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Purpose: The goal of this study is to examine the suitability of in-line infrared measurements to monitor,
in real-time, surfactant concentration in the viral vaccine drug substance during a 50KDa tangential flow
filtration (TFF) process.
Methods: A ReactIRTM 702L instrument was used to gather spectra of process off-line samples and refer-
ence materials to assess the feasibility of monitoring surfactant concentration during a TFF process in
real-time. Both univariate and multivariate models were used to evaluate the off-line sample data and
were found to be in good agreement with surfactant concentration values obtained by HPLC. These
results were used as justification for a real-time TFF experiment with live process material.
Results: Small scale ReactIR experiments with process material demonstrated that a multivariate model
using the 1300 cm�1 to 1000 cm�1 spectral region can be used to predict surfactant concentrations
between TFF exchanges 8 to 15.
Conclusion: The results of this study demonstrated suitability of an in-line infrared measurement to mon-
itor surfactant concentration in the viral vaccine drug substance between exchanges 8–15 of a 50 kDa
tangential flow filtration process. The preliminary multivariate model used for this work can be further
optimized for the in-line use at manufacturing scale.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Process analytical technology (PAT) has been defined by the
United States Food and Drug Administration (FDA) as a mechanism
to design, analyze, and control pharmaceutical manufacturing pro-
cesses through the measurement of Critical Process Parameters
(CPP) with Critical Quality Attributes (CQA) of the product [1].
PAT instruments include on- and in-line analyzers capable of mea-
suring physical and chemical process parameters and critical mate-
rial attributes with the goal of optimizing process control. In the
form of a probe, PAT is routinely designed into the manufacturing
line by insertion into the tanks and vessels (Fig. 1). These in-line
measurements collect data directly from the processes occurring
in these areas. In some cases, the probe or sensor cannot be
inserted directly into a manufacturing vessel due to sterility con-
straints, or simply facility design constraints. In these cases, PAT
can be implemented on-line; where a small amount of material
is diverted, while maintaining sterility, from the main manufactur-
ing line into an offshoot vessel and analyzed alongside where a
critical process is taking place (Fig. 1). PAT is often coupled with
computational methods to perform multivariate modelling for
both spectroscopic results and multilayer statistical control of
the processes.

The implementation of process analytical measurements is rou-
tinely justified by reduction of the manufacturing cycle time due
the use of on- and in-line measurements and controls, reduction
or elimination of failed batches, improved control of the process
and product quality in real-time. Current in-process tests employ
laboratory equipment that require time consuming, and expensive
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Fig. 1. Schematic diagram demonstrating analysis using PAT. Courtesy of Mettler
Toledo.
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operation, method validation, manual sampling, large quantities of
testing material, and maintenance. Unlike laboratory tests, PAT can
produce rapid results which can reduce or eliminate the need for
manual sampling. This provides manufacturing scientists with
the opportunity to make real-time decisions to optimize quality
and throughput in product manufacturing [2] at various manufac-
turing stages; including, fermentation [3,4] and purification. Addi-
tionally, the implementation of a PAT solution minimizes potential
safety hazards associated with manual sampling and the current
requirement of direct analyst involvement.

Quality control (QC) laboratory release testing, however, is a
critical and mandatory aspect of vaccine manufacturing. Indepen-
dent QC testing is in place to ensure test articles are produced con-
sistently within batch manufacturing specifications and that
products are efficacious and safe for patients. The Code of Federal
Regulations [5] requires these tests, such as potency, microbial
safety, and content, to occur outside of the manufacturing depart-
ment to ensure independent batch release. The assessment of test
articles, raw materials, and reference standards are strictly con-
trolled, consume considerable testing volume, and require rigorous
validation, robustness and trending. As a result, there is often a
conflict when manufacturing scientists propose real-time data col-
lection outside of the specification tests that are the sole responsi-
bility and focus of QC, as it further complicates the process of
assessment. The implementation of PAT circumvents this obstacle
by allowing scientists to trend large data sets to visualize the effect
of process change and to facilitate continuous improvement
through reduction of lost product and increase of plant uptime;
without interfering with current QC testing.

PAT spectroscopic analyzers, such as in-line near and mid-
infrared (MIR) spectroscopy and Raman spectroscopy produce
large data sets reflecting process conditions in real time; however,
this information is not readily interpretable as is. Understanding
this multilayer process information becomes integral in utilizing
the knowledge gained from the implemented PAT and initiating
the decision feedback loop in minimal time. Key to this under-
standing is the application of chemometric analyses to process
large data sets and determine relationships between product and
process parameters [6,7]. These analysis methods include multi-
variate curve resolution [8], partial least square regression (PLS),
and more complex multivariate statistical process control (MSPC)
[9,10]. These methods can be used to combine large, dissimilar
data sets to predict process critical quality parameters and alert
an analyst to out of specification results.
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The FDA’s release of the PAT guidance document [1] stimulated
the development of novel PAT applications for improved process
monitoring and understanding. Early biologics PAT literature
reports were centered on improvements in CHO cell culture pro-
ductivity [3]. Raman spectroscopy was prominent in these early
publications and has been successfully used to model metabolites
in CHO cell culture monitoring [3]. NIR has also been successful in
modelling [4] metabolites in CHO cell culture studies. Variables
that influence bacterial and viral growth, process metabolites,
and yield such as concentration, pH, and gas flow, can also be mea-
sured in real-time with spectroscopic methods [11]. Chemometric
modeling can then be used to predict production yield based on the
data collected by PAT, such as NIR and Raman [11].

The broad success of in-situ spectroscopic measurements in
upstream applications has led to investigations into improving
process understanding and control in common downstream unit
operations. Unlike long duration upstream measurements that
can range from days to weeks, downstream processing steps are
normally less than a day and can be as short as few hours. As a
result, requirements for downstream measurements are substan-
tially different with an emphasis on speed of response, ease of
use and utility for more than one operation. Downstream process-
ing involves the purification and recovery of product and includes
the removal of insoluble materials, product isolation, product
purification, residual clearance, and final product formulation.
The clearance and reduction of process residuals is a common, vital
step in downstream processing. These residuals must be monitored
closely as they can affect product efficacy or cause adverse reac-
tions in patients, and the stringent regulations surrounding their
clearance and reduction reflect this.

Consideration of appropriate measurement options to evaluate
included Raman and Infrared spectroscopy. While both Infrared
and Raman spectra of surfactant exhibit spectral differences com-
pared to the sample matrix, the longer measurement time (8 to
12 min) required by Raman spectroscopy was found to be only a
minimal improvement compared with the incumbent HPLC
method. In addition, Raman spectra were susceptible to a changing
fluorescence background from the sample matrix. Compared with
other techniques such as NIR and Raman, the lack of interference
from suspended solids (scattering) and the fixed pathlength of
ATR probes tends to reduce the number of variables required in
multivariate IR models For these reasons, a further evaluation of
infrared spectroscopy was initiated with a goal of providing a
real-time in process measurement of surfactant concentration. If
the components of interest have unique IR absorbances, univariate
Beer’s law-based models are simple to implement and are rou-
tinely accurate enough to provide concentration vs time trends
for major components of a process. For processes in which infrared
spectra of the components of interest may be complex and contain
overlapping peaks, the use of multivariate models such as partial
least squares (PLS) are common. Creation of multivariate models
requires careful selection of training set standards that represent
concentration ranges of each component and the elimination of
covariance between components of multicomponent systems.

The scope of this study includes a critical downstream buffer
exchange during a tangential flow filtration (TFF) process in the
production of viral vaccine. In a prior process step, a non-ionic sur-
factant, 2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethanol, hereby
referred to as surfactant (see Fig. 2), is added to facilitate separa-
tion of host proteins from the viral product. In this step, the initial
buffer is exchanged for PBS and the surfactant concentration is
reduced from approximately 4 g/L to 1 g/L. The TFF process typi-
cally exchanges fifteen diavolumes (15 min/diavolume) across a
50 kDa membrane to concentrate the retentate to its target and
to reduce the surfactant to the desired concentration. During the
first 6 to 7 exchanges, the starting buffer which has a high sucrose



Fig. 2. a) Surfactant Standards in water. FTIR spectra of 2% Surfactant (dark red
trace), 1.5% Surfactant (blue trace), and 1%. b) Reference spectra of 30 mM PBS
buffer (red trace) and surfactant (blue trace) with water subtracted 0.5% Surfactant
(blue trace). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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concentration is exchanged for a PBS buffer. Surfactant does not
pass as efficiently through the membrane as sucrose. The diafiltra-
tion of detergents is typically difficult due to interactions with
other detergent molecules in micelles and due to interactions with
hydrophobic groups on the product. As such, the decrease of sur-
factant concentration become noticeable after the 8th cycle, that
is from diavolume 8 to diavolume 15. During the first half of the
process the sucrose was completely removed, and the surfactant
concentration is reduced from approximately 4 g/L to 2 g/L. The
remaining exchanges, 8 through 15 are normally required to
reduce the surfactant concentration to the target of approximately
1 g/L.

At present, HPLC analysis is used to determine concentration of
surfactant in the in-process diafiltration step of viral drug sub-
stance. At scale, the TFF process requires approximately 15 min
per volume exchange. Currently, an off-line sample is collected at
the end of each diavolume and analyzed using a rapid HPLC
method to determine concentration of surfactant in each of the
diavolume off-line samples. A rapid, accurate measurement of
the relatively low concentrations of surfactant in a matrix of host
proteins, virus proteins and changing buffer compositions is a tech-
nical challenge. The current chromatographic measurement pro-
vides the required specificity and accuracy but requires collecting
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a representative sample and the response times can vary from 20
to 30 min excluding complications. Further, a trained operator
must be available to calibrate, maintain and operate the HPLC at
any time a TFF process is running. Therefore, the goal of this study
was to develop an in-line IR measurement that approaches the pre-
cision and accuracy of the incumbent HPLC method, which would
be of approximately ± 0.1 g/L of surfactant measurement.

2. Materials and methods

2.1. Materials used in the study

The aliquots of drug substance lots used in this study were pro-
duced in-house at manufacturing scale. In the drug product, which
is not in scope of this study the concentration of surfactant is sig-
nificantly lower after approximately 20-fold dilution and is mea-
sured by HPLC.

2.2. Lab FTIR spectrometer

Off-line IR spectra were recorded using a Nicolet iS50 FTIR
(Thermo Fisher Inc., USA) equipped with an ATR module. No fur-
ther sample preparation was required and approximately 12 ml of
sample was transferred directly onto the diamond crystal for anal-
ysis. A spectrumwas collected for each sample, cleaning the crystal
in between the sample measurements. Data acquisition was per-
formed using OMNIC software (Thermo Fisher Inc., USA) and was
plotted in absorbance units. This data was then analyzed using
TQ Analyst (Thermo Fisher Inc., USA).

2.3. Standards and process off-line sample information

Surfactant standards were created at concentration ranging
from 1% to 2% to identify peak locations. Infrared spectra of the sur-
factant standards and a series of process samples from 4 different
TFF runs, were collected on a Mettler Toledo 702L ReactIRTM with a
9.5 mm DiComp probe with a 1.5-meter fiber at 8 cm�1 resolution
and 256 scans. The spectral data were plotted in absorbance units
and displayed with water subtracted and or PBS buffer subtracted.
The intermediate precision of the off-line IR method is below 2%.

2.4. ReactIR small scale TFF experiment

IR spectra were recorded using a ReactIR 702L (Mettler Toledo
Inc., USA) equipped with a 9. 5 mm diameter DiComp ATR probe
with a 1.5-meter fiber. Spectra were collected at 8 cm�1 resolution
and 512 scans (3 min). The probe was submerged in the retentate
vessel and data collected throughout the TFF run. A reference spec-
trum of the final PBS buffer was collected and used to subtract
from the TFF experiment data. With no initial concentration, a
14X (equal volume) diafiltration was performed using 30 mM
PBS buffer at RT. 1 mL retentate samples were pulled throughout
the TFF process and tested via HPLC. There was no TFF rinse post
diafiltration. After the 14th exchange, 0.5 mL of 10% surfactant
solution was spiked back into the post 50 kDa material a total of
5 times. Additions 1–4 were mixed for 15 min and addition 5
mixed overnight. IR readings and HPLC samples were taken after
each mix.

3. Results

3.1. Surfactant standard

The spectra of the surfactant standards were found to be consis-
tent with the structure of the molecule. The most intense, broad
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absorbance near 1100 cm�1 is due to the C–O–C ether bonds of the
repeating polyether structure and the absorbance near 1250 cm�1

is consistent with the aryl C–O stretch (Fig. 2a). These two main
spectral features are distinguishable from the spectrum of the
PBS buffer found in the second half of the diafiltration process
(Fig. 2b). To estimate an approximate limit of detection of
surfactant, the absorbance of the 1094 cm�1 C–O–C peak vs
concentration was evaluated. Normally a linear relationship
between absorbance and concentration allows an estimate of the
concentration at 0.001 absorbance units (au). This, conservative,
Fig. 3. a) MIR Spectra of vaccine drug substance samples from a typical 50KDa TFF proces
increasing amounts of surfactant and PLS model actual vs predicted cross-validation plo
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estimated limit of detection is approximately 0.058% or 0.58 g/L
under the conditions the spectra were collected. This limit of detec-
tion was improved in subsequent work by increasing the number of
scans collected and the application of multivariate models.

3.2. Laboratory study using manufacturing in-process samples with
spiked surfactant

To begin the evaluation of mid-IR, a laboratory study was per-
formed using a limited number of in-process samples spiked with
s; b) MIR spectra of exchange 15 vaccine drug substance sample (graph) spiked with
t (insert).



Fig. 4. a) Process Off-line samples with PBS buffer subtracted. The scans are
representative of four ultrafiltration runs. b) PLS model actual vs predicted plot with
validation samples plotted in green triangles. Model includes 4 diafiltration runs (2
strain 2, 1 strain 1 and 1 strains 3). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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surfactant using Nicolet iS50 FTIR spectrometer. In an effort to
understand process variability and the impact of the PBS buffer,
samples of the final diavolume exchange (exchange 15) were col-
lected from two 50KDa TFF runs and known amounts of surfactant
added, creating a series of synthetic standards spanning a concen-
tration range of the surfactant (0 to 5%).

Fig. 3a shows spectra of process samples collected from a 50KDa
TFF process. Note the spectrum of exchange volume 1 in Fig. 3a is
dominated by the high concentration of sucrose found in the start-
ing buffer. While surfactant concentration in exchanges 8 through
15 is decreasing, the major bands in the spectra are associated with
the presence of 30 mM PBS buffer. The exchange 15 sample was
then spiked with increasing amounts of surfactant to create a set
of synthetic surfactant standards in a matrix of process material
(Fig. 3b).

As shown in Fig. 3b, the spectral regions associated with the
presence of the surfactant respond as expected with concentration,
which was measured by the rapid HPLC method (Fig. S1). Using
these spectra to create a PLS model enables an evaluation of the
overlap of the PBS buffer peaks (Fig. 3a, insert). Combining the
spectra, calculated surfactant concentrations over the range of
1300 cm�1 to 900 cm�1 resulted in the cross-validation plot
(Fig. 3b inset). The clear correlation of surfactant concentration
despite the spectral overlap of the PBS peaks indicated the feasibil-
ity of such an in-line measurement.

3.3. Feasibility of MIR for diafiltration step using process off-line
samples

The next step in the evaluation of an in-line infrared
measurement was to work with true process samples in which
the surfactant concentration was determined by the at-line rapid
HPLC method and with an instrument similar to one that would
be used for the process measurement. Despite the limited avail-
ability of process samples, a full set of samples were obtained from
a 50KDa TFF run of viral strain 1 (Fig. 4a, Table S1). In addition, a
subset of 4–10 diavolume exchanges from viral strains 2 and 3
(Table S1) were collected and analyzed. The overall trends for the
decrease in surfactant concentration were the same between
strains, however the rate of surfactant concentration change was
higher for the 2 and 3 strains.

As in the lab study, only samples from exchange 8 on were used
so as to not include the potential interference from the high con-
centrations of sucrose in exchanges between 1 and 7. Table S1 lists
the samples and associated surfactant concentration as calculated
by the at-line HPLC method. The range of surfactant concentrations
is repeatable across the four TFF runs ranging from about
2000 mg/ml to between 800 and 950 ug/ml. The target surfactant
concentration is calculated for each run, based upon the concentra-
tion of virus in each batch.

Fig. 4a, shows the spectra collected from the strain 1 sample set
with the PBS buffer subtracted. Without the spectral contributions
from the PBS buffer, features from the surfactant and soluble pro-
tein are more apparent. Note that the amide l and ll bands (approx-
imately 1640 cm�1 and 1545 cm�1 respectively) from the soluble
protein show subtle changes in intensity and shape throughout
the samples. These changes are to be expected as the rate of diafil-
tration, thus total system volume, varies through the run.

In order to test feasibility of a surfactant measurement, the
spectra of strain 1, strain 2, and strain 3 diafiltration exchanges
(Table S1) were analyzed in conjunction with the HPLC derived
surfactant concentrations and were used to create an exploratory
PLS model (Fig. 4b). This simple model contains only 23 samples,
uses a narrow spectral region (1284 cm�1 to 972 cm�1) and a
two-point baseline across the same region. Five of the samples
were reserved as validation samples. Using only 3 latent variables,
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the predictions of the test set spectra are shown in Fig. 4b and con-
sidering the small training set size, show promise. Further confir-
mation of this preliminary PLS model can be found in close
examination of the latent variables. Fig. S2 shows the second latent
variable used in the model and the similarity between the spectral
features of the surfactant reference spectrum. Specifically, the aryl
C–O stretch near 1245 cm�1 and the C–O–C ether stretch maxima
just below 1100 cm�1 indicate the second latent variable largely
models the presence of the surfactant.
3.4. Small scale TFF experiment with ReactIR probe to measure
surfactant concentration in-line

The promising results of the process samples in the previous
section were used to justify a small-scale TFF test that would use
(rare and expensive) fresh process material and simulate an at
scale process measurement. Goals of this work included: to con-
firm that in-line data will be similar to prior work with off-line
samples, to identify any unknown aspects of a real-time measure-
ment, and introduce the instrumentation to the manufacturing
support group and gather feedback on adaptation of an in-line
measurement in a manufacturing environment.

An aliquot of approximately 700 mL of viral drug substance
material was used to run a TFF experiment with a ReactIR probe



Fig. 5. a) In-line MIR spectra of a small-scale diafiltration exchanges; b) Combining the MIR with HPLC - PLS model for the exchanges 8 to 15.
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placed in the retentate vessel during the run. Reference spectra of
the ending PBS buffer were also collected for use during data
analysis.

As in the off-line sample investigations, data was collected after
the sucrose was removed in the first 7 exchanges. Normally at pro-
cess scale, exchanges require approximately 15 mins per diavol-
ume however, in this experiment, each exchange required only
approximately 3 min. As such, the process was placed in recircula-
1834
tion mode between each exchange volume so that 4 to 5 represen-
tative infrared spectra could be collected at each exchange. After
the last infrared spectrum was collected, a sample was collected
from the retentate vessel for off-line HPLC surfactant determina-
tion. At the conclusion of the TFF process, the process was placed
in recirculation and infrared data collected for an additional two
hours. Following the two-hour hold, small additions of surfactant
were made to the retentate vessel and additional samples collected



Fig. 6. a) Peak intensity trends versus time for the surfactant and drug substance b) Overlay of peak intensity trends and surfactant PLS model predictions.
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for at-line HPLC analysis. The resulting solution was then recircu-
lated overnight, and a final HPLC sample collected in the morning.

Fig. 5a, shows the infrared spectra associated with each off-line
sample collection time during the TFF experiment, surfactant addi-
tions and overnight recirculation. A reference spectrum of the final
PBS buffer was subtracted from each of the spectra shown in Fig. 5a
to eliminate the interference from the PBS buffer peaks and make
to visualization of the soluble protein drug substance and surfac-
tant peaks possible.
1835
Following the same approach used with the multi-strain off-line
sample spectra, spectra from the 50KDa TFF experiment collected
at the time a sample for off-line surfactant analysis were used to
construct a PLS model. As before, the goal of this model was to test
for consistency and correlation in the data set. The model was com-
posed using 8 training set samples, 4 samples were reserved for a
validation set, the region from 1300 cm�1 to 1000 cm�1 and 3
latent variables. Fig. 5b is a plot that shows cross validation data
for the spectra used in the model and then the results of the train-



Table 1
Surfactant concentration measured by HPLC and predicted by FTIR.

Surfactant concentration measured
by HPLC, mg/ml

Surfactant concentration predicted
by FTIR, mg/ml

1544 1535
1282 1275
1101 1140
978 965
752 762
654 618
519 580
397 357
429 287
499 449
550 594
612 615
692 582
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ing set data used to test the model, which is the actual vs predicted
surfactant concentrations using the 3 latent variable PLS model.
Superimposed in the green triangles are the predictions of the val-
idation set samples.

During the TFF experiment, the ReactIR generated an infrared
spectrum every 3 min. Monitoring the infrared regions of interest
included, the surfactant peaks and the amide carbonyl regions
which resulted in trend plots of peak intensity vs time. Fig. 6a
shows the infrared peak trend of the 1082 cm�1 peak associated
with the surfactant. Note that the trend generally correlates well
with the off-line surfactant concentrations measured by HPLC
(Table 1) represented by the blue circles. Monitoring peak intensi-
ties is expedient and does not require calibration, however at low
surfactant concentrations, this approach may not provide the accu-
racy and precision required for an in-line measurement.

The concentration of surfactant measured by HPLC were com-
pared with those predicted by FTIR (Table 1).

Fig. 6b shows the model predictions for the experiment in black
with the at-line HPLC data plotted in the blue dotted line. Despite
the small dataset, prediction of surfactant concentration using the
infrared model is surprisingly accurate and may reveal details of
the interaction of surfactant and protein. The limited number of
samples available to create the model used in this portion of the
study, restricts interpretation of the results to merely; spectral
changes can be correlated to off-line surfactant concentrations
and the spectra are consistent within the experiment.
4. Discussion

There are many aspects to evaluating the suitability of a PAT
measurement for routine commercial scale use. Early feasibility
work normally consists of understanding and defining the mea-
surement requirements such as: value of the measurement to the
manufacturing or R&D organization, analyte(s) of interest, nominal
concentration range(s) of analytes, matrix in which the measure-
ment will be made, and how best to interface to the process. In
the case study presented here, there were numerous constraints
associated with working with a live virus process, such as the lim-
ited availability of process samples and the difficulty testing the
measurement under conditions comparable to commercial scale.

Ultimately, the totality of the results of this limited study, were
found sufficient to justify additional work so that this measure-
ment could be applied to commercial scale process control. This
real-time measurement of low concentrations of surfactant in a
changing matrix of live virus and buffer is complex, and several
risks were identified that can only be effectively addressed with
further development and testing of this measurement. In this
study, a small aliquots of drug substance were used. At manufac-
turing scale, the IR probe will be installed into a stainless-steel fil-
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tration tank and subjected to cleaning by sodium hydroxide. Once
cleaning cycle complete, the product will be filled into the tank
aseptically for the diafiltration to begin. Further, the drug sub-
stance is subjected to the sterile filtration, then diluted aseptically
prior to filling of drug product.

Despite the relative ease of modeling using the limited data sets
from both multi-strain process samples and the small scale TFF
experiment, there are variables that will require further investiga-
tion. During a normal production year, three viral strains are pro-
duced for each geographical region. There are numerous
geographical regions and therefore many viral strains are pro-
cessed annually. Only further work will identify if a common sur-
factant model will provide sufficient accuracy for each strain. In
addition, normal seasonal process variability both within a single
strain and across multiple strains will require more at scale data
to determine the impact of this critical variable.

Results from the small scale TFF study indicate the possibility of
an equilibrium between the surfactant, drug substance, other sol-
uble proteins and the TFF apparatus. Careful inspection of the
infrared predicted surfactant trend in Fig. 6b, shows that after
the last exchange sample point, the FTIR predicted surfactant con-
centration continued to decrease for approximately 30 min while
the system was recirculating. Further experiments will be required
to understand if this effect is an artifact of the experiment, related
to the small scale TFF apparatus and whether this effect occurs at
commercial scale. These observations would have been missed
without the in-line measurement.

In the evaluation of PAT measurements, feasibility studies may
be limited in scope by processing conditions, availability of repre-
sentative samples and unknown relationships between small or
pilot scale and commercial scale process variables. The existence
of these unknowns may highlight risk associated with evaluating
the performance of an in-line measurement. It may not be possible
to mitigate these risks with carefully designed experiments com-
pared with installing and gathering true process data at scale. In
these situations, it is helpful to recognize the additional advantages
to in-line measurements that were considered during this evalua-
tion. The primary financial driver for an in-line measurement was
found to be the costs associated with maintaining and staffing the
off-line measurement whenever the 50KDa TFF process was run.
These savings were estimated to be approximately $1.5MM per
year. In addition to the financial return on investment associated
with the reduction of off-line sampling required for each TFF run,
data from an in-line measurement will provide an ‘‘overview” of
the TFF process including the rate of sucrose clearance, the rate
of exchange of buffers and the rate of surfactant reduction. These
real-time trends could be used to detect abnormalities in the pro-
cess associated with mechanical failures and membrane perfor-
mance. In either case, the rapid detection of a process upset
improves the chances of corrective action taken before the batch
is at risk. Finally, real-time measurements may improve the under-
standing of the relationship between surfactant concentration,
mixing time and protein structure.
5. Conclusion

The results of these three studies demonstrate that an in-line
infrared measurement combined with a multivariate model can
predict surfactant concentrations in the range encountered during
the TFF process step. In view of the constraints on the availability
of representative process samples and process material, the data
presented herein demonstrate the feasibility of a real-time surfac-
tant measurement. Based on the results of the off-line and in-line
studies ReactIR is recommended as a PAT solution to measure con-
centration of surfactant in-line at manufacturing scale.
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