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Abstract

Background: Gene order in eukaryotic genomes is not random. Genes showing similar expression (coexpression) patterns
are often clustered along the genome. The goal of this study is to characterize coexpression clustering in mammalian
genomes and to investigate the underlying mechanisms.

Methodology/Principal Findings: We detect clustering of coexpressed genes across multiple scales, from neighboring
genes to chromosomal domains that span tens of megabases and, in some cases, entire chromosomes. Coexpression
domains may be positively or negatively correlated with other domains, within and between chromosomes. We find that
long-range expression domains are associated with gene density, which in turn is related to physical organization of the
chromosomes within the nucleus. We show that gene expression changes between healthy and diseased tissue samples
occur in a gene density-dependent manner.

Conclusions/Significance: We demonstrate that coexpression domains exist across multiple scales. We identify potential
mechanisms for short-range as well as long-range coexpression domains. We provide evidence that the three-dimensional
architecture of the chromosomes may underlie long-range coexpression domains. Chromosome territory reorganization
may play a role in common human diseases such as Alzheimer’s disease and psoriasis.
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Introduction

Gene order in eukaryotic genomes is not random. Neighboring

genes are more likely to be co-expressed than distant genes.

Evidence for this genome-wide phenomenon has been shown in

many eukaryotes, including yeast, fruit fly, mouse, and human

[1],[2],[3],[4]. Coexpression should reflect common gene function

and local coexpression may be partially explained by clustering of

duplicated genes. However, even after accounting for the effects of

gene duplication, significant clustering of genes in the same

biological pathways can still be observed [5].

Several mechanisms could potentially drive coexpression of

nearby genes [3]. Neighboring genes in a divergent orientation can

share a common bi-directional promoter that mediates coexpres-

sion [6]. Nearby genes may exhibit coexpression due to local

chromatin configuration, often demarcated by boundary elements

such as insulators [7]. Genes sharing the same chromosome

territories in the nucleus may exhibit coexpression even when they

are distant in the linear genome [8]. We carried out a systematic

analysis of expression correlation over a range of physical scales in

order to identify the factors that contribute to local and long-range

patterns of coexpression. Our data are drawn from expression

surveys in mouse and human and we conjecture that our findings

will apply to other mammalian species.

Results and Discussion

Data
We assembled a large collection of microarray data, including

tissue surveys, genetic mapping studies, small-molecular perturba-

tion of cell lines, and comparisons of diseased and normal tissues,

generated using several microarray platforms (Table 1; Table S1).

Previous studies of coexpression have focused primarily on human

tissue surveys [3]. We have also included data from mouse studies

and selected studies with various types of perturbations in order to

explore the generality of observed correlation patterns.

Coexpression in Tissue Surveys
In two tissue surveys, one of 61 tissues in mouse and another of

73 tissues in human [4], we computed measures of coexpression

for all pairs of genes over a range of intergenic distances (see

Methods). We detected strong and statistically significant enrich-

ment of coexpression among pairs of genes whose distances fall

within the sub-megabase range (Figure 1A,B). We also detected

weaker but still significant enrichment of coexpression among

genes with distances spanning tens of megabases.

We tested the orientation of gene pairs as an explanation for

sub-megabase range coexpression. A gene pair can be in tandem

(++ or 22), divergent (2+), or convergent (+2) orientation. For
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adjacent gene pairs with small intergenic distances, we observed

significantly higher coexpression when in divergent orientation

(Figures 2A,C) (Figure S1). This is consistent with a previous study

demonstrating the potential for adjacent divergent gene pairs to

share a common bi-directional promoter [6].

Next we tested the effect of CTCF binding sites on coexpression.

CTCF is a mammalian insulator that marks boundaries of regions

under the control of enhancer elements [7]. After stratifying for

intergenic distances, we detected higher coexpression in gene pairs

with no known intervening CTCF site (Figures 2B,D). This effect

was limited to sub-megabase scales, as the likelihood of a gene pair

with no intervening CTCF site diminishes at larger scales. We

repeated the analyses in an independent mouse tissue survey [9] and

detected the same result (Figure S2).

Coexpression in Genetically and Chemically Perturbed
Samples

We examined lymphocyte gene expression data obtained on a

sample of 1240 individuals [10], and we detected short-range

coexpression clustering as seen in the tissue survey data. However,

long-range coexpression clustering, from 20 Mb to more than

70 Mb, was more prominent (Figure 1C).

Genetic variation provides a powerful perturbation of gene

expression. To investigate the possibility that the observed long-

range coexpression signal was unique to genetic variation studies,

we examined a set of samples (2335) in which a series of small

molecules was applied to perturb a single cell line MCF7 [11]. We

observed the same patterns of short- and long-range coexpression,

indicating that these are not specific to tissue, genetic, or chemical

perturbations (Figure 1D).

The long-range coexpression signatures are statistically signif-

icant but small in magnitude. A previous study has concluded that

coexpression is restricted to nearby genes [12]. The disagreement

with our findings may be due to the small sample sizes used in

previous studies. For example, when the sample size is 10, a

correlation coefficient of r = 0.63 would be statistically significant

(p,0.05). The detection level for significant correlation drops to

r = 0.28 when the sample size is 50. For a sample of size 1240 the

smallest significant correlations would be r = 0.056. Large sample

sizes facilitate discovery of subtle, long-range coexpression

clustering.

Mosaic structure of long-range coexpression
Domain correlations appear to be pervasive and are distributed

in a genome-wide mosaic pattern (Figure 3A). We observed

identical patterns of coexpression domains in other human

datasets (Figures S3A,B). Furthermore, when we remapped mouse

genes to their orthologous positions on human chromosomes, we

found that the mouse coexpression domains were concordant with

the human domains (Figures S3C,D). Concordance across two

distantly related mammalian species suggests that the mosaic

structure of coexpression domains is broadly conserved across

mammals.

Could these correlations be spurious technical, microarray

artifacts, for example by base composition of the probe? Given

that these data are generated by microarray platforms diverse in

terms of the array manufacturing method, the hybridization

method, or probe designs, it is not likely that platform-specific

biases influence these results (Table 1). Furthermore, any fixed

feature of probe performance such as GC content that affect

intensity cannot explain a correlation, which depends on

coordinated variation in intensity.

Table 1. A summary of gene expression data sets used in the study.

Species Primary Perturbation Category sample size (range) Number of Datasets Microarray Platforms

Human Tissue 73 1 Affymetrix1

Genetic 427–1240 3 Affymetrix1, Illumina1, Rosetta/Agilent2

Chemical 2335 1 Affymetrix1

Disease 23–116 5 Affymetrix1

Mouse Tissue 47–61 2 Affymetrix1

Genetic 120–295 3 Affymetrix1, Rosetta/Agilent2

1 = single-channel microarray platform;
2 = dual channel microarray platform.
doi:10.1371/journal.pone.0012158.t001

Figure 1. Short- and long-range coexpression in mouse and
human data. Average coexpression (z-transformed Pearson’s correla-
tion coefficients) between gene pairs is shown as function of intergenic
distance (base pairs). Dotted lines indicate the 95% confidence interval
as determined by permutation analysis. (A) Mouse tissue expression
data [4] (B) Human tissue expression data [4] (C) Lymphocyte expression
data [10] (D) Small-molecule survey [11].
doi:10.1371/journal.pone.0012158.g001
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Human genomes contain large genomic regions characterized by

high and low gene expression that are distinct in terms of gene-density,

GC-nucleotide content, intron size, and replication timing [13], [14].

However, fixed patterns of high and low expression will not result in

correlation, which can only arise in the presence of variation in

expression levels. Therefore the presence of regions of high and low

expression is not sufficient to explain domains of co-expressed genes.

The patterns observed here can be explained by coordinated changes

in gene expression across large genomic domains.

Evidence for genome-wide coordination of coexpression
domains

Domains of coexpression can be positively or negatively

correlated. To detect correlations between domains from the

same chromosome as well as from different chromosomes on a

genome-wide basis, we analyzed correlations between 30 Mb

windows equally spaced across the genome with 15 Mb overlap.

We assessed statistical significance using genome-wide permuta-

tion analysis (see Methods). Throughout the genome, we found

evidence of extensive correlations between domains within as well

as across chromosomes (Figure 4) (Figure S5). As an example of

intra-chromosomal correlations, the domain spanning 30 to

130 Mb window on human chromosome 8 is negatively correlated

with the domain spanning 130 Mb to distal end on the same

chromosome (Figure 3A). As an example of inter-chromosomal

correlations, domains on chromosomes 13 and 18 are positively

correlated with one another, but they are negatively correlated

with a domain spanning chromosome 19 (Figure 3B). We detected

similar genome-wide patterns in other human datasets (Figure

S4A,B) (Figure S5A). When mouse genes were remapped to

Figure 2. CTCF binding sites and gene orientation are determinants of coexpression. (A),(C) Average coexpression between gene pairs
was plotted as a function of relative orientation and intergenic distance for adjacent genes. (B),(D) Average coexpression between gene pairs as a
function of their intergenic distance in basepair and the presence or absence of intervening CTCF binding sites. Gene pairs with distance larger than
1 Mb were grouped as one. Statistical significance of differences between groups was assessed for each distance group, and displayed by asterisk (*)
if p-value is less than 0.05. (A),(B) 61 mouse tissue survey (C),(D) 73 human tissue survey [4].
doi:10.1371/journal.pone.0012158.g002
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orthologous positions on the human genome, we detected the

same correlation pattern between many coexpression domains,

indicating evolutionary conservation of relationship between

coexpression domains (Figure S5B). Our results suggest pervasive,

genome-wide interaction between co-expression domains.

Density-dependent correlations
In the human genome, gene-rich regions are found more often in

large chromosomes, whereas gene-poor regions are found in small

chromosomes. We generally detected positive correlations when both

domains come from large chromosomes or small chromosomes, but

negative correlation between a domain of a small chromosome and a

domain of a large chromosome, suggesting that correlations between

coexpression domains depend on gene density (Figure 4). To test this

on a genome-wide basis, we generated a correlation heat-map

ordered by gene density instead of genomic position. Genes with

similar gene density were positively correlated with each other, while

those from low density regions were negatively correlated with those

from high density regions (Figure 5). Permutation analysis confirmed

that the observed correlation between gene density and gene

expression similarity was statistically significant (1 out of 500

permutations, p = 0.002). Association of gene density with coordi-

nated changes in expression between chromosomal domains is a

pervasive and genome-wide phenomenon.

Chromosomal territory and coexpression domains
What is the underlying mechanism of gene density-dependent

correlated gene expression? We investigated whether the density-

dependent correlations were related to organization of chromo-

Figure 3. Evidence for coexpression domains. Z-transformed Pearson’s correlation coefficients are displayed as a heat-map. The magnitude of
the correlation coefficients is displayed using a color scale, truncated at the range displayed in the legend. Gene density, defined as the number of
protein-coding genes in a 1 Mb window centered on each gene, in the lower panel; they were truncated at 50 genes/Mb. (A) Human chromosome 8
(B) Human chromosomes 13, 18, and 19. Chromosomes are demarcated by dotted lines.
doi:10.1371/journal.pone.0012158.g003

Figure 4. Genome-wide correlations between coexpression
domains. Correlations between 30 Mb coexpression domains (15 Mb
overlapping) on a genome-wide scale. The upper triangle represent
mean z-transformed correlation coefficients; the lower triangle statis-
tical significance determined by permutation analysis (100 permuta-
tions), with the threshold indicated by the color scale on the right side
legend.
doi:10.1371/journal.pone.0012158.g004
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some territories in the three-dimensional nucleus. Despite growing

evidence that chromosome territory organization is involved in

regulating gene expression, low-throughput capacity of traditional

cytogenetic assays limited the ability to study it on a genome-wide

basis [8]. A recent study developed a massively parallel

sequencing-based method to detect genomic loci that are spatially

nearby in the three-dimensional nucleus, and generated spatial

proximity information across the whole human genome at 1 Mb

resolution [15]. Using the data, we tested for association between

spatial proximity and coexpression for all possible gene pairs. The

analysis revealed that spatially nearby gene pairs are more likely to

be be coexpressed than spatially distant gene pairs (Figure 6). This

was true for both intra-chromosomal and inter-chromosomal gene

pairs, indicating that the trend is not due to proximity in the linear

genome (Figures 6A,B, respectively). Consistent with this, when we

visually compared coexpression and spatial proximitiy domains

across chromosomes, the two overlapped often (for example

human chromosome 8; Figure S6). This suggests that the

relationship between correlated expression and spatial proximity

in the nucleus are pervasive and genome-wide.

The genome-wide spatial proximity data we used for our study

represent a significant advance, providing for the first time

genome-wide, high-resolution view of chromosome organization

in the nucleus [15]. When we quantified density-dependent

coexpression from spatial proximity-dependent coexpression by

analysis of variance, the extent of coexpression explained by gene

density similarity was greater than that by spatial proximity (Table

S2, S3). Also, genomic regions of coexpressed genes were often

close in the three-dimensional nucleus, but the agreement was not

prefect (Figure S6). These suggest that there are factors other than

spatial proximity which contribute to genome-wide coordinated

expression changes.

Our understanding of how gene density-dependent coexpres-

sion relates to organization of three-dimensional chromosome

territories could benefit from advances in the following areas. First,

the genome-wide chromosome territory structure was determined

on a single cell type under a constant condition, whereas genome-

wide correlation reflects dynamic changes that may be related to

variation in the organization of chromosome territories across a

wide variety of conditions examined here. More chromosome

proximity data on a wide range of cell types and perturbations

could improve our understanding of how chromosome territories

relate to gene expression. Second, the study focused on spatial

proximity between genomic loci, but there are other important

components of chromosome territory structure. For example,

combining information on spatial proximity between genomic loci

with information on spatial proximity to the nuclear lamina could

Figure 5. Genome-wide association between coexpression and
gene density. Correlation heatmap similar to Figure 3, except that the
horizontal and vertical positions are ordered by gene density, not by
chromosomal positions. Every 10th genes were sampled for visualiza-
tion purpose.
doi:10.1371/journal.pone.0012158.g005

Figure 6. Genome-wide association between coexpression and
spatial proximity. Barchart showing average z-transformed correla-
tion coefficients for 10 groups according to the spatial proximity
(‘‘probability of interaction’’) between the two genes. Dotted lines 95%
interval calculated from permutation analysis. (A) Intra-chromosomal
gene pairs (B) Inter-chromosomal gene pairs.
doi:10.1371/journal.pone.0012158.g006
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yield for a refined picture of chromosome territory structure

[16],[17]. Third, gene density may be associated with differences

in biological function, and how the mosaic structure of gene-rich

and gene-poor domains in the mammalian genome is inter-related

with functional organization, three-dimensional chromosome

organization, and gene expression regulation would provide a

comprehensive view of the role of genome organization in cellular

processes.

Density-dependent gene expression changes correlate
with disease

To investigate the possible relationship between coexpression

domains and phenotypes important for human health, we tested

whether transcriptional changes that occur during disease

progression drive correlations with the same domain structure.

We chose to look at Alzheimer’s disease, because of its

prevalence and impact on human health, and due to the

availability of a high quality collection of gene expression profiles

[18]. We compared the gene expression profiles between normal

and diseased samples in the entorhinal cortex and hippocampus,

key tissues implicated in Alzheimer’s disease. Gene expression in

entorhinal cortex of Alzheimer’s patients were marked by

significant up- and down-regulated genes in low and high gene-

density regions, respectively (Figure 7A) (Figure S7). Interestingly,

we detected an opposite trend in hippocampus tissues, suggesting

that domain-wide expression changes during disease progression

can be tissue-specific (Figure 7B). When we repeated the analysis

in an independently generated hippocampus data, we detected the

same trend (Figure S8A) [19].

We investigated psoriasis, because high-quality gene expression

data were available for both normal and disease samples from the

same patient, providing an internal control for genetic variability

[20]. We detected significant up- and down-regulation of genes in

high-density and low-density regions, respectively (Figure 7C). We

detected the same trend from an independent psoriasis gene

expression study, indicating that density-dependent, genome-wide

gene expression changes is a salient feature of psoriasis progression

(Figure S8B) [21].

Evidence for alterations in chromosome territories during

disease progression have been documented in diseases such as

immunodeficiency centromeric instability facial abnormalities and

cancer [22],[23],[24]. However, the generality of this phenome-

non is largely unknown. These results indicate that many diseases

show signs of density-dependent, genomic location-dependent

gene expression changes, suggestive of underlying changes in

chromosome territory positions within the nucleus. The relation-

ship between three-dimensional chromosome organization and

gene expression alterations underlying disease progression war-

rants further investigations.

In conclusion, we have investigated a variety of factors that can

potentially explain short (,1 Mb) and long-range (.10 Mb)

clustering of co-expressed genes in the mammalian genome.

Short-range correlation in gene expression is present even after

accounting for local gene duplications. It is partially explained by

gene orientation and the presence of insulator elements that allow

pairs or groups of genes to synchronously vary in their expression.

Long-range clustering occurs in mosaic coexpression domains

across the genome. These domains are not independent but rather

show extensive correlation with other domains. Correlations

between domains are conserved between mouse and human and

are associated with variation in gene-density and positioning of

chromosome territories in the nucleus. We provide evidence for a

potential association between coordinated genome-wide changes in

gene expression and disease status, including Alzheimer’s disease.

We further propose that correlations between long-range coexpres-

sion domains reflect rearrangements of chromosome territories and

that this remodeling of chromosomes may play a role in disease

progression. A comparison of the domain structures reported here

with a recent report [15] describing genome-wide organization of

chromosome territories yields some striking similarities. The

agreement was not perfect, underscoring the need to examine

chromosome territory structure under a variety of conditions in

order to determine if more than one stable state exists. The impact

of chromosome territory organization on gene expression and the

dynamic interaction of these genome-wide processes upon cellular

perturbation remains a subject for future investigations.

Figure 7. Density-dependent gene expression changes in diseased samples. Barchart showing the number of genes up-regulated (gray bar)
or down-regulated (white bar) in diseased tissues compared to control (p,0.05). Genes were divided into 10 groups of equal size, according to the
gene density. Dotted lines indicate 95% interval calculated from genome-wide permutation, shuffling regional gene density associated with each
gene. (A) Entorhinal cortex [18] (B) Hippocampus [18] (C) Skin lesions and matched normal sample in psoriasis patients [20].
doi:10.1371/journal.pone.0012158.g007

Mammalian Coexpression Domains

PLoS ONE | www.plosone.org 6 August 2010 | Volume 5 | Issue 8 | e12158



Materials and Methods

Microarray Data
Gene expression microarray data were collected for both mouse

and human. See Table 1 for summary and Table S1 for details.

Reference S1 lists literature sources for Table S1. Affymetrix data

were processed using the default Robust Multiarray Algorithm

(rma) in the R/affy package [25], using customized probe CDF

libraries (version 11), which remapped all Affymetrix probes to

NCBI Entrez genes [26]. Replicate arrays for tissue survey data

were averaged. For Rosetta microarray platforms, we used

mapping between probes and NCBI Entrez genes available at

Gene Expression Omnibus (GEO) database. For Illumina

platform, we used mapping using nuID database [27]. When

multiple probes are mapped to the same Entrez gene, we selected

the probe (or probeset) with the largest variance across samples.

The small-molecule perturbation survey comprised 4508 experi-

ments (microarrays) conducted in three cell lines: MCF7, HL60,

and PC3 [11]. We focused on MCF7 only (2335 experiments).

Definitions of Genomic Parameters
CTCF-binding Site. We obtained CTCF-binding coordinates

from Insulator Database (http://insulatordb.utmem.edu) [28]. We

used computationally predicted sites only.

Intergenic Distance. Genomic locations of NCBI Entrez

genes were obtained in base-pair coordinates from NCBI map

viewers for mouse (mm8) and humans (hg18). Intergenic distance

between two genes are defined as the closest distance between

them, using 59 or 39 end. Intergenic distances were then binned

into 10 Mb intervals. Genes less than 10 Mb apart were grouped

into ,1 Mb and 1 Mb,x,10 Mb groups.

Gene Order Distance. Gene order distance was calculated

based on the number of intervening genes between the two genes.

Adjacent genes, having no intervening genes between the two

genes of a pair, was assigned 1.

Gene Density. Gene density was defined as the number of

protein-coding, NCBI Entrez genes in 11 Mb intervals across the

genome [29].

Removal of Duplicates
Duplicated genes are often physically clustered in the genome [3].

To avoid potential confounding of coexpressed genes, duplicated

genes were removed by a novel algorithm that clusters genes

together according to their annotations and genomic locations as

determined by the hypergeometric distribution (MW and KP,

manuscript in preparation). We applied a strict expectation

threshold of e = 0.01. Random simulations show that this approach

eliminated cases of false positives from our dataset. The following

annotations were obtained from from Ensembl database: SCOP

superfamily, Interpro domains, protein families, and gene paralogs.

The algorithm was applied to each annotation system, and the

resulting clusters were merged. Gaps, i.e. intervening genes, were

allowed when detecting clusters, with the optimal gap size limit

determined by repeating the analysis with increasing the gap size

until the clustering was no longer improved.

Three-Dimensional Spatial Proximity Data
A recent study developed a novel method combining

proximity-based coupling and massively parallel sequencing

technology for detecting genomic loci that are spatially nearby

in the three-dimensional nucleus [15]. The study generated

spatial proximity data between genomic loci at 1 Mb resolution

across the whole genome for immortalized lymphoblastoid cell

line GM06690 and leukemic cell line K562. We focused on

GM06690 since the leukemic cells harbor cytogenetic abnormal-

ities. We converted the Pearsons’ correlation matrix into gene-

centric pairwise information based on the genomic location of a

gene’s mid point. Spatial proximity between gene pairs whose

midpoints fall in to the same 1 Mb grid were assigned a missing

value.

Calculation of Coexpression
All analyses were conducted in R environment (http://www.r-

project.org). For each pair of genes, Pearson correlation coefficient

between expression levels (log-transformed) of the two genes was

calculated, and were Fisher’s z-transformed (hyperbolic inverse

tangent). Statistical significance of coexpression was assessed based

on the approximation that Fisher’s z-transformed correlation

coefficients are normally distributed with standard error of (N-

3)21/2 [30]. Because the small-molecule perturbation survey [11]

were conducted in batches, correlations were first calculated for

each batch and were averaged across the batches, and was mean-

scaled.

Coexpression Heatmaps
A heatmap of matrix comparing pair-wise correlations was

generated by ordering genes by their chromosomal orders, i.e.

proximal to distal end of a chromosomes. Heatmaps generated

during the study can be found at a supplementary website (http://

cgd.jax.org/datasets/expression/coordinated.shtml).

Statistical tests
Genomic Distance-Dependent Coexpression. To characte-

rize distribution of coexpression as a function of intergenic distances,

coexpressions, z-transformed correlation coefficients, were averaged for

each intergenic distance category. To determine range of values

expected by chance, we performed permutation analysis as follows.

While keeping the expression value associated with each gene, we

shuffled the genomic locations assigned to each gene, and averaged

coexpression values for each distance category. The process was

repeated 100 times, and calculated a 95% interval to represent

expected range of coexpression values for each distance group.

Density-Dependent Coexpression. Gene density-dependent

coexpression was assessed by a Pearson’s correlation coefficient

between coexpression and gene density difference, defined as

absolute difference in log-transformed gene density. Permutation

analysis was performed to assess statistical significance. We shuffled

gene orders across the genome, effectively assigning a sampled gene

density value while keeping the same expression value for each gene,

and calculated a correlation coefficient between the coexpression and

the gene density difference. The process was repeated 500 times, and

statistical significance was assessed based on distribution of the

permuted statistics.

Spatial Proximity-Dependent Coexpression. The association

between coexpression and spatial proximity was analyzed similarly as

density-dependent coexpression. Because the spatial data was more

sparse for inter-chromosomal pairs, we analyzed intra-chromosomal

gene pairs separately from inter-chromosomal pairs. We removed gene

pairs whose intergenic distances are less than 10 Mb to avoid potential

complications, but inclusion did not change the conclusion (data not

shown). Permutation analysis was conducted by shuffling correlation

coefficients 500 times (i.e. unrestricted shuffling). The analysis was

repeated for inter-chromosomal and intra-chromosomal pairs,

separately.

Comparing Gene Density and Spatial Proximity-

dependent Coexpression. We performed analysis of variance

(ANOVA) to delineate the extent of coexpression explained by

gene density from that by spatial proximity. To quantify the

Mammalian Coexpression Domains
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contribution of one factor while accounting for the contribution of

the other, we calculated type III sums of squares. The analysis was

run separately for inter-chromosomal and intra-chromosomal

pairs.

Gene expression analysis of normal and diseased tissues
We obtained publicly available human gene expression profiles

(Table 1; Table S1). When analyzing Alzheimer’s disease data set,

we detected three overt outliers detected by hiearchical clustering

analysis, and remove those samples from analysis (Figure S7).

Analysis including the outliers did not change our result (data not

shown). We used t-test to identify differentially expressed genes

between normal and diseased tissue. For psoriasis data sets, we

used paired t-test as both normal and diseased sample came from

the same patient.

Supporting Information

Figure S1 Gene orientation are determinants of coexpression for

adjacent genes.(A),(B) Average coexpression between gene pairs

was plotted as a function of relative orientation and gene order

distance. Gene pairs with gene order distance .5 (i.e. number of

intervening genes are .4) were grouped as one. (A) 61 mouse

tissue survey. (B) 73 human tissue survey as in Figure 2.

Found at: doi:10.1371/journal.pone.0012158.s001 (0.24 MB

PDF)

Figure S2 CTCF binding sites and gene orientation are

determinants of coexpression. Repeat of the analysis in Figure 2

with another mouse tissue survey [9] (A) Average coexpression

between gene pairs was plotted as a function of relative

orientation and gene order distance. Gene pairs with gene order

distance .5 (i.e. number of intervening genes are .4) were

grouped as one. (B) Average coexpression between gene pairs was

plotted as a function of relative orientation and intergenic

distance for adjacent genes. (C) Average coexpression between

gene pairs as a function of their intergenic distance in basepair

and the presence or absence of intervening CTCF binding sites.

Gene pairs with distance larger than 1 Mb were grouped as one.

Statistical significance of differences between groups was assessed

for each distance group, and displayed by asterisk (*) if p-value is

less than 0.05.

Found at: doi:10.1371/journal.pone.0012158.s002 (0.08 MB

PDF)

Figure S3 Heatmap of correlation matrix on human chromo-

some 8. See Figure 3A for legends, and Table S1 for details of each

data source. (A) Adipose tissues from 702 human populations (B)

Liver samples from 427 human populations (C) Liver samples

from 311 mouse intercross populations (D) Liver samples from 120

mouse intercross populations. Correlation heatmaps for (C) and

(D) were generated by reordering mouse genes by their human

ortholog locations in human chromosome 8.

Found at: doi:10.1371/journal.pone.0012158.s003 (4.25 MB

PDF)

Figure S4 Heatmap of correlation matrix on human chromo-

some 13, 18, and 19. (A)–(D) corresponds to the datasets in Figure

S3(A)–(D). See Figure 3B for legends.

Found at: doi:10.1371/journal.pone.0012158.s004 (5.39 MB

PDF)

Figure S5 Genome-wide correlation matrix at 30 Mb resolu-

tion. See Figure 4 for legend. (A) Adipose Gene Expression from

702 human populations (Table S1). (B) Mouse co-expression,aver-

aged across the mouse expression profiles (Table S1), using the

sample size as weight. Correlation heatmaps were generated after

reordering mouse genes by their human ortholog locations in the

human genome.

Found at: doi:10.1371/journal.pone.0012158.s005 (2.54 MB

PDF)

Figure S6 Correlation heatmap of spatial proximity data for

human chromosome 8. Spatial proximity information was

obtained from Lieberman-Aiden et al. 2009 [15]. The corrrelation

ranges from 21 to +1, and greater values indicate greater

probability of contact between two genomic domains. Genes

whose midpoints falling into the same 1 Mb window are indicated

as white.

Found at: doi:10.1371/journal.pone.0012158.s006 (0.35 MB

PDF)

Figure S7 Alzheimer entorhinal cortex gene expression profile.

A: Hierarchical clustering of the samples in Alzheimer entorhinal

cortex gene expression study [18]. Outliers (boxed blue) were

boxed. B: Heatmap showing relative gene expression profiles in

diseased (top 10 rows) and normal samples (bottom 13 rows) across

genes in chromosome 8 (horizontal,proximal to distal). Magenta

and cyan indicate high and low expression. The outliers removed

are indicated indicated by arrows. Expression level for each gene

were scaled to have a mean of 0, and truncated at 21 and +1 for

visualization.

Found at: doi:10.1371/journal.pone.0012158.s007 (0.08 MB

PDF)

Figure S8 Density-dependent Gene Expression Changes in

Diseased Tissues. See Figure 7 for legends. (A) an independent

study on hippocampus expression in Alzheimer’s disease, corre-

sponding to Figure 7B [19]. (B) an independent study on skin

expression in psoriasis patient, corresponding to Figure 7C [21].

Found at: doi:10.1371/journal.pone.0012158.s008 (0.05 MB

PDF)

Table S1 Detailed list of gene expression datasets used in the

study.

Found at: doi:10.1371/journal.pone.0012158.s009 (0.03 MB

DOC)

Table S2 Type III Analysis of variance to dissect density-

dependent and spatial proximity-dependent coexpression among

intrachromsomal pairs.

Found at: doi:10.1371/journal.pone.0012158.s010 (0.01 MB

DOC)

Table S3 Type III Analysis of variance to dissect density-

dependent and spatial proximity-dependent coexpression among

intrachromsomal pairs.

Found at: doi:10.1371/journal.pone.0012158.s011 (0.01 MB

DOC)

Reference S1

Found at: doi:10.1371/journal.pone.0012158.s012 (0.02 MB

DOC)
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