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Abstract Axis elongation is a conserved process in which the head-to-tail or anterior-posterior

(AP) axis of an embryo extends. In Drosophila, cellular rearrangements drive axis elongation. Cells

exchange neighbours by converging into transient multicellular vertices which resolve through the

assembly of new cell interfaces parallel to the AP axis. We found that new interfaces elongate in

pulses correlated with periodic contractions of the surrounding cells. Inhibiting actomyosin

contractility globally, or specifically in the cells around multicellular vertices, disrupted the rate and

directionality of new interface assembly. Laser ablation indicated that new interfaces sustained

greater tension than non-elongating ones. We developed a method to apply ectopic tension and

found that increasing AP tension locally increased the elongation rate of new edges by more than

twofold. Increasing dorsal-ventral tension resulted in vertex resolution perpendicular to the AP

direction. We propose that local, periodic contractile forces polarize vertex resolution to drive

Drosophila axis elongation.

DOI: 10.7554/eLife.10757.001

Introduction
Axis elongation is a conserved morphogenetic process is which the basic body plan of an animal is

established. In vertebrates, axis elongation involves convergence and extension movements medi-

ated by cell intercalation, cell migration, and oriented cell division (Bénazéraf and Pourquié, 2013).

In Drosophila, axis elongation occurs in an epithelial monolayer referred to as the germband, which

lengthens by more than two-fold along the anterior-posterior (AP) axis of the animal, while narrow-

ing along the dorsal-ventral (DV) axis (Figure 1—figure supplement 1A). The changes in germband

architecture are largely driven by cell intercalation (Irvine and Wieschaus, 1994).

Cell intercalation facilitates changes in tissue architecture through neighbour exchange events. In

vertebrates, cell intercalation drives many developmental processes, including primitive streak for-

mation in chick embryos (Voiculescu et al., 2007); gut organogenesis (Chalmers and Slack, 2000),

neural tube closure (Davidson and Keller, 1999), and elongation of kidney tubules

(Lienkamp et al., 2012) in Xenopus; epiboly in Xenopus (Keller, 1980) and zebrafish (Warga and

Kimmel, 1990); convergence and extension of the mesoderm in Xenopus (Wilson et al., 1989;

Shih and Keller, 1992), zebrafish (Yin et al., 2008), and mouse (Yen et al., 2009); and visceral endo-

derm migration (Migeotte et al., 2010; Trichas et al., 2012), eye lid closure (Heller et al., 2014),

neural plate elongation (Williams et al., 2014), palate fusion (Kim et al., 2015), and limb bud elon-

gation (Lau et al., 2015) in mouse.

During Drosophila axis elongation, cell intercalation is driven by polarized actomyosin contractil-

ity, which promotes the disassembly of interfaces separating anterior and posterior cell neighbours
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(AP interfaces), to form multicellular vertices where four or more cells converge (Bertet et al., 2004;

Zallen and Wieschaus, 2004; Blankenship et al., 2006). Polarized disassembly of cell contacts is

also associated with cell intercalation in chick (Rozbicki et al., 2015), Xenopus (Shindo and Walling-

ford, 2014), and mouse embryos (Williams et al., 2014; Lau et al., 2015). Following contraction of

AP interfaces in the Drosophila germband, multicellular vertices are systematically resolved through

the assembly of new contacts separating dorsal and ventral cell neighbours (DV interfaces, Fig-

ure 1—figure supplement 1B, Video 1). While vertex resolution and the subsequent assembly of

new cell-cell interfaces drive tissue elongation, little is known about the mechanisms that regulate

these processes. Myosin turnover between phosphorylated and unphosphorylated states is impor-

tant for the directionality of vertex resolution (Kasza et al., 2014). Computational modelling sug-

gests that periodic contraction of the apical surface of germband cells, driven by pulsatile

actomyosin networks, could promote the oriented assembly of new cell contacts (Lan et al., 2015).

However, the role of actomyosin contractility in vertex resolution remains unclear.

In this study, we combine quantitative imaging with biophysical and pharmacological manipula-

tions to investigate the mechanisms of vertex resolution in Drosophila axis elongation. We find that

the assembly of new interfaces during vertex resolution occurs in pulses associated with the periodic

contraction of the cells anterior and posterior to the multicellular vertex. Pulsed actomyosin contrac-

tility in the cells around the vertex is critical for the directionality and rate of assembly of the new

cell interface. Local, ectopic AP tension is sufficient to accelerate the assembly of new interfaces,

and local DV tension can reorient vertex resolution. Together, our results demonstrate that local,

periodic actomyosin contractility directs the resolution of multicellular vertices and promotes the

assembly of new cell contacts during polarized cell rearrangements in Drosophila germband

extension.

eLife digest Tissues and organs form certain shapes that allow them to perform particular roles

in the body. For example, the lungs form sacs that accommodate large volumes of air, while the skin

forms a sheet to cover and protect our internal organs. One way to shape a tissue is for cells to

swap places with their neighbours. During this rearrangement, the contacts between neighbouring

cells break down before new contacts are formed with other cells. While the physical and molecular

signals that guide the break down of cell contacts are well understood, less is known about how new

contacts form.

Early in development, animal embryos establish a head-to-tail ’axis’ that helps to guide where

each tissue and organ will form in the body. In fruit fly embryos, the cell rearrangements that drive

this process involve cells exchanging places with their neighbours by gathering around a single

point. These temporary cell clusters are then organised via new cell contacts that form parallel to

the head-to-tail axis.

Here, Yu and Fernandez-Gonzalez investigate the role of mechanical forces in forming new cell

contacts as the head-tail axis elongates. The experiments show that disrupting the ability of the cells

to generate mechanical forces inhibited the formation of new cell contacts and prevented cells from

successfully swapping places. Conversely, when mechanical tension is applied at the rearrangement

site, the assembly of new cell contacts happens faster. Furthermore, if the tension is applied in

different orientations, new cell contacts form parallel to the direction of the mechanical force.

Yu and Fernandez-Gonzalez thus show that local mechanical forces direct the assembly of new

cell contacts as the head-to-tail axis forms. These forces are most likely generated by cell

contractions that appear to create mechanical tension at sites of cell rearrangement. How such

physical forces are converted into molecular signals remains a question for future work.

DOI: 10.7554/eLife.10757.002
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Results

Pulsed assembly of new junctions
during germband extension
To investigate the mechanisms of vertex resolu-

tion during Drosophila axis elongation, we used

quantitative image analysis to measure the

dynamics of assembly of new DV junctions in

embryos expressing Resille:GFP (Morin et al.,

2001) to visualize cell outlines. We found that

the assembly of new DV edges occurred in

cycles of elongation and shortening (Figure 1A–

B, blue line), with a period of 126 ± 5 s (n = 110

edges). On average, elongation pulses increased

edge length by 772 ± 46 nm, while shortening

pulses decreased edge length by a significantly

smaller amount, 114 ± 19 nm (n = 110 edges, p

= 9.0 � 10�22), thus resulting in net edge elon-

gation. Germband cells undergo characteristic

cycles of apical area contraction and relaxation

with a period of 130 ± 3 s, and predominantly

oriented along the AP axis of the embryo (Fer-

nandez-Gonzalez and Zallen, 2011;

Sawyer et al., 2011). To examine whether the

anisotropic oscillations of germband cells were

associated with the assembly of new cell junc-

tions during vertex resolution, we compared the changes in length of the nascent DV edge to the

changes in apical area of the cells immediately anterior or posterior to that DV edge (Figure 1A–B).

In a majority of cases (143/220 cell-edge pairs, 65%), we observed a negative correlation between

changes in length of the new DV junction and changes in area of the cell anterior or posterior to it

(Figure 1C). To calculate the dominant relationship between changes in anterior/posterior cell area

and new DV edge length, we quantified the correlations after shifting the edge length backward or

forward in time. Reaching the maximum correlation with small time shifts would indicate in-phase

oscillations, while maximum anti-correlation with small time shifts would suggest oscillations in anti-

phase. We found that short time shifts of the edge length signal maximized the anti-correlation,

while longer time shifts were necessary to maximize the correlation (p = 1.74 � 10�5, Figure 1D–E),

further suggesting that pulses of new DV edge assembly are associated with the contraction of the

anterior and posterior cells. Similar analyses demonstrated that changes in length of the new edge

were predominantly positively correlated with changes in the apical area of the dorsal and ventral

cells, which share the new edge (156/220 cell-edge pairs, 71%, Figure 1—figure supplement 2).

Together, our results suggest that pulsed contractions of the cells in the immediate vicinity of a mul-

ticellular vertex may promote vertex resolution during Drosophila axis elongation.

Actomyosin-induced tension is necessary and sufficient for directional
vertex resolution
The cyclical changes of apical area in germband cells are driven by pulsatile networks of medial-api-

cal non-muscle myosin II (Rauzi et al., 2010; Fernandez-Gonzalez and Zallen, 2011; Sawyer et al.,

2011). To investigate if actomyosin contractility is necessary for vertex resolution, we injected

embryos expressing E-cadherin:GFP and myosin:mCherry with the Rho-kinase inhibitor Y-27632 at

100 mM. Rho-kinase is one of the main activators of myosin (Amano et al., 1996; Kimura et al.,

1996), and treatment with Y-27632 abolishes the ability of germband cells to generate mechanical

force (Fernandez-Gonzalez et al., 2009). In Y-27632-injected embryos, germband cells displayed a

rapid loss of myosin from their apical surface (Figure 1—figure supplement 3A), resulting in a dra-

matic reduction in the amplitude of apical area oscillation (p = 1.7 � 10�44, Figure 1F–H). Inhibiting

actomyosin contractility affected the directionality of vertex resolution: 9/25 vertices resolved within

Video 1. Polarized cell rearrangements drive

Drosophila axis elongation. Germband cells expressing

Resille:GFP during germband extension. A stack was

acquired every 10 s. Time is indicated as min:s. Anterior

left, dorsal up. This video relates to Figure 1—figure

supplement 1.

DOI: 10.7554/eLife.10757.003
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Figure 1. Directional assembly of new interfaces during vertex resolution is associated with pulsatile apical contractions and requires contractile activity.

(A) Vertex resolution during axis elongation in an embryo expressing Resille:GFP. Blue indicates the new DV interface, red labels the anterior and

posterior cells. (A’) Kymograph illustrating the elongation of the DV interface shown in (A). Scale bar, 10 s. The interface is rotated by 90˚ with respect to

(A). Anterior down, dorsal left. (B) Rates of change for edge length (blue, solid line), anterior cell area (red, dashed line), and posterior cell area (red,

dotted line) during the neighbour exchange event shown in (A). Rate of change was calculated with respect to t + 60 s. (C) Correlation coefficients

between changes in edge length and changes in anterior or posterior cell area (n = 220 pairs in 110 neighbour exchange events in 13 embryos). (D)

Changes in correlation between edge length and anterior (dashed) or posterior (dotted) cell area during the neighbour exchange event shown in (A)

when the edge length signal was shifted in time in 10-s increments. Arrowheads indicate the correlation minima (blue) or maxima (red) closest to 0-s

shift. (E) Distribution of time shifts (absolute value) required to obtain the minimum (blue) and maximum (red) correlations in all 220 signal pairs shown

in (C). (F, G) Rate of change in cell area in embryos injected with water (F, n = 122 cells in 3 embryos) or 100 mM Y-27632 (G, n = 99 cells in 3 embryos).

Each line represents a single cell. (H) Oscillation amplitude for changes in cell area in embryos injected with water (blue) or 100 mM Y-27632 (red).

Figure 1 continued on next page
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30˚ of the DV axis in Y-27632-injected embryos, in contrast to 0/28 in water-injected controls (p =

0.02, Figure 1I,J’,K, Video 2). In addition, for vertices that resolved along the AP axis, inhibiting

Rho-kinase reduced the rate of new edge elongation with respect to controls (0.001 ± 0.080 mm/min

vs. 0.28 ± 0.06 mm/min, respectively, p = 0.01, Figure 1I,J,L, Video 2), suggesting that myosin activ-

ity facilitates the assembly of new DV interfaces. Similar results were obtained in embryos expressing

Resille:GFP, a different cell outline marker (Figure 1—figure supplement 3B–E). However, Rho-

kinase activity can regulate the localization of the Par polarity complex (Atwood and Prehoda,

2009; Simões et al., 2010) (Figure 1—figure supplement 4A), raising the possibility that abnormal

vertex resolution upon Y-27632 injection was a consequence of defects in cell polarity, rather than

reduced actomyosin contractility.

To further investigate the role of mechanical forces in vertex resolution, we disrupted actomyosin

contractility by injecting embryos with 5 mM of Cytochalasin D, a drug that blocks actin polymeriza-

tion by binding to the elongating end of filaments and preventing the addition of new actin mono-

mers (Flanagan and Lin, 1980). Cytochalasin D injection disrupted the actin cytoskeleton

(Figure 1—figure supplement 5A–B) and reduced apical area oscillations (p = 0.04, Figure 1—fig-

ure supplement 5C–E), without affecting the localization of Par-6, a member of the Par complex

(Figure 1—figure supplement 4B). Cytochalasin D treatment led to an 83% reduction in the rate of

new DV edge assembly with respect to controls (0.07 ± 0.10 mm/min vs. 0.40 ± 0.05 mm/min, respec-

tively, p = 0.01, Figure 1—figure supplement 5F–G,J, Video 3). In Cytochalasin D-injected embryos

4/15 vertices resolved along the DV axis, in contrast to 0/50 in DMSO-injected controls (p = 4.0

Figure 1 continued

Asterisks indicate p < 0.001. (I–J’) Vertex resolution during axis elongation in embryos expressing E-cadherin:GFP and injected with water (I) or with 100

mM Y-27632 (J, J’). Arrowheads indicate nascent DV interfaces. (K) Distribution of vertex resolution angles relative to the AP axis in embryos injected

with water (blue, n = 28 vertices in 3 embryos) or 100 mM Y-27632 (red, n = 25 interfaces in 3 embryos). Angles were measured 150 s after the onset of

vertex resolution. An angle of 90˚ with respect to the AP axis corresponds to the DV axis. (L) Length of new DV interfaces forming within 30˚ of the AP

axis in embryos injected with water (blue, n = 25 interfaces in 3 embryos) or 100 mM Y-27632 (red, n = 11 interfaces in 3 embryos). (A, I–J’) Anterior left,

dorsal up. Scale bars, 5 mm. (B, F, G, L) Time is with respect to the onset of vertex resolution, defined as the first time point in which the length of the

nascent interface exceeded 1 mm. (H, K, L) Error bars, s.e.m. AP, anterior-posterior; DV, dorsal-ventral.

DOI: 10.7554/eLife.10757.004

The following figure supplements are available for figure 1:

Figure supplement 1. Axis elongation in Drosophila is driven by neighbour exchange events.

DOI: 10.7554/eLife.10757.005

Figure supplement 2. Dorsal and ventral cells oscillate with new DV interfaces.

DOI: 10.7554/eLife.10757.006

Figure supplement 3. Directional assembly of new DV interfaces during vertex resolution requires actomyosin contractility.

DOI: 10.7554/eLife.10757.007

Figure supplement 4. Par complex localization is affected by Y-27632, but not by Cytochalasin D.

DOI: 10.7554/eLife.10757.008

Figure supplement 5. Oriented assembly of new DV interfaces requires actin-based contraction.

DOI: 10.7554/eLife.10757.009

Video 2. Actomyosin contractility is required for

directional vertex resolution. Germband cells

expressing E-cadherin:GFP in embryos injected with

water (left) or 100 mM Y-27632 (centre and right). A

stack was acquired every 10 s. Time is indicated as min:

s. Anterior left, dorsal up. This video relates to

Figure 1.

DOI: 10.7554/eLife.10757.010

Video 3. Stabilization of actin filaments impairs

directional vertex resolution. Germband cells

expressing E-cadherin:GFP in embryos injected with

50% DMSO (left) or 5 mM Cytochalasin D (centre and

right). A stack was acquired every 10 s. Time is

indicated as min:s. Anterior left, dorsal up. This video

relates to Figure 1—figure supplement 5.

DOI: 10.7554/eLife.10757.011
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� 10�15, Figure 1—figure supplement 5F,H–I, Video 3). Strikingly, in Cytochalasin D-injected

embryos, 32/47 vertices persisted for at least 10 min and up to 40 min (Figure 1—figure supple-

ment 5K). Together, our results demonstrate that actomyosin contractility is necessary for the direc-

tional assembly of new interfaces during vertex resolution in Drosophila axis elongation.

If actomyosin contractility in the cells anterior and posterior to a resolving vertex drives direc-

tional interface assembly, then the nascent edge must be under tension. To quantify tension, we

used an ultraviolet (UV) laser to locally irradiate and sever DV interfaces in embryos expressing E-

cadherin:GFP, and particle-tracking velocimetry to quantify the change in position of the tricellular

vertices once connected by the severed interface. The instantaneous retraction velocity of the verti-

ces is proportional to the tension sustained by the interface prior to ablation (Hutson et al., 2003;

Fernandez-Gonzalez et al., 2009). We compared retraction velocities after ablation of control DV

junctions that were not actively elongating (average length of 7.3 ± 0.3 mm, Figure 2A) and newly

forming DV edges (average length of 3.4 ± 0.2 mm, Figure 2B). The retraction velocity after ablation

of new DV junctions was 0.81 ± 0.08 mm/s, 32% greater than the retraction velocity after severing

control DV edges (0.61 ± 0.03 mm/s, p = 0.05, Figure 2C), indicating that – assuming uniform visco-

elastic properties – new DV edges sustain increased mechanical tension with respect to non-elongat-

ing edges with similar orientation. New DV interfaces displayed smaller angles between the anterior

or posterior cell junctions (�avg = 136.6 ± 3.3˚) than control DV interfaces, (�avg = 150.3 ± 3.4˚, p =

0.02, Figure 2A–B,D), and the retraction velocity after laser ablation was significantly anti-correlated

with the angle between the anterior or posterior cell junctions (r = �0.6, p = 2.9 � 10�5). Notably,

no correlation was found between control or new DV interface length and instantaneous retraction

velocity after ablation (r = 0.04 and 0.35, respectively, Figure 2E,F and Figure 2—figure supple-

ment 1), suggesting that differences in retraction velocity between control and new DV edges are

independent from interface length, and determined by whether the edge is being assembled. Vertex

retraction after laser ablation could result from actomyosin contractility at the interface or at another

structure (for example, another interface or a medial apical surface) connected to the severed inter-

face. New DV edges were myosin-depleted (Blankenship et al., 2006) (p = 4.3 � 10�5, Figure 2—

figure supplement 2), suggesting that vertex retraction after ablation of new DV edges was caused

by tension generated elsewhere and exerted onto the new edge. Together, our data strongly sug-

gest that mechanical tension parallel to the AP axis of the embryo contributes to vertex resolution.

To further investigate the relative contribution of anterior/posterior and dorsal/ventral cells to

new DV junction assembly during vertex resolution, we disrupted actomyosin contractility specifically

in the anterior and posterior, or the dorsal and ventral cells. To this end, we used a UV laser to irradi-

ate and destroy myosin networks in the cells anterior/posterior or dorsal/ventral to four-cell vertices.

Cells expressed E-cadherin:GFP to visualize cell outlines, and myosin:mCherry to track the assembly

of contractile networks. Cells were re-irradiated upon assembly of medial actomyosin networks to

prevent the generation of contractile forces. Irradiated cells were not extruded in the course of these

experiments. Controls were four-cell vertices in which the anterior/posterior or dorsal/ventral cell

pairs were sham-irradiated with the UV laser fully attenuated using a neutral density filter. When the

contractile activity of anterior/posterior cells was disrupted, 4/7 four-cell vertices did not resolve

(their length was never greater than 1 mm for at least 1 min), in contrast to 0/10 vertices in sham-irra-

diated controls. In controls, the rate of new edge elongation calculated over 180 s was 0.47 ± 0.08

mm/min (Figure 3A,C). Preventing contraction of the anterior/posterior cells resulted in a significant

reduction of the rate of new edge elongation to 0.18 ± 0.05 mm/min for the vertices that resolved

(p = 0.03; Figure 3B–C). These results suggest that contractility in the cells anterior and posterior to

a multicellular vertex is necessary for vertex resolution and the assembly of the new DV interface.

To investigate the role of dorsal/ventral cells in vertex resolution, we prevented assembly and

contraction of medial actomyosin networks in the dorsal and ventral cells using laser ablation. In con-

trast with the ablation of anterior/posterior cells, ablation of the DV cells did not prevent vertex res-

olution: 5/7 new DV interfaces reached a length of at least 1 mm, similar to 10/10 in controls. The

initial rates of elongation were similar, with new DV interfaces elongating at a rate of 0.37 ± 0.11

mm/min over 60 s when contraction of the DV cells was disrupted, compared to rates of 0.50 ± 0.15

mm/min in sham-irradiated controls (p = 0.48, Figure 3D–F). However, ablation of the dorsal and

ventral cells resulted in a significant reduction of the rate of new interface elongation over the subse-

quent 120 s of elongation, from 0.52 ± 0.11 mm/min in controls to -0.03 ± 0.08 mm/min (p = 0.01,

Figure 3D–F). Notably, in 3/5 vertices that resolved when dorsal/ventral cells were ablated, new DV

Yu and Fernandez-Gonzalez. eLife 2016;5:e10757. DOI: 10.7554/eLife.10757 6 of 15

Research article Cell biology Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.10757


Figure 2. Resolving edges sustain increased mechanical tension during axis elongation. (A, B) Germband cells

expressing E-cadherin:GFP before and after ablation of a control DV edge (A) or a newly forming DV edge (B).

White arrowheads point to the ablated interface. �1 and �2 indicate the angles between the junctions anterior and

posterior to the ablated interface, respectively. Anterior left, dorsal up. Scale bars, 5 mm. (A’, B’) Kymographs

showing the vertex displacement caused by laser ablation of the edges shown in (A, B). Arrowheads indicate

vertex position prior to ablation (green) or immediately after (yellow). Interfaces are rotated by 90˚ with respect to

(A, B) Anterior down, dorsal left. Scale bar, 3 s. (C) Retraction velocity after laser ablation in control (blue, n = 28)

and new (red, n = 12) DV interfaces. Asterisk indicates p = 0.05. Error bars, s.e.m. (D) Scatterplot showing interface

length vs. average junction angle at the anterior and posterior ends (�avg = (�1 +�2)/2). (E, F) Scatterplots showing

interface length vs. retraction velocity after laser ablation for control (E) and new (F) DV interfaces. Solid lines are

best-fit lines. DV, dorsal-ventral.

DOI: 10.7554/eLife.10757.012

The following figure supplements are available for figure 2:

Figure supplement 1. The retraction velocity after ablation of new and control DV edges is not anti-correlated

with their length.

DOI: 10.7554/eLife.10757.013

Figure 2 continued on next page
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edges formed but were not sustained beyond 1 min, collapsing back into vertices. Together, our

data suggest that dorsal/ventral cells are necessary to sustain the elongation of new DV interfaces,

but not the resolution of multicellular vertices.

To determine if mechanical tension from the anterior and posterior cells can promote the elonga-

tion of new DV interfaces during germband extension, we developed a method to apply ectopic

local tension to resolving vertices based on wound healing (Campinho et al., 2013; Fernandez-

Gonzalez and Zallen, 2013). Upon wounding by irradiation with a UV laser, germband cells undergo

apical constriction driven by medial-apical actomyosin networks (Figure 4—figure supplement 1A).

Apical constriction of germband cells generates ectopic tension on the surrounding cell interfaces

(Figure 4—figure supplement 1A, arrowheads). We used a UV laser to wound the cells anterior and

posterior to resolving vertices by irradiating their medial-apical surfaces (Figure 4A–B and Fig-

ure 4—figure supplement 1B, and Video 4). Under sham-irradiation (UV laser fully attenuated using

a neutral density filter), the cell area and medial myosin of the anterior and posterior cells remained

largely unaffected, and the new DV interface elongated at a rate of 0.79 ± 0.14 mm/min (Figure 4A,

C,E). Conversely, when the cells anterior and posterior were irradiated with UV light, myosin accu-

mulated on the apical surface of the wounded cells and their apical areas decreased rapidly

(Figure 4B,D), resulting in ectopic, AP-oriented tension on the resolving vertex. Under ectopic

Figure 2 continued

Figure supplement 2. New DV edges do not display a significant myosin accumulation.

DOI: 10.7554/eLife.10757.014

Figure 3. Local actomyosin contractility is necessary for vertex resolution and new DV interface assembly. (A, B, D, E) Cells expressing E-cadherin:GFP

(green) and myosin:mCherry (magenta) in sham-irradiated controls (A, D) or when UV irradiation was used to reduce local tension (B, E). White

arrowheads indicate resolving interfaces. Asterisks show the targeted cells. Time is with respect to the first laser irradiation. Anterior left, dorsal up.

Scale bars, 5 mm. (C, F) Length of resolving DV interfaces over time in controls (blue, n = 10 interfaces in C and F), under reduced AP tension (red, n = 7

interfaces in C), or under reduced DV tension (red, n = 7 interfaces in F). Discontinuities in the blue lines indicate times at which cells were targeted with

the attenuated UV laser in all experiments. Error bars, s.e.m. DV, dorsal-ventral.

DOI: 10.7554/eLife.10757.015
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Figure 4. Local mechanical tension is sufficient to promote and orient new interface assembly during vertex resolution. (A–B’) Cells expressing E-

cadherin:GFP (green) and myosin:mCherry (magenta) in sham (A) or UV-irradiated (B) embryos. (C, D) Medial myosin intensity (magenta) and cell area

(green) in sham (C, n = 22 cells in 11 embryos) and UV-irradiated embryos (D, n = 16 cells in 8 embryos). (E) Length of resolving DV interfaces over time

in controls (blue, n = 11 interfaces) and under increased tension along the AP axis (red, n = 8 interfaces). (F, G) Cells expressing E-cadherin:GFP in sham

(F) or UV-irradiated (G) embryos. Asterisks show the cells around a four-cell vertex (white arrowheads) that were irradiated. Yellow arrowheads indicate

the formation of a four-cell vertex. (A, B, F, G) Anterior left, dorsal up. Scale bars, 5 mm. (H) Length of resolving interfaces over time in controls (blue, n

= 12) and under increased tension along the DV axis (red, n = 13). Turquoise indicates elongation parallel to the AP axis, pink denotes DV elongation.

(C–E, H) Time is with respect to the time point when the nascent DV interface first exceeded 1 mm in length. Error bars, s.e.m. (C, D) Normalization is

with respect to the value at 0 s. AP, anterior-posterior; DV, dorsal-ventral.

DOI: 10.7554/eLife.10757.016

The following figure supplement is available for figure 4:

Figure supplement 1. Wounded cells undergo apical constriction and induce ectopic tension on adjacent cell-cell junctions.

DOI: 10.7554/eLife.10757.017
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tension parallel to the AP axis, new DV junctions

elongated at a rate of 1.73 ± 0.30 mm/min, 2.1-

fold faster than the elongation rate in controls (p

= 6.2 � 10�3, Figure 4E). These results indicate

that local mechanical tension parallel to the AP

axis is sufficient to promote rapid assembly of

new DV interfaces during vertex resolution in

germband extension.

Our findings that ectopic tension can increase

the rate of new edge elongation suggest that

tension parallel to the DV axis may change the

direction of vertex resolution. We compared the

orientation and rate of new edge elongation in

sham-irradiated embryos (Figure 4F) and in

embryos in which we induced apical constriction

of the cells dorsal and ventral to a four-cell ver-

tex, increasing tension along the DV axis

(Figure 4G). All the four-cell vertices examined

in control embryos (n = 12) resolved within 30˚
of the AP axis, and the rate of new interface

assembly was 0.69 ± 0.13 mm/min (Figure 4F,H). When we applied ectopic tension along the DV

axis, the rate of new edge elongation was not affected (0.74 ± 0.18 mm/min, p = 0.8), but the orien-

tation of the new edge changed and occurred within 30˚ of the DV axis in 13 out of 13 cases

(Figure 4G,H). Together, our data indicate that local tension can promote and orient the assembly

of new cell-cell interfaces, suggesting a central role for mechanical forces during vertex resolution in

Drosophila axis elongation.

Discussion
Polarized junction remodelling drives changes in tissue architecture from worms to mice (Walck-

Shannon and Hardin, 2014). While junctional contraction and disassembly in the context of cell

intercalation have been extensively explored (Bertet et al., 2004; Blankenship et al., 2006;

Rauzi et al., 2008; Fernandez-Gonzalez et al., 2009; Levayer et al., 2011; Bosveld et al., 2012;

Shindo and Wallingford, 2014; Lau et al., 2015), little is known about the mechanisms that control

the directional assembly of new cell contacts during neighbour exchange. We used quantitative

imaging, and biophysical and pharmacological approaches to show that local mechanical forces can

direct the assembly of new junctions during Drosophila germband extension. New junctions elon-

gate in pulses anti-correlated with the periodic contractions of the cells anterior and posterior to the

new contact. Inhibiting actomyosin contractility disrupts both the rate and directionality of new junc-

tion assembly. Disrupting contractility in the cells anterior and posterior to the new edge disrupts

vertex resolution and slows down new edge elongation, while preventing contraction of the dorsal

and ventral cells mainly affects the maintenance and lengthening of the new cell interface. Hypercon-

traction of the cells anterior and posterior to the new edge accelerates the rate of new edge assem-

bly. Finally, applying ectopic tension orthogonal to the characteristic orientation of vertex resolution

is sufficient to alter the direction of new edge formation, suggesting that mechanical forces associ-

ated with actomyosin contractility direct the assembly of new cell contacts during multicellular vertex

resolution in germband extension.

We show that vertex resolution occurs under increased mechanical tension, in a process that

requires actomyosin contractility. Consistent with this, expression of inactive or constitutively active

forms of myosin in embryos lacking the wild-type motor protein disrupts the directionality of vertex

resolution during germband extension (Kasza et al., 2014). Furthermore, mechanical tension is nec-

essary for directional resolution of multicellular vertices in the mouse embryonic ectoderm during

limb bud elongation (Lau et al., 2015). In the Drosophila dorsal thorax, whose architecture is deter-

mined by neighbour exchange events, actomyosin contractility in new edges is tightly regulated to

facilitate their elongation (Bardet et al., 2013). Our data suggest that the increase in tension on the

new contact may be caused locally by the pulsatile, anisotropic contraction of the cells around the

Video 4. Mechanical tension promotes rapid

elongation of new DV interfaces. Germband cells in

embryos expressing E-cadherin:GFP (green) and

myosin:mCherry (magenta) under sham irradiation (left)

or upon wounding and apical constriction of the cells

anterior and posterior to a multicellular vertex (right).

Arrows indicate resolving multicellular vertices. A stack

was acquired every 3 s. Time is indicated as min:s.

Anterior left, dorsal up. This video relates to

Figure 4. DV, dorsal-ventral.

DOI: 10.7554/eLife.10757.018
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resolving vertex. Interestingly, cells in the mouse limb bud ectoderm also display pulsed contractions

that are disrupted in b-catenin mutants, and in these mutants the directionality of vertex resolution is

lost (Lau et al., 2015). Together, these results are consistent with a general role for pulsed contrac-

tile activity in orienting and promoting cell intercalation.

We find that anterior/posterior and dorsal/ventral cells may play different roles during multicellu-

lar vertex resolution. Our data suggest that the anterior and posterior cells contribute to both vertex

resolution and new edge elongation, while the dorsal and ventral cells are mainly necessary to sup-

port the elongation of the edge once the vertex has resolved. Recent mathematical modelling pre-

dicts that periodic actomyosin contractility in the medial-apical surface of anterior and posterior cells

could drive the assembly of new edges during germband extension (Lan et al., 2015). The pulsed

contraction of the anterior and posterior cells could cause rapid membrane reorganization in the

dorsal and ventral cells (Pramanik et al., 2009), facilitating the assembly of an actin scaffold

(Pickering et al., 2013) and the formation of junctions. Junctional and cytoskeletal remodelling

require intact DV cells, and possibly, the continued stimulus from AP cell pulsing. The implementa-

tion of optogenetic approaches (Guglielmi et al., 2015) to locally inhibit membrane remodelling

and junctional and cytoskeletal dynamics will reveal how these processes are coordinated across cells

to promote directional cell rearrangements during epithelial morphogenesis.

The mechanisms by which mechanical tension regulates the assembly of new cell interfaces during

germband extension remain unclear. An accumulation of filamentous actin is the first known step of

vertex resolution (Blankenship et al., 2006), and in this study, we found that blocking actin polymer-

ization results in multicellular vertices that do not resolve. Thus, actin polymerization may play a cen-

tral role in vertex resolution. Mechanical forces can control actin dynamics in vitro, possibly by

inducing conformational changes in the formin family of actin regulators to favour faster and more

frequent polymerization of actin filaments (Courtemanche et al., 2013; Higashida et al., 2013;

Jegou et al., 2013). In addition, actin filaments are less susceptible to severing in the presence of

increased tension (Hayakawa et al., 2011), which may accelerate actin assembly at nascent cell

interfaces. Understanding how mechanical forces impact the localization and dynamics of different

actin regulators will contribute to elucidating the mechanisms by which tension promotes directional

cell behaviours during Drosophila axis elongation.

Materials and methods

Fly stocks
We used the following markers for live imaging: ubi-E-cadherin:GFP (Oda and Tsukita, 2001), sqh-

sqh:mCherry (Martin et al., 2009), resille:GFP (Morin et al., 2001), sqh-GFP:utrophin (Rauzi et al.,

2010), and par-6D226, par-6:GFP (Wirtz-Peitz et al., 2008).

Time-lapse imaging
Stage-7 embryos were dechorionated in 50% bleach for 90 s, rinsed, glued ventrolateral side down

to a glass coverslip using heptane glue, and mounted in a 1:1 mix of halocarbon oil 27 and 700

(Sigma-Aldrich, St. Louis, MO). Embryos were imaged using a Revolution XD spinning disk confocal

microscope equipped with an iXon Ultra 897 camera (Andor, Belfast, UK) and a 1.5x coupling lens.

For experiments using laser ablation, a 60x oil immersion lens (Olympus, Shinjuku, Japan; NA 1.35)

was used; for all other experiments, a 40x oil immersion lens (Olympus, NA 1.35) was used. Sixteen-

bit Z-stacks were acquired at 0.3-mm steps every 3–10 s (8–10 slices per stack).

Laser ablation
Ablations were induced using a pulsed Micropoint N2 laser (Andor) tuned to 365 nm. The laser delivers

120 mJ pulses at durations of 2–6 ns each. For ablation of cell boundaries, 10 consecutive laser pulses

were delivered to a single spot along a cell interface. For single-cell wounds, 10 consecutive laser

pulses were delivered to each of two spots spaced 2 mm apart on the medial-apical region of the cell

of interest. In experiments where local tension was reduced, 10 laser pulses were delivered to a single

spot on the medial-apical region of the cell of interest. Cells were re-ablated upon assembly of medial-

apical myosin networks. In sham-irradiated controls, cells were targeted with the laser completely

attenuated every 60 s to mimic the repeated ablations performed in the corresponding experiments.
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Drug injections
Embryos were dechorionated and glued to a coverslip as above, dehydrated for 10–15 min, and cov-

ered with a 1:1 mix of halocarbon oil 27 and 700 (Sigma-Aldrich). Embryos were injected using a

Transferman NK2 micromanipulator (Eppendorf, Hamburg, Germany), and a PV820 microinjector

(WPI, Sarasota, FL) attached to the spinning disk confocal microscope. Drugs (Y-27632, Tocris Biosci-

ence, Bristol, UK); (Cytochalasin D, EMD Millipore, Darmstadt, Germany) were injected into the peri-

vitelline space, where they are predicted to be diluted 50-fold (Foe and Alberts, 1983). Y-27632

was injected at 100 mM in water; control embryos were injected with water. Cytochalasin D was

injected at 5 mM in 50% DMSO; control embryos were injected with 50% DMSO. Embryos were

imaged immediately after injection for at least 10 min.

Cell segmentation, tracking, and quantification
Image analysis was performed using algorithms developed with Matlab (MathWorks, Natick, MA)

and DIPImage (Delft University of Technology, Delft, Netherlands) and integrated in our custom Sci-

entific Image Segmentation and Analysis (SIESTA) software (Fernandez-Gonzalez and Zallen, 2011;

Leung and Fernandez-Gonzalez, 2015).

The onset of vertex resolution was established as the first time at which the length of a nascent

interface exceeded 1 mm. New edge orientation was quantified relative to the AP axis of the

embryo, defined as 0˚, and was measured 150 s after the onset of vertex resolution. Edge length

was measured as the distance between the two vertices defining the edge. To measure how fast

new edges assemble, we defined the rate of elongation at time t as:

rate of elongation tð Þ ¼
lðtÞ� lðt0Þ

t� t0
(1)

where l(t) represents the length of the edge at time t, and t0 is the time of onset of vertex resolution.

The rate of elongation was calculated over the initial 90 s of interface elongation, unless indicated

otherwise. Cell areas were quantified using an algorithm in which seeds were manually placed within

each cell of interest in the first timepoint of a movie. Seeds were automatically expanded to delin-

eate the cell boundaries using the watershed method (Beucher, 1992), a region-growing algorithm.

Seeds were subsequently propagated to the next time point using particle image velocimetry to

account for cellular movement (Wang and Fernandez-Gonzalez, in preparation), and the process was

iterated. To measure retraction velocities following laser ablation, we determined the change in dis-

tance between the two vertices delimiting the ablated interface, and divided this value by the sum

of the ablation and the stack acquisition times.

In time-lapse images, fluorescence was measured from maximum intensity projections of three

apical slices. Fluorescence intensities were background-subtracted using the most frequent pixel

value (the mode) of a maximum intensity projection of three basal slices cropped around the region

of interest (10 mm � 10 mm). Intensity values were corrected for photobleaching by dividing by the

mean image intensity in each time point. To quantify myosin levels in new DV edges with respect to

AP edges, we imaged embryos expressing myosin:mCherry, and measured fluorescence in manually

traced cell interfaces. We subtracted the image mode from the myosin fluorescence measurements

as an estimate of the background.

Oscillatory cell behaviours were characterized by the rate of change per minute of the corre-

sponding magnitude, calculated as the difference of measurements collected 1 min apart. To calcu-

late periods, rates of change were detrended by subtracting the line of best fit using the detrend

function in Matlab (Mathworks). The period was computed as the inverse of the dominant frequency

in a fast Fourier transform of the detrended signal. To calculate the mean change in edge length

during the elongation or shortening steps of new DV edge formation, we quantified the area under

the curve for positive (elongation) or negative (shortening) rates of length change. The resulting

numbers were the total elongation or shortening for a given edge, which divided by the number of

pulses yielded the mean change in length per elongation or shortening pulse. The correlation

between signal pairs was determined using the corrcoef function in Matlab (Mathworks). To find the

time shift required for minimum or maximum correlation between signal pairs, one signal was shifted

forward and backward in time relative to the other, in increments of 10 s up to 240 s. With each

increment, the correlation was recalculated. The resulting correlation curve was Gaussian-smoothed
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using a sigma of 10 s, and the time shifts required to obtain the first local minimum and maximum in

the correlation values were determined.

Statistical analysis
Sample means were compared using Student’s t-test (Glantz, 2002). The significance of correlation

coefficients was calculated by transforming the correlation value into a t-statistic using the Matlab

corrcoef function (Mathworks). Sample distributions were contrasted using Kolmogorov–Smirnov’s

test. Error bars indicate the standard error of the mean (s.e.m.).
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