent the presence of a SNP. (a) Calcium signaling pathway; (b) Endocytosis pathway; (c) Synaptic vesicle cycle.

activity of hyperphosphorylated tau [76, 77]. In addi-
tion, it mediates the synaptic deficits that are induced
by A� [78]. DPYSL2 mediates synaptic signaling
to facilitate neuronal guidance through regulation of
calcium channels. Furthermore, FYN phosphorylates
DPYSL2 within the brain and its hyperphosphory-
lation is causally related to A� neurotoxicity [79].
Taken together, these findings suggest that synaptic
transmission is critical for regulating A� production
in AD. Further studies, along these lines, may provide
insights into the precise molecular mechanism under-
lying this part of AD etiology.

Mechanistic interpretation of newly prioritized
candidates in neurotransmission

Neurotransmission is a pivotal brain function that
declines with progressing age. However, in the case of

AD, there is a drastic and non-uniform deterioration
of synaptic neurotransmission [80]. It is known that
soluble oligomeric A�, rather than insoluble deposits
that form plaques (extracellular), are detrimental to
synaptic currents through calcium channel modula-
tion, leading to excitotoxic cascades that mediate AD
progression [81] and are related to the formation of
neurofibrillary tangles (intracellular) [82]. Emerging
research strongly supports the hypothesis of dysregu-
lated calcium homeostasis influencing the presence of
neurotoxic A� in AD patients [83]. Increased endocy-
tosis activity, enlarged endosomes, has been reported
by Cataldo et al. [84] as the earliest intraneuronal neu-
ropathologic feature of AD, subsequently impairing
the modulation of NMDA receptor. NMDA excito-
toxicity leads to the pathological overload of calcium
resulting in synaptic impairment and ultimately neu-
ronal death [85].
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We observed that three of the “Potential” path-
ways are significantly involved in neurotransmission:
calcium signaling, endocytosis, and synaptic vesi-
cle cycle (see Fig. 6). To assess the modularity of
the prioritized candidates in these identified path-
ways, we extracted the functional relevance of their
combination. This confirms our previous findings
associated with well-known candidates (see Sec-
tion Well known prioritized AD candidates). To
gain new insights in this context we focused on
lesser known prioritized candidates in AD that are
involved in these three pathways (less than 5 publica-
tions): STX2, HLA-F, HLA-C, RAB11FIP4, ARAP3,
AP2A2, ATP2B4, ATP2A3, and ITPR2. Below, we
briefly discuss the possibility of these candidates
to presumably bear potential as new targets in AD
(detailed description is provided in Supplementary
File 5).

The presence of A� oligomers impairs the process
of STX2 binding to SNARE proteins hindering the
effective release of neurotransmitter during synaptic
vesicle fusion in the presence of increased cal-
cium influx [86, 87]. From several previous studies,
one can postulate that HLA-F and HLA-C medi-
ated dysregulated trafficking of amyloid plaques
in endocytosis could be correlated to the memory
deficits in early AD [88–90]. Several recent evidence
point to the fact that faulty A� processing can be
detected in the membrane trafficking events (linked
to RAB11 proteins) of early endosomes, promot-
ing an effective early diagnosis [91, 92]. ARAP3
modulates actin cytoskeleton’s remodeling by reg-
ulating ARF and RHO family members [93] and
a growing body of evidence suggest that axonal
transport defects due to its abnormality could be
responsible for neurite degeneration and tau toxic-
ity [94–97]. Impairment of APP shuttling by AP2A2
(part of AP-2 complex [98]) from the endocytotic
pathway to autophagy degradation leads to intra-
cellular aggregation of A� [99]. The next three
candidates (ATP2B4, ATP2A3, and ITPR2) partic-
ipate in neuronal calcium shuttling. A substantial
body of evidence indicates ATP2B4, a plasma mem-
brane Ca(2+) ATPases (PMCAs) is inhibited by
A� peptides [100], causing cell death [101]. Simi-
larly, ATP2A3’s function in handling calcium load
and release is perturbed by the mutation in PSEN1
(regulates the intramembrane A� processing) [102].
Increased expression of ITPR2 could lead to cal-
cium toxicity in neurons and finally cell death [103,
104].

Conclusion

The identification of biological mechanisms
underlying normal physiology and—when
dysregulated—contributing to or even directly
causing disease phenotypes is a key objective of
current integrative biology. Strategies, both data-
and knowledge-driven, for mechanism-identification
have shown to deliver valuable insights into disease
mechanisms; however, both approaches have their
specific drawbacks. Here, we demonstrate a new
approach that combines literature-based knowledge
and data-driven analysis through gene regulatory
networks in a flexible and adaptive way. Thus,
allowing us to identify stable and robust patterns of
co-expressed genes across several large disparate
datasets, in parallel, which enhances the interpretabil-
ity around “interesting patterns” of co-regulated
genes.

WedevelopedanadaptedversionofBC3Net,called
as BC3Net10, that supports a more fine-granular
specification of functional context by “injecting”
sets of seed genes (derived from literature) into the
algorithm. The seed genes were iteratively extended
through functional enrichment applied on generated
GRNs until convergence. Through several iterations
of “selecting and injecting seed genes” and subse-
quent co-expression analysis, we come up with stable,
knowledge-instructed GRNs across several experi-
ments. We show the ability of our approach to identify
functional context around subtle signals that would
typically be expected for highly individual “modifier”
functions not in the core of a dysregulation event,
but have the potential to modulate the clinical path
of a disease. Hence, making this approach ideally
suited for biomarker identification. We show that by
the enhanced functional interpretation of the GRNs
shed more light on the role of neurotransmission phys-
iology in early dysregulation events presumed to be
part of AD etiology. This warrant further investigation
of their potential as therapeutic targets.

We would like to point out that there is more poten-
tial to the method presented here: in the course of
IMI-project AETIONOMY we found limited cover-
age of signals in knowledge based models coming
from the analysis of either gene expression or genetic
variation information (GWAS studies). The method-
ology presented here bears the potential to establish
biologically meaningful context around “isolated
signals” in knowledge-based models to “embed” pre-
viously“non-interpretable” (at functional level)genes



S.B. Kawalia et al. / Analytical Strategy to Prioritize Alzheimer’s Disease Candidate Genes 1251

into a wider (knowledge based) context. Insights
drawn from this approach could provide a novel foun-
dation for the formation of new hypotheses. Although
microarray data is the obvious starting point, the next
logical step would be to extend this work to incor-
porate orthogonal datatypes such as NGS and single
cell data. This could provide a broader view of disease
etiology and enable comprehensive in silico investi-
gations. It remains to be shown that the method we
introduce here scales up to a really large number of
experiments of different sample size.
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