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Structured Abstract 
 

INTRODUCTION: Previous studies have applied normative modeling on a single 

neuroimaging modality to investigate Alzheimer Disease (AD) heterogeneity. We employed a 

deep learning-based multimodal normative framework to analyze individual-level variation 

across ATN (amyloid-tau-neurodegeneration) imaging biomarkers. 

METHODS: We selected cross-sectional discovery (n = 665) and replication cohorts (n = 430) 

with available T1-weighted MRI, amyloid and tau PET. Normative modeling estimated 

individual-level abnormal deviations in amyloid-positive individuals compared to amyloid-

negative controls. Regional abnormality patterns were mapped at different clinical group levels 

to assess intra-group heterogeneity. An individual-level disease severity index (DSI) was 

calculated using both the spatial extent and magnitude of abnormal deviations across ATN. 

RESULTS: Greater intra-group heterogeneity in ATN abnormality patterns was observed in 

more severe clinical stages of AD. Higher DSI was associated with worse cognitive function 

and increased risk of disease progression. 

DISCUSSION: Subject-specific abnormality maps across ATN reveal the heterogeneous 

impact of AD on the brain. 

  



1.Background 
 

Alzheimer Disease (AD) is the leading cause of dementia, characterized by cognitive and 

functional impairments that disrupt daily activities.[1,2] AD is highly heterogeneous, 

exhibiting considerable variability in clinical manifestations, cognitive decline, disease 

progression, and neuropathological changes, even within specific diagnostic categories.[3] 

However, traditional statistical approaches in AD research often overlook this heterogeneity, 

relying on case-control designs and group averages, effectively treating AD patients as a 

homogenous group. To progress toward precision medicine in AD, it is essential to move 

beyond the “average AD patient” approach and the assumption that AD affects all patients in 

the same way, and characterize disease abnormalities at the individual-level.[4] 

Data-driven clustering methods have been the predominant approach for exploring 

heterogeneity in AD[5]. Normative modeling is an emerging statistical technique that differs 

from clustering by focusing on subject-level variation instead of group averages.[6–8] 

Typically, normative analysis in AD research models the relationship between brain measures 

and covariates (e.g., age, sex) using univariate Bayesian regression models[8,9] or w-

scores[10,11], applied to a reference group of healthy controls. The trained normative models 

are subsequently used to estimate how every AD individual deviates from the norm, resulting 

in a map of individual-level variability.[8,9] However, normative modeling approaches 

typically construct separate regression models independently for each brain region, ignoring 

the multivariate nature of the data. To address this limitation, deep learning approaches based 

on autoencoders have been used as normative models. These models effectively capture the 

complex non-linear interactions between brain regions. However, these interactions are 

typically restricted to same modality measurements.[12–14] 

Indeed, most previous studies employing normative models have primarily relied on 

single modality neuroimaging data to characterize heterogeneity in neuropsychiatric[6,7,15] 



and neurodegenerative disorders, including AD.[8,16] This is particularly limiting in the case 

of AD, which is a multi-factorial disease, involving multiple pathological processes that 

interact and contribute to disease progression. To accurately characterize AD, multi-modal 

imaging that can quantify biomarker pathology - including amyloid deposition, pathologic tau 

and neurodegeneration - is essential. Together, these biomarkers compose the National Institute 

on Aging and Alzheimer's Association research framework that helps with defining AD as a 

biological construct and facilitates a more comprehensive understanding of individual 

differences in cognitive performance and clinical progression.[17–21] However, despite recent 

progress on developing deep learning models for normative modeling across multiple 

modalities[22–24], these efforts have primarily been methodological and have not investigated 

AD heterogeneity by taking into account core AD biomarkers (i.e., amyloid and tau).[25] 

In this study, we aimed to identify individual patterns of neuroanatomical and 

neuropathological variation in the brains of individuals with AD using a deep learning based 

normative modeling framework across amyloid-tau-neurodegeneration (ATN)[26] imaging 

biomarker data from Alzheimer's Disease Neuroimaging Initiative (ADNI). Accordingly, we 

trained our previously validated normative modeling framework,[22,24] which is based on 

multimodal variational autoencoders (mmVAE), on data from a reference control group (i.e., 

amyloid negative cognitively unimpaired (CU) subjects). We subsequently used the trained 

model to estimate the extent to which individuals spanning the AD spectrum (ADS) deviate 

from the normative distribution. Our main objectives can be summarized as follows: (i) assess 

the extent of neuroanatomical and neuropathological variability between individual patients 

based on overlapping or distinct patterns of abnormal deviations, (ii) quantify intra-group 

heterogeneity within ADS clinical groups based on differences in between-participant 

dissimilarity in abnormal deviations across ATN, (iii) estimate a disease severity index (DSI) 

for each ADS individual that can capture both the spatial extent of abnormality and the 



magnitude of regional abnormal deviations across ATN, (iv) examine whether the DSI is 

related to severity of dementia, impaired cognition and risk of disease progression. The results 

were replicated in an independent dataset, part of the Charles F. and Joanne Knight Alzheimer’s 

Disease Research Center (ADRC) dataset at Washington University in St. Louis. 

2. Materials and Methods  
 

2.1 Participants 
 

We constructed a discovery dataset consisting of individuals from ADNI and a replication 

dataset consisting of individuals from the Charles F. and Joanne Knight Alzheimer’s Disease 

Research Center (ADRC) dataset at Washington University in St. Louis. For both datasets, 

participants were required to have T1-weighted magnetic resonance imaging (MRI), as well as 

amyloid and tau PET imaging, completed within 1 year of one another. Note that these are 

cross-sectional cohorts, and we included only the first visit for each individual for which all 

modalities were available. For both datasets independently, we selected two groups based on 

amyloid status (Section 2.2.3): (1) a reference control group of amyloid-negative CU (i.e., 

Clinical Dementia Rating (CDR®) = 0) individuals, which was used to train the deep learning 

based normative model; and (2) a target disease group of amyloid positive individuals across 

the ADS. A total of 434 amyloid-negative CU participants were included in the reference 

control group (ADNI-CU), and 231 amyloid positive individuals across the ADS were included 

in the target disease group (ADNI-ADS) from ADNI (Figure 1A). For ADRC, the reference 

group (ADRC-CU) consisted of 301 amyloid negative CU individuals, while the disease group 

(ADRC-ADS) consisted of 129 amyloid positive individuals on the ADS (Figure 1B). 

ADNI-ADS individuals were assigned into 3 diagnostic groups based on CDR: CDR = 

0 or preclinical AD (n = 121), CDR = 0.5 (n = 80) and CDR >= 1 (n = 30) (Figure 1A). 

Similarly, the number of ADRC-ADS individuals in the corresponding groups were 98, 24 and 



7 respectively (Figure 1B). The ADNI-CU group was further divided into a training set for 

model training (ADNI-CU-train; n = 326), a holdout validation set (ADNI-CU-holdout; n = 

65) and a test set (ADNI-CU-test; n = 43) at a ratio of 75:15:10 (Figure 1A). The validation set 

was used to standardize deviations of ADNI-ADS, and calculate Z-scores relative to ADNI-

CU. The test sets served as a baseline control group to compare statistics of ADS individuals 

against amyloid-negative CU participants. Similarly, the ADRC-CU group was also divided 

into a training set for transfer learning on the replication dataset (ADRC-CU-tl; n = 225), a 

holdout validation set (ADRC-CU-holdout; n = 45) and a test set (ADRC-CU-test; n = 31) 

(Figure 1B).  

 

2.2 T1-weighted MRI imaging  
 

2.2.1 Image acquisition 

 

ADNI participants included in our analysis underwent T1-weighted MRI imaging using 3T 

MRI scanners (details are available online https://adni.loni.usc.edu/methods/mri-tool/mri-

analysis/). Knight ADRC participants underwent T1-weighted MRI imaging using the Siemens 

Biograph mMR 3T scanner. Detailed information about MRI image acquisition for the Knight 

ADRC dataset can be found in the Supplementary Methods (SM1.1).  

2.2.2 Image pre-processing 

 

The T1-weighted sequences from ADNI and Knight ADRC were pre-processed using 

FreeSurfer versions 6 and 5.3, respectively. The cortical surface of each hemisphere was 

parcellated according to the Desikan–Killiany atlas[27] and anatomical region of interest (ROI) 

measures were obtained via a whole-brain segmentation procedure (Aseg atlas).[28] The final 

data included in our analyses (both ADNI and Knight ADRC) included pre-processed regional 

grey matter volumes of 66 cortical ROIs (33 per hemisphere) and 24 subcortical ROIs for each 

participant. All ROI volumes were normalized by the intracranial volume (ICV). Detailed MRI 

https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/


pre-processing protocols for ADNI are available online (https://adni.loni.usc.edu/methods/mri-

tool/mri-analysis/). Further information about MRI processing protocols for the Knight ADRC 

dataset can be found in the Supplementary Methods (SM1.2). 

2.3 Amyloid and tau PET imaging 
 

2.3.1 Image acquisition 

 

ADNI participants underwent amyloid-PET imaging with either [18F]-Florbetapir (FBP) or 

[18F]-Florbetaben (FBB) tracers and tau-PET imaging with [18F]-Flortaucipir (FTP). Details 

regarding PET acquisition for ADNI are available online 

(https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/). Knight ADRC 

participants underwent amyloid-PET imaging with either FBP or [11C]-Pittsburgh Compound 

B (PIB). Tau-PET imaging was performed using FTP. Further information about PET image 

acquisition for the Knight ADRC can be found in the Supplementary Methods (SM2.1). To 

avoid harmonization issues due to multiple tracers, we only included data collected using FBP 

in our analyses for both ADNI and Knight ADRC. 

2.3.2 Image pre-processing 

 

ADNI PET images (FBP and FTP) were registered to the nearest T1-weighted image, which 

was subsequently processed with FreeSurfer version 6. Detailed PET pre-processing protocols 

for ADNI can be found available online (https://adni.loni.usc.edu/methods/pet-analysis-

method/pet-analysis/). All PET images from Knight ADRC (FBP and FTP) were processed 

using the PET Unified Pipeline (https://github.com/ysu001/PUP)[29,30]. Further information 

about PET processing protocols for Knight ADRC can be found in the Supplementary Methods 

(SM2.2). Similar to MRI ROI volumes, the final amyloid-FBP and tau-FTP data included in 

our analyses from both ADNI and Knight ADRC consisted of regional standardized uptake 

value ratio (SUVR) values for 66 cortical ROIs (33 per hemisphere) and 24 subcortical ROIs 

for each participant. Regional SUVR values in ADNI for amyloid-FBP and tau-FTP were 

https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
https://github.com/ysu001/PUP


normalized relative to the whole cerebellum and inferior cerebellar gray matter reference 

region respectively. For Knight ADRC, all regional SUVRs for both amyloid-FBP and tau-

FTP were calculated with cerebellum cortex as the reference region.  

2.3.3 Amyloid positivity 

 

A summary estimate of global amyloid (FBP) burden in ADNI was calculated as the average 

SUVR within cortical meta-ROI (spanning frontal, anterior/posterior cingulate, lateral parietal, 

and lateral temporal regions) which was normalized with a whole cerebellum reference region. 

ADNI individuals with meta-ROI SUVR uptake greater than 1.11 cut-off were labelled as 

amyloid positive, following established cut-off procedures recommended within ADNI 

documentation.[31–34]. 

For Knight ADRC, an estimate of total cortical amyloid burden was derived by 

computing the SUVR of a meta-ROI consisting of lateral and medial orbitofrontal, middle and 

superior temporal, superior frontal, rostral middle frontal, and precuneus ROIs from both 

hemispheres. The meta-ROI SUVR was normalized using the cerebellar cortex reference 

region. Knight ADRC individuals with meta-ROI SUVR greater than the 1.24 cut-off were 

considered amyloid positive, in line with the established literature.[18,35] 

 

2.4 Clinical and cognitive assessments 
 

Clinical and cognitive assessments for both ADNI and Knight ADRC were only included if 

they occurred within one year of MRI imaging. Participants were assessed for dementia using 

the CDR Scale[36]. Cognitive performance was quantified by computing neuropsychological 

composites for memory, executive functioning, and language, independently for ADNI and 

Knight ADRC (SM3). 

 

2.5 Multimodal Normative Modeling 
 



2.5.1 Model training 

 

In this study, we used a previously validated deep learning based normative modeling 

framework.[12,22,24] This framework is based on a multimodal variational autoencoder 

(mmVAE), which takes as input cross-sectional ATN biomarker data including regional gray 

matter volumes, as well as amyloid FBP and tau FTP SUVR values (Figure S1). mmVAE had 

separate encoders for each modality to learn a shared latent space, which is a joint distribution 

across the different modalities. The shared information in the aggregated latent space was fed 

through modality-specific decoders to reconstruct each modality (Figure S1). Details of the 

mmVAE architecture are provided in Supplementary Methods (SM4.1, SM4.2). 

Initially, mmVAE was trained using the ADNI-CU-train set, where the input matrix 

had dimensions of 326 x 270 (subjects x ROIs, with 90 ROIs for each modality). During 

training, mmVAE learns to reconstruct the multimodal input data as closely as possible to the 

original. The joint latent distribution allows the model to learn the healthy brain patterns across 

all modalities. These include the variability in MRI estimates, regional noise or off-target 

binding for amyloid FBP and age-associated tau FTP accumulation within healthy individuals.  

mmVAE was conditioned on the age and sex of participants to remove the effect of covariates 

(see Supplementary Methods SM4.3). For replication in the Knight ADRC dataset, mmVAE 

pretrained on ADNI-CU-train underwent fine-tuning on ADRC-CU-tl through transfer 

learning (Section 2.1). Further information about model training and hyperparameter details 

are available in Supplementary Methods (SM4.3). 

 

2.5.2 Calculating regional deviations for each modality 

 

The main idea of the normative approach is that mmVAE learns only to reconstruct the data of 

CU individuals. Since individuals on the ADS will differ from CU individuals due to the AD 

pathology, mmVAE will be less precise in reconstructing their data. As a result, the difference 



between the reconstructed and input data will be larger in the ADS cohort compared to CU 

individuals. For each participant in ADNI-ADS and ADRC-ADS, deviations for each region 

and for each modality can be calculated as the squared error between input and reconstructed 

data (Figure S1).  

 

2.5.3 Normalizing deviations into Z-scores 

 

Considering the complexity of the brain data, we expect that mmVAE might not fully capture 

normal variations in healthy subjects, leading to some reconstruction error. Hence, it' is 

important to standardize ADNI-ADS deviations using ADNI-CU-holdout set (see section 2.1) 

as a reference for the CU population. We utilized the mean and variance (calculated 

independently for each region) from ADNI-CU-holdout to normalize regional deviations in the 

ADNI-ADS cohort across each modality. Following fine-tuning of mmVAE on ADRC-CU-tl, 

a similar process was applied using ADRC-CU-holdout to normalize deviations in ADRC-

ADS. This step generated regional, modality-specific Z-score deviations for each individual in 

the ADS cohort relative to the normative range of the respective reference control group 

(Figure S1). 

 

2.6 Statistical Analysis 
 

2.6.1 Regional abnormal deviations across ATN biomarkers 

 

For MRI gray matter volumes, regional Z-scores below -1.96 (bottom 2.5% of the normative 

distribution) were labelled as abnormal (statistically significant) deviations. As followed in 

previous normative modeling literature[8,16], the lower bound was used because we were 

interested in gray matter loss (MRI atrophy) associated with neurodegeneration. Similarly 

regional deviations in amyloid-FBP and tau-FTP SUVR were identified as abnormal if their Z-

scores were above 1.96 (top 2.5% of the normative distribution). This upper bound was chosen 

to focus on increased amyloid/tau SUVR uptake (high amyloid/tau burden) linked to 



pathological accumulation.[8,16] For each ADS individual, we created a binary thresholded 

abnormality map, marking regions with abnormal deviations as 1 and others as 0. These 

abnormality maps were calculated for each modality (MRI, amyloid, or tau) with 90 regions 

each and also aggregated across all modalities combined (270 regions).  

 

2.6.2 Group differences of regional abnormal deviations across ATN imaging biomarkers 

 

We examined the magnitude of abnormal deviations in each region between amyloid negative 

CU individuals (CU-test; section 2.1) and clinical groups along the ADS: (i) CDR = 0 

(preclinical AD), (ii) CDR = 0.5 (very mild dementia), and (iii) CDR >= 1 (mild or more severe 

dementia). Our aim was to validate the derived regional abnormal deviations by examine 

examining whether these deviations showed increased group differences across progressive 

CDR stages. We quantified group differences using Cohen’s d-statistic effect size, calculated 

separately for each modality.38 A higher effect size when comparing regional MRI volumes 

indicated lower gray matter volume (more atrophy). Similarly, a higher effect size when 

comparing amyloid or tau uptake indicated elevated SUVR uptake (higher amyloid and tau 

loads) compared to the amyloid-negative CU group. We repeated these group comparisons for 

both ADNI and Knight ADRC independently. 

 

2.6.3 Analysis of spatial distribution of abnormal deviations across ATN across ATN 

imaging biomarkers 

 

The group comparisons between each of the ADS groups and the amyloid-negative CU group 

(section 2.6.2) effectively assumed that every clinical group is homogenous in the regional 

patterns of abnormal deviations across all the modalities. To better understand disease 

heterogeneity, we also aimed to assess the variability in spatial patterns of neurodegeneration 

(MRI atrophy) and neuropathology (amyloid and tau deposition) across clinical groups. 

Towards this end, we computed the proportion of abnormal deviations (fraction of individuals 

with abnormal deviations; section 2.6.1) separately for each region, modality and clinical 



group. The regional proportion of abnormal deviations was calculated for each of the ADS 

clinical groups and a group of amyloid-negative CU individuals (CU-test; section 2.1) 

independently for both the ADNI and Knight ADRC datasets.  

 

2.6.4 Intra-group heterogeneity within ADS groups 

 

Next, we aimed to quantify the intra-group heterogeneity across ADS clinical groups and assess 

whether this increases across progressive dementia stages. We used hamming distance to 

measure the dissimilarity in binary-thresholded abnormality maps (section 2.6.1) between 

every pair of ADS individuals, with higher distance indicating more dissimilarity. Hamming 

distances were estimated for both modality-specific abnormality maps (hamming_mri, 

hamming_amyloid and hamming_tau) and abnormality maps aggregated across all modalities 

(hamming_all). Median hamming distances were compared across ADS groups and an 

amyloid-negative CU group (CU-test; section 2.1). Distribution of hamming distances were 

visualized using kernel density estimation (KDE) plots across ADS groups, reflecting the 

extent of intra-group heterogeneity. The intra-group heterogeneity analysis was performed 

independently for both ADNI and Knight ADRC cohorts.  

 

2.6.5 Disease severity index (DSI) across ADS groups 
 

Our objective was to design a Disease Severity Index (DSI) for each ADS individual which 

can capture both the spatial extent and magnitude of regional abnormal deviations across 

multiple modalities into a single, subject-specific metric. DSI was calculated separately for 

each modality (DSI_mri, DSI_amyloid, DSI_tau) and also aggregated across all modalities 

(DSI_all). Specifically, every individual's DSI was calculated by i) first performing an inner 

product between the binary thresholded abnormality map (section 2.6.1) and the regional 

deviation vector; and then normalizing the inner product by the total number of regions (nR = 

90 for DSI_mri, DSI_amyloid, DSI_tau and nR = 270 for DSI_all).   



DSI_all  represents a personalized measure of brain health that accounts for individual 

variability in gray matter volume, and amyloid and tau deposition, rather than relying on 

average group relationships. To demonstrate this, we first compared DSI values between the 

different ADS groups and a group of amyloid-negative CU individuals (CU-test; section 2.1). 

This allowed us to examine the association between increasing DSI and progressive dementia 

stages (high CDR). FDR-corrected post hoc Tukey comparisons were used for pairwise group 

differences.   

 

2.6.6 Association between DSI and cognitive performance 

 

We then examined the associations between DSI values (DSI_mri, DSI_amyloid, DSI_tau and 

DSI_all) and the three neuropsychological composites: memory, executive functioning, and 

language (section 2.4, SM3) in both ADNI-ADS and ADRC-ADS cohorts. The associations 

were estimated using linear regression, adjusted for age and sex. Additionally, Pearson 

correlation coefficient was used to measure the pairwise correlation between each of the DSI 

categories and the composites.  

 

2.6.7 Relationship between DSI and CDR progression 
 

Lastly, we examined associations of DSI_all and clinical progression in both ADNI-ADS and 

ADRC-ADS cohorts. For this analysis, we included subjects with follow-up CDR status data, 

who were CDR < 1 at their baseline visit with all three modalities present. We analyzed the 

relationship between DSI_all and CDR progression using survival analysis, adjusting for age 

and sex. The event of interest was progression to CDR >= 1. A Kaplan-Meier plot was used to 

illustrate the impact of the 4 DSI_all quantiles on disease progression risk. Log-rank tests 

estimated pairwise differences in progression risk among the DSI_all quantiles. Post-hoc 

comparisons were adjusted for multiple comparisons using FDR.[37]   

 



2.6.8 Code availability and visualizations 

 

All analyses were performed using Python 3.7. All visualizations of the brain atlases for the 

effect size maps (Section 2.5.2) and proportion of abnormal deviation maps (Section 2.5.3) 

were visualized using the python package ggseg.[38] Hamming distance distributions at group 

level were visualized using kernel density estimation (KDE) plots. Code for the project will be 

made publicly available upon acceptance. 

3. Results  
 

3.1 Dataset characteristics 
 

Sample characteristics for the ADNI-ADS and ADRC-ADS cohorts are shown in Table 1. The 

ADNI-ADS cohort was older (p = 0.035), while the ADRC-ADS cohort had more females (p 

= 0.006). ADRC-ADS showed less memory impairment, indicated by higher MMSE scores (p 

< 0.001) and a higher proportion of individuals with CDR = 0 or preclinical AD (p < 0.001). 

Sample characteristics for the ADNI-CU and ADRC-CU datasets are in Table S1. ADNI-CU 

participants were older (p < 0.001), whereas there were more females in ADRC-CU (p = 

0.026). ADNI-CU participants had slightly lower MMSE scores than ADRC-CU, but this 

difference was not statistically significant (p = 0.067). CU participants in ADNI and ADRC 

had lower age and higher MMSE scores compared to their ADS counterparts (i.e., ADNI-CU 

vs. ADNI-ADS; ADRC-CU vs. ADRC-ADS), with all differences being statistically 

significant (p < 0.001). 

 



Table 1: Descriptive statistics for the ADNI-ADS and ADRC-ADS datasets. Statistical 

differences were assessed using two-sided ANOVA (continuous variables) and chi-squared 

tests (categorical. variables). Significant p-values are highlighted in bold with *: 0.01 < p < 

0.05, **:  0.005 < p < 0.01, ***: p < 0.001. Abbreviations: SD = standard deviation, ANOVA 

= analysis of variance, CDR = Clinical Dementia Rating, MMSE = Mini-Mental State 

Examination. 

 ADNI-ADS ADRC-ADS p-value 

N  231 129 - 

Sex, Male: Female 108:123 48:81 p = 0.035* 

Age (mean +/- SD) 73.6 +/- 6.9 71.5 +/- 8.3 p = 0.006** 

CDR (0/0.5/>=1) 121/80/30 98/24/7 p < 0.001*** 

MMSE (mean +/- SD) 24.5 +/- 3.2 26.5 +/ 3.7 p < 0.001 *** 

 

 

3.2 More severe dementia was associated with pronounced regional 

atrophy and elevated regional amyloid and tau burden in ADS patients 
 

3.2.1 Discovery dataset - ADNI 

 

Region-level (total of 90 regions—FDR corrected) pairwise group comparisons with amyloid-

negative CU individuals (CU-test) provided evidence that gray matter volumes were lower in 

56 regions in mild or more severe dementia, in 22 regions in very mild dementia, and no regions 

in preclinical AD (Table S2). Maximum group differences in atrophy were observed in the 

temporal, parietal, and hippocampal regions, and to a lesser extent in the frontal, occipital, and 

amygdala regions (Figure 2A). Expectedly, regional-level pairwise group comparisons with 

amyloid-negative CU individuals revealed higher amyloid burden in 84 regions in mild or 

severe dementia, in 75 regions in very mild dementia, and 85 regions in preclinical AD (Table 

S2). Higher effect sizes for amyloid burden were mostly observed in the medial orbitofrontal, 

precuneus, temporal and frontal pole regions. Similarly, pairwise group comparisons with CU 

individuals revealed increased tau deposition in 80 regions in mild or severe dementia, in 62 

regions in very mild dementia, and no regions in preclinical AD (Table S2). Regions with high 



effect sizes for tau burden included the temporal, frontal, precuneus, parietal and hippocampal 

regions (Figure 2A). 

 

3.2.2 Replication dataset - Knight ADRC 

 

We found a notable similarity between the effect size maps estimated in ADRC-ADS and in 

ADNI-ADS (Figure 2B). Similar to ADNI-ADS, statistically significant volumetric differences 

in ADRC-ADS were mainly seen in the temporal, parietal, and hippocampal regions. More 

regions showed pronounced atrophy in mild or severe dementia (nr = 50) compared to very 

mild dementia (nr = 25), with no abnormal regions for preclinical AD. Elevated amyloid burden 

was observed in more regions for mild or severe dementia (nr = 81) compared to very mild 

dementia (nr = 77), with 82 abnormal regions for preclinical AD (Table S2). Greater effect 

sizes were observed in the frontal and temporal regions (Figure 2B). Similarly, statistically 

significant group differences in regional tau deposition were found across various dementia 

severity levels (mild or severe dementia; nr = 74, very mild dementia; nr = 52, and preclinical 

AD; nr = 0), with greater effect sizes observed in the temporal and hippocampal regions (Table 

S2, Figure 2B). 

 

3.3 ADS individuals with more severe dementia have higher proportion of 

abnormal deviations in regional atrophy, amyloid and tau burden 
 

3.3.1 Discovery dataset - ADNI 

 

The proportion of abnormal deviations defined within each clinical group differed in regional 

patterns between the mild or more severe dementia, the very mild dementia, the preclinical 

AD, and the controls group  (Figure 3A). As far as regional gray matter volumes are concerned, 

the highest proportion of abnormal deviations was observed in hippocampal regions: 47% in 

the mild or more severe dementia group, 25% in the very mild dementia group, 6% in the 

preclinical AD group, and 3% in the amyloid-negative CU group. Regarding regional amyloid 



burden, the highest proportion of abnormal deviations was observed for precuneus and frontal 

pole cortices: 100% in the mild or more severe dementia group, 87% in the very mild dementia 

group, 71% in the preclinical AD group, and 5% in the CU group. Lastly, the proportion of 

abnormal deviations in tau deposition was observed in hippocampal and entorhinal regions: 

84% in the mild or more severe to severe dementia group, 65% in the very mild dementia 

group, 24% in the preclinical AD group, and 14% in the CU group. Overall, a higher proportion 

of abnormal deviations was observed for regional amyloid and tau burden than gray matter 

volume. This trend was consistent across the dementia stages (Figure 3A). 

 

3.3.2 Replication dataset - Knight ADRC 

 

In line with the ADNI-ADS results, we observed a consistent pattern of higher proportion of 

regional abnormal deviations with increased dementia severity (Figure 3B). Additionally, we 

observed similar regional patterns of abnormal deviations across all three modalities. 

Specifically, the highest proportion of abnormal deviations was observed for the same regions 

in both datasets, i.e., hippocampal and temporal regions for MRI, frontal regions and precuneus 

for amyloid, and temporal and parietal regions for tau (Figure 3B) However, a lower proportion 

or regional abnormal deviations was observed for the mild or more severe dementia group in 

ADRC-ADS compared to the corresponding group in ADNI-ADS. This is likely due to the 

smaller sample size for this group (n = 7) in ADRC-ADS (Figure 3B).  

 

 

3.4 ADS individuals with more severe dementia are more heterogenous 

compared to individuals with less dementia 
 

3.4.1 Discovery dataset - ADNI 

 

The distribution of Hamming distance calculated for all modalities (hamming_all) showed 

greater within-group heterogeneity (dissimilarity) for ADNI-ADS individuals at progressive 

stages of dementia (Figure 4A). The median Hamming distance (hamming_all) significantly 



differed between groups overall (p < 0.001). Pairwise comparisons in median hamming 

distance (Tukey post-hoc) were all significant (p < 0.001) except between the very mild 

dementia and the mild or more severe dementia group. Specifically, the Hamming distance was 

the highest in individuals with mild or more severe dementia (median 62, IQR 39, 95% CI 

60.3–63.8), followed by the very mild dementia group (median 56, IQR 34, 95% CI 58.1–59.3) 

and the preclinical AD (CDR = 0) group (median 47, IQR 30, 95% CI 49.2–50.1) (Figure 4A). 

The lowest Hamming distance was observed in the CU group (ADNI-CU-test; median 5, IQR 

6, 95% CI 8.4–10.7). For Hamming distance variants calculated using a single modality, we 

observed the same pattern of higher dissimilarity for ADS patients at progressive stages of 

dementia (Figure S2A). Within each clinical group, MRI showed the highest within-group 

heterogeneity in spatial patterns of abnormal deviations, followed by tau and amyloid (Figure 

S2A). 

 

3.4.2 Replication dataset - Knight ADRC 

 

Consistent with ADNI-ADS results, we observed greater within-group dissimilarity for 

ADRC-ADS individuals at progressive stages of dementia (Figure 4B). Similar to ADNI, the 

median Hamming distance (hamming_all) significantly differed between groups overall (p < 

0.001). Pairwise comparisons in median hamming distance (Tukey post-hoc) were all 

significant (p < 0.001) except between the very mild dementia and the mild or more severe 

dementia group. Within-group dissimilarity was higher for the mild or more severe (median 

39, IQR 40, 95% CI 28.8–43.5) and the very mild dementia (median 30, IQR 33, 95% CI 30.7–

34.5) groups compared to preclinical AD (median 14, IQR 20, 95% CI 21.6–22.9) and the CU 

groups (median 4, IQR 8, 95% CI 6.9–8.5). We observed the same trend when examining 

Hamming distances calculated for each modality separately (hamming_mri, 

hamming_amyloid, and hamming_tau). Lastly, similarly to ADNI-ADS results, MRI exhibited 



the highest within-group dissimilarity in spatial patterns of abnormal deviations compared to 

amyloid and tau (Figure S2B). 

 

3.5 Higher DSI was associated with progressive stages of dementia 
 

3.5.1 Discovery dataset - ADNI 

 

DSI calculated across all modalities (DSI_all) exhibited minimal values for CU individuals 

(ADNI-CU-test; mean = 0.06, IQR = 0.03, 95% CI = [0.007-0.1]), with a consistently 

increasing trend across dementia stages (Figure 5A). Specifically, maximum DSI_all values 

were observed for ADNI-ADS individuals with mild or more severe dementia (mean = 1.8, 

IQR = 1.5, 95% CI = [1.31-2.26]), followed by individuals with very mild dementia (mean = 

1.1, IQR = 1.3, 95% CI = [0.87-1.25]) and preclinical AD individuals (mean = 0.45, IQR = 0.6, 

95% CI = [0.39-0.52]). Pairwise group differences were statistically significant (FDR corrected 

p < 0.05), except between very mild dementia and mild to more severe dementia groups (Figure 

5A). When calculated across individual modalities, DSI values consistently increased at more 

advanced stages of dementia for all three modalities (i.e., DSI_mri, DSI_amyloid, DSI_tau; 

Figure S3A). DSI values calculated for amyloid and tau (DSI_amyloid, DSI_tau) were higher 

across CDR groups compared to DSI values calculated for MRI (DSI_mri). Pairwise group 

differences were statistically significant for DSI calculated for individual modalities except 

between very mild dementia and moderate to severe dementia groups for DSI_mri, 

DSI_amyloid, DSI_tau, and between CU-test and preclinical AD for DSI_mri and DSI_tau 

(Figure S3A).  

 

3.5.2 Replication dataset – Knight ADRC 

 

We found similar patterns of increasing DSI values at progressive dementia stages in the 

ADRC-ADS cohort (Figure 5B). DSI_all was highest for individuals with mild to more severe 

dementia (mean = 0.46, IQR = 0.28, 95% CI = [0.25-0.6]) and lowest for ADRC-CU-test 



individuals (mean = 0.006, IQR = 0.005, 95% CI = [0.002-0.008]) (Figure 5B). Individuals 

with preclinical AD (mean = 0.21, IQR = 0.22, 95% CI = [0.12-0.37]) and very mild dementia 

exhibited intermediate DSI_all values (mean = 0.32, IQR = 0.32, 95% CI = [0.21-0.5]). 

Pairwise group differences were statistically significant (p < 0.05) except between the very 

mild dementia and moderate to severe dementia groups (Figure 5B). Notably, higher DSI_all 

values were observed in ADNI-ADS compared to ADRC-ADS, likely due to more ADS 

individuals with advanced disease stages in ADNI compared to the ADRC dataset. Modality-

specific DSI values (i.e., DSI_mri, DSI_amyloid, and DSI_tau) for ADRC-ADS individuals 

showed similar trends as observed in ADNI (Figure S3B). 

 

3.6 Higher DSI values were associated with impaired cognition 
 

3.6.1 Discovery dataset - ADNI 

 

Linear regression, adjusted for age and sex, revealed significant associations between higher 

DSI_all values and decreased values in neuropsychological composites: memory (β = −0.6; p 

< 0.001; r = -0.62), executive functioning (β = −0.46; p < 0.001; r = -0.54), and language (β = 

−0.39; p < 0.001; r = -0.47) (Table 2). Similar statistically significant associations were 

observed for DSI values based on individual modalities (DSI_mri, DSI_amyloid, DSI_tau). 

The correlations were higher for DSI_tau compared to DSI_mri and DSI_amyloid (Table S3). 

However, correlations were higher for DSI_all compared to modality-specific DSI, 

highlighting the benefits of taking into account information across all modalities (Table 2). 

 

3.6.2 Replication dataset - Knight ADRC 

 

We observed similar trends of significant associations between DSI_all and the 

neuropsychological composites in ADRC-ADS (Table 2). In ADRC-ADS, DSI_all was 

significantly associated with memory (β = −0.71; p < 0.001; r = -0.68), executive functioning 

(β = −0.52; p < 0.001; r = -0.56), and language (β = −0.36; p < 0.001; r = -0.41). Similarly, DSI 



calculated for individual modalities exhibited significant associations with cognitive domains, 

with DSI_amyloid and DSI_tau generally showing higher correlations than DSI_mri (Table 

S3).  

Table 2: Comparison between DSI across all modalities (DSI_all), and the ATN summary 

metrics (hippocampal volumes, amyloid burden, and tau index) with respect to association with 

the composite cognitive scores (memory, executive functioning, and language). β represents 

the slope and p represents the p-value for linear regression, adjusted for age and sex. r 

represents the Pearson correlation coefficient. 

 

 

 

Cognitive 

domain 

ADNI-ADS ADRC-ADS 

β p r β p r 

 

 

DSI_all 

Memory - 0.65 p < 0.001 - 0.62 - 0.71 p < 0.001 - 0.68 

Executive - 0.46 p < 0.001 - 0.54 - 0.52 p < 0.001 - 0.56 

Language - 0.39 p < 0.001 - 0.47 - 0.36 p < 0.001 - 0.41 

 

 

3.7 Higher DSI is associated with increased risk for clinical progression 
 

3.7.1 Discovery dataset - ADNI 

 

Longitudinal clinical status data were available for 175 individuals in ADNI-ADS with either 

no or very mild dementia at baseline. DSI_all was significantly associated with the risk of 

progressing to mild or more severe dementia (p < 0.001; Figure 6A). Notably, individuals in 

higher DSI quartiles, particularly q4 (p < 0.001) and q3 (p < 0.01), demonstrated a heightened 

risk of progression compared to those in lower quartiles, namely q1 and q2 (Table S4).  

 

3.7.2 Replication dataset - Knight ADRC 

 

Longitudinal clinical status data were available for 85 ADS individuals with either no or very 

mild dementia at baseline (CDR = 0 or CDR = 0.5). As in ADNI-ADS, the survival analysis in 

ADRC-ADS showed an association between DSI_all and clinical progression (Figure 6B).  In 

ADRC-ADS, individuals in q4 (p < 0.001) and q3 (p < 0.01) progressed more rapidly to severe 

dementia than those in q1 and q2 (Table S4). 



4. Discussion   

  

In this study, we applied a deep learning based normative modeling framework across multiple 

neuroimaging modalities to assess heterogeneity in neuroanatomical and neuropathological 

changes in the brain of individuals with AD. Results showed evidence of (i) heterogeneous 

patterns of abnormal deviations in regional volumetric measurements as well as amyloid and 

tau deposition between patients with AD; (ii) increased dissimilarity in spatial patterns of 

abnormal deviations for AD patients at more severe dementia stages; (iii) associations of DSI, 

which distils spatial patterns of abnormal deviations across multiple modalities in a single 

index for each subject, with cognitive performance, as well as (iv) associations of DSI with 

increased risk of disease progression. Our observations were reproducible in both the discovery 

and replication datasets, which demonstrated the generalizability of our scientific findings.  

  

4.1 Deep learning based normative modeling    
  

Normative approaches to study heterogeneity in AD typically learn a regression model 

independently for each brain region, ignoring the multivariate nature of the data.[4,8,16]  Our 

work used a deep learning-based normative model, specifically a variational autoencoder, to 

capture the complex non-linear interactions within multivariate data, rather than modeling each 

variable independently. However, existing studies using deep normative models have been 

limited in studying interactions between single modality measurements (e.g., regional 

volumetric measurements extracted from T1-weighted MRI).[12,13] To accurately 

characterize a multi-factorial disease like AD, it is essential to use multiple neuroimaging 

modalities that can quantify biomarker pathology - including neurodegeneration, amyloid and 

tau deposition. Despite recent progress on developing deep learning normative models for 

multiple modalities, these approaches have primarily focused on methodological 

advancements.[14,23] Further, these studies validated their approach using measurements 



extracted from MRI and did not investigate AD heterogeneity using the core AD biomarkers 

(i.e. amyloid and tau). Our work used a multimodal deep learning based normative modeling 

framework to investigate AD heterogeneity through the lens of multimodal imaging-based 

ATN biomarkers i.e., neurodegeneration, amyloid and tau biomarkers.  

  

4.2 Variation in spatial patterns of abnormal deviations across gray matter 

volume, amyloid and tau burden  
  

Our findings both complement and provide new insights to the established understanding of 

the neurobiology of AD. High proportion of abnormal deviations in regional gray matter 

volumetric measurements was observed in hippocampal and medial-temporal regions, areas 

known to be associated with neurodegeneration.[39,40] Abnormal deviations in amyloid 

deposition were observed the most in the in the precuneus, frontal and temporal regions, which 

are among the first areas to accumulate FBP amyloid pathology.[41–43] Similarly, maximum 

abnormal deviations in tau deposition were observed in the medial and lateral temporal regions. 

These regions are among the first to accumulate tau and are typically used to construct the 

meta-ROI to characterize early tau accumulation.[10,44] 

The regions with the highest proportion of abnormal deviations across all modalities 

(e.g., medial-temporal regions) represent the areas associated with onset of clinical symptoms 

related to “typical AD”. The proportion of abnormal deviations for these “typical” regions also 

increases with disease severity which complements the current literature on AD.[39,40] 

However, our work extends the literature by showing that there are other regions with lower 

proportion of abnormal deviations. This suggests partial overlap between ADS patients, which 

challenges the validity of a “typical AD” patient. Further, this is in conflict with the assumption 

of disease group homogeneity that is common among typical analytical tools, such as case-

control studies. Further evidence for the partial overlap between patients were provided by the 

Hamming distance analyses, which quantified it and demonstrated increased dissimilarity in 



spatial patterns of abnormal deviations between AD patients at more severe dementia stages. 

Together, the results of the regional proportion of abnormal deviations across the three 

modalities (Figure 3) and the results of the Hamming distance analyses (Figure 4) provide 

evidence that ADS patients not only differ in the number of regions with statistically significant 

abnormal deviations but also in their respective patterns of abnormal deviations.  

Further, our results indicated that for all ADS groups, the spatial patterns of abnormal 

deviations for MRI had the highest within-group dissimilarity, followed by tau and amyloid 

(Figure S2). These observations are also supported by our results in Figure 3 where the highest 

proportion of abnormal deviations across all ADS groups was the lowest for MRI (47%), higher 

for tau (84%) and the highest for amyloid (100%). This indicated greater variation in the spatial 

patterns of gray matter atrophy and tau pathology compared to amyloid deposition.  

The observed variation in abnormal deviations across the three imaging modalities is 

in line with previous single-modality normative modeling and subtyping studies.[16,45,46] 

Specifically, a similar proportion of regional abnormal deviations was reported in a previous 

normative modeling study examining cortical thickness heterogeneity in AD.[16]  Moreover, 

studies using T1-weighted MRI or tau PET to estimate subtypes within the ADS population 

identified more subtypes for MRI (4 subtypes[47–49] or 3 subtypes[50–53]) and tau (4 

subtypes[45,54,55]) compared to the ones using amyloid PET as the input modality (2 

subtypes[46,56]). The fewer amyloid-driven subtypes indicate less heterogeneity compared to 

MRI and tau, consistent with our findings.  

  

4.3 DSI_all as a potential marker of brain health  
  

We developed a multimodal metric DSI_all which provides an individualized metric of brain 

health that takes into account individual variability in patterns of gray matter volume, amyloid 

and tau deposition instead of quantifying group average relationships. Recent studies have 

relied on single modality to calculate the total count of regions with abnormal deviations in 



cortical thickness as a marker of disease progression.[8,16] Additionally, recent studies have 

also quantified tau spread (TSS) for predicting cognitive impairment and disease 

progression.[57,58] In contrast to these previous approaches, DSI_all captures both the spatial 

spread and magnitude of regional abnormal deviations across all modalities. This allows 

DSI_all to quantify neurodegenerative and neuropathological changes in the brain, providing 

a personalized metric of brain health, which can assist in clinical decision making. This is 

further supported by the demonstrated associations with cognitive performance, disease 

severity and clinical progression. Lastly, DSI_all can be potentially used to monitor the 

amyloid burden and track patient response to recently FDA-approved AD treatments, such as 

Aducanumab and Lecanemab medications.[59,60] 

  

4.4 Limitations, and scope for future work  
  

There are certain limitations that need to be considered regarding our analyses. First, we used 

cross-sectional imaging data for our normative modeling framework, providing a snapshot of 

the disease at a specific time. Due to the cross-sectional setting, it is challenging to distinguish 

between stages and subtypes. While the results of our analyses examining the regional 

proportions of abnormal deviations as well as patient dissimilarity across disease stages 

demonstrated that the observed variability of spatial patterns is due to both disease progression 

and spatial heterogeneity, future works should incorporate serial neuroimaging data collected 

across multiple time points to better characterize disease progression and heterogeneity. 

Second, both ADNI and Knight ADRC datasets consisted of individuals from North America 

only, which are not representative of the general population. Future normative modeling works 

should consider a more diverse population for the reference control group, sampled from 

different geographical regions. This can allow studies to have a larger sample size for a more 

accurate representation of the healthy brain. Third, the imaging scans in the discovery and 

replication cohorts were processed with a different version of FreeSurfer (FreeSurfer 6 for 



ADNI and FreeSurfer 5.3 for ADRC). Although we fine-tuned our pre-trained normative model 

on the replication cohort, the different versions of FreeSurfer may potentially add noise to the 

normative model. To address this issue, it is important to consider harmonization methods like 

COMBAT for future multi-site studies on normative modeling.[61]  

  

4.5 Conclusions  

  
In this paper, we assessed the heterogeneity in AD through the lens of multiple neuroimaging 

modalities by estimating regional statistically significant neurodegenerative and 

neuropathological deviations at the individual level. We studied these subject-specific maps of 

regional abnormal deviations across gray matter volume, amyloid burden and tau deposition 

and observed higher variability in the spatial patterns of MRI atrophy compared to amyloid 

and tau burden. Additionally, we showed higher within-group heterogeneity for ADS patients 

at increased dementia stages. Lastly, we developed an individualized metric of brain health that 

summarizes the extent and severity of neurodegeneration and neuropathology. Together the 

individualized disease severity index and the subject-specific maps of abnormal deviations 

have the potential to assist in clinical decision making and monitor patient response to anti-

amyloid treatments. Our results were reproducible in both the discovery and replication 

datasets, demonstrating the generalizability of our findings.  
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Figure 1: Flow chart of ADNI (1A) and Knight ADRC (1B) study participants. 

 



 
 

Figure 2: Brain atlas maps (Desikan-Killiany atlas for 66 cortical regions and Aseg atlas for 

24 subcortical regions) showing the pairwise group differences in magnitude of deviations at 

each region between the amyloid negative CU group and each of the CDR groups in ADNI 

(2A) and Knight ADRC (2B). The figures from left to right indicate the brain maps 

corresponding to MRI, amyloid and tau, respectively. The color bar represents the effect size 

(Cohen’s d statistic). Effect sizes  of d = 0.2, d = 0.5, and d = 0.8 are typically categorized as 

small, medium, and large, respectively. Gray regions represent the regions with no statistically 

significant deviations after FDR correction. 

 

 



 

Figure 3: Brain atlas maps (Desikan-Killiany atlas for 66 cortical regions and Aseg atlas for 

24 subcortical regions) showing the proportion of abnormal deviations for each region in ADNI 

(3A) and Knight ADRC (3B). The figures from left to right indicate the brain maps 

corresponding to MRI, amyloid and tau respectively. The color bar represents the proportion 

of abnormal deviations of each region from 0 to 100%. Gray represents that no participants 

have abnormal deviations for that region. 

 



 

Figure 4: Hamming distance density (KDE plot) which illustrates the spread of dissimilarity 

in abnormality patterns (calculated by the Hamming distance for all modalities or 

hamming_all; see Section 2.5.4) within each CDR group for ADNI (4A) and Knight ADRC 

(4B). Higher hamming distance values indicated intra-group more heterogeneity in 

abnormality patterns. 

 



 

Figure 5: Box plot showing DSI_all (DSI across all modalities; see Section 2.5.5) for both 

ADNI (5A) and Knight ADRC (5B). The x-axis shows the different CDR groups in the ADS 

and CU-test (Section 2.2.1 and 2.3.1). FDR-corrected post hoc Tukey comparisons used to 

assess pairwise group differences. Abbreviations: DSI: Disease Severity Index, CDR = Clinical 

Dementia Rating. Statistical annotations: ns: not significant 0.05 < p <= 1, * 0.01 < p <= 0.05, 

** 0.001 < p < 0.01, *** p < 0.001. 

 



 

Figure 6: Kaplan-Meier plot of conversion from CDR < 1 to CDR >=1 for ADNI-ADS (6A) 

and ADRC-ADS (6B) participants. The x-axis and the y-axis represent the follow-up period 

(in months) and the probability of progressing from CDR <1 to CDR >= 1 respectively. The 

four lines represent the four quantiles of DSI_all (DSI across all modalities), shown by blue, 

red, green and orange respectively. The filled color span represents the 95% confidence 

intervals. 

 

 


