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Abstract: ent-Kaur-15-en-17-al-18-oic acid, extracted from the Chinese well known folk herb
Leontopodium longifolium, performed a significantly neuroprotective effect on amyloid beta peptide
25-35 (Aβ25-35)-induced SH-SY5Y cells neurotoxicity in Alzheimer’s disease. The results demonstrated
that this compound maintained oxidative stress balance, reduced levels of reactive oxygen species
(ROS), malondialdehyde (MDA), and improved contents of glutathione (GSH) and superoxide
dismutase (SOD) without obvious cytotoxicity. This compound also obviously relieved oxidative
stress-induced apoptosis associated with p53 and nuclear factor κB (NF-κB) pathways accompanied
by upregulating B-cell lymphoma-2 (bcl-2) and downregulating p53, nuclear factor κB (NF-κB), Bax,
Cleaved-caspase 3, and Cytochrome C protein expressions further. Briefly, ent-kaur-15-en-17-al-18-oic
acid protected cells from oxidative apoptosis associated with p53 and NF-κB pathways.
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1. Introduction

Alzheimer’s disease is a progressive, neurodegenerative disorder characterized by two important
hallmarks: neurotic plaques and neurofibrillary tangles (NFT) [1] meanwhile accompanied by loss of
memory and damage of intricate cognition [2].

Fatal component of plaques amyloid-β peptides exert serious neurotoxicity, which causes oxidative
stress and cell apoptosis leading to serious consequence [3,4]. Especially the fragment 25-35 of Aβ

performs better in regards to solubility and efficiency [5,6] compared to Aβ1-40 and Aβ1-42, which
causes the deficit of memory, neuronal cell apoptosis, synaptic and mitochondrial dysfunction and
neuratrophy owing to its special structure [7–11].

Oxidative stress as an early manifestation caught sight of Alzheimer’s disease (AD) has been
depicted in passed patients [12]. It causes perturbation between the oxidation and reduction system
and decline of mitochondrial membrane potential (MMP), which leads to pro-apoptotic mediators
release to initiate cell apoptosis [13]. In mitochondrial apoptosis there is an important balance between
B-cell lymphoma-2 (bcl-2) and Bax proteins [14–16]. Once this balance is damaged, the caspases
activator Cytochrome C will be activated to release into cytosol resulting in caspase 3 activating [17,18].
The nuclear transcription factor p53 [19] and nuclear factor κB (NF-κB), a transcription factor related
to inflammation, which exists mostly in the form of heterodimer RelA (p65)/p50 in cytoplasm and
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translocates important apoptotic gene expressions in the nucleus [20], mediate these protein expressions
further [21–23]. In view of the above mentioned mechanisms, prevention or inhibition of oxidative
stress may be regarded as a key step in AD therapy [24].

Herbal medicines comprising varied components exhibit many pharmacological activities
including anti-oxidant, anti-amyloid, and anti-inflammation and so on [25]. Leontopodium longifolium,
herbal medicine belonged to Asteraceae, widely distributes in Asia and Europe. Previous study has
demonstrated that compound ent-kaur-15-en-17-al-18-oic acid (LL-3) extracted from it significantly
scavenged free radical nitric oxide (NO) that plays an important role in oxidative stress [26], so LL-3
neuroprotective role of SH-SY5Y cells considered as a classical AD cellular model was studied in the
current study [27].

2. Results

2.1. Effect of LL-3 and Amyloid Beta Peptide 25-35 on Cell Viability

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to
detect LL-3 (chemical structure as shown in Figure 1) [26] cytotoxicity in SH-SY5Y cells. According to
Figure 2B, dosage 2.5–20 µM that showed no significant alternation compared to control cells were
adopted to detect the LL-3 neuroprotective role in amyloid beta peptide 25-35 (Aβ25-35)-induced
cytotoxicity in SH-SY5Y cells. As Figure 2C shows, LL-3 reversed the cytotoxic activity caused
by Aβ25-35. Its neuroprotective role is also viewed under a microscope (Figure 2A). These results
suggested that LL-3 may play a part in protecting SH-SY5Y cells from Aβ25-35-induced apoptosis in a
dose-dependent way.
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Figure 1. Chemical structure of ent-kaur-15-en-17-al-18-oic acid (LL-3). Figure 1. Chemical structure of ent-kaur-15-en-17-al-18-oic acid (LL-3).

2.2. Effect of LL-3 on Aβ25-35-Induced Cellular Reactive Oxygen Species Generation

2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) probe that can be hydrolyzed by cellular
enzyme to form DCFH. This substance can react with reactive oxygen species (ROS) to produce
fluorescent DCF so DCFH-DA probe was used to estimate intracellular ROS production via flow
cytometric assay. The assay showed that SH-SY5Y cells treated with Aβ25-35 alone caused great
elevation of ROS production compared to the control group. LL-3 significantly reduced the ROS level
with G-mean at 2.5 µM (0.49), 5 µM (0.44), 10 µM, (0.39), 20 µM (0.31) (Figure 3A), implying that LL-3
may relieve oxidative stress induced by Aβ25-35.
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Figure 2. LL-3 protective effect on amyloid beta peptide 25-35 (Aβ25-35)-induced neurotoxicity in
SH-SY5Y cells. SH-SY5Y cells were treated with different concentrations of LL-3 for 48 h and then cell
viability was analyzed according to 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(MTT) assay by measuring the absorbance at 570 nm (B). SH-SY5Y cells were treated with different
concentrations of LL-3 for 30 min prior to 25 µM Aβ25-35 for another 48 h. After this incubation, cell
viability was determined using the MTT assay (C) and LL-3 co-incubated with Aβ25-35 effect on cell
viability was viewed under microscope (A). All these experiments were detected three times and shown
with mean ± SD and *** p < 0.001 compared to Aβ25-35 alone.
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Figure 3. Effects of LL-3 on Aβ25-35-induced oxidative stress. SH-SY5Y cells were pretreated with
different concentrations of LL-3 for 30 min in six-well plates and co-incubated with 25 µM Aβ25-35

for another 24 h. The levels of reactive oxygen species (ROS) (A), superoxide dismutase (SOD) (B),
glutathione (GSH) (C), and malondialdehyde (MDA) (D) were detected through flow cytometric assay
using 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA) probe and SOD, GSH, and MDA assays
according to manufacturer protocols. All these experiments were detected three times and shown with
mean ± SD, * p < 0.05, ** p < 0.01, *** p < 0.001 compared to Aβ25-35 alone.

2.3. LL-3 Decreased Malondialdehyde and Increased Glutathione and Superoxide Dismutase Levels in
Aβ25-35-Exposed Cells

As important radical cleaners, glutathione (GSH) and superoxide dismutase (SOD) levels were
detected in SH-SY5Y cells and the important product of ROS, malondialdehyde (MDA) was also
detected in this study to study LL-3 protective role in Aβ25-35-induced oxidative stress further. GSH
and SOD react with oxyradicals and MDA causes oxidative stress. The results found that the levels of
GSH and SOD significantly increased and level of MDA decreased in a dose-independent way through
LL-3 co-treatment compared to Aβ25-35 alone (Figure 3B–D), suggesting that LL-3 may improve the
anti-oxidant system to relive oxidative stress caused by Aβ25-35.

2.4. LL-3 Protected Aβ25-35-Treated Cells MMP from Damage

Dysfunction of MMP caused by oxidative stress is also an early and key evidence in apoptotic
cells. A JC-1 probe that has two forms with distinct fluorescence is used to detect cellular MMP.
Red fluorescence indicates a high concentration of multimer and green fluorescence indicates the
monomer pattern. Under oxidative stress conditions, JC-1 is present in the monomer pattern. Cells with
exposure to 25 µM Aβ25-35 had shown an obvious reduction of MMP with JC-1 probe presenting green
fluorescence, indicating that MMP dysfunction induced by oxidative stress happened. Treated with LL-3
(5, 10, 20 µM) obviously ameliorated this undesirable phenomenon (Figure 4) in a dose-dependent way.
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Figure 4. LL-3 recovered mitochondrial membrane potential (MMP) from Aβ25-35 damage. MMP,
evaluated by JC-1 probe was assessed after LL-3 co-incubation with Aβ25-35 for 24 h. LL-3 was pretreated
before Aβ25-35 for 30 min. (A) The MMP alteration was assessed by Cytation 5 Imaging Reader using
JC-1 staining. (B) The ratio of R/G fluorescence intensity was detected using flow cytometric assay.
All experiments were detected three times and shown with mean ± SD and *** p <0.001 compared to
Aβ25-35 alone.

2.5. LL-3 Prevented Aβ25-35-Induced Apoptosis Adopted Diamidino-2-Phenylindole Staining

When cells are in mitochondrial apoptotic status, they can form apoptotic bodies including nuclear
fragments and organelle which can be stained by diamidino-2-phenylindole (DAPI). In the Aβ25-35

treated alone group, massive cells with apoptotic bodies were detected under fluorescent microscope.
While exposed to LL-3 (5, 10, 20 µM) this phenomenon can be significantly reversed (Figure 5A).
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Figure 5. LL-3 inhibited Aβ25-35-caused apoptosis. LL-3 was pretreated prior to Aβ25-35 for 30 min.
After 48 h, cells were detected using diamidino-2-phenylindole (DAPI) staining and viewed under
Cytation 5 Imaging Reader. (A) Arrows indicated the apoptotic nuclei. (B) Quantification of abnormal
nuclei after exposure to Aβ25–35 in the presence or absence of LL-3. The results are representative
of three independent experiments. Data were mean ± SD, ** p < 0.01, and *** p < 0.001 compared to
Aβ25-35 alone.

2.6. Effect of LL-3 on Aβ25-35-Induced Cellular Apoptosis

Annexin V-fluorexcein isothiocyanate (FITC)/PI staining was adopted to detect cellular apoptosis
through flow cytometric assay. FITC detected phosphati-dylserine (PS) moieties flipping outward
from inside of cells during early apoptosis exhibiting green fluorescence and PI detected late apoptosis
combining with nuclear exhibiting red fluorescence. In the Aβ25-35 alone group, quantities of apoptotic
cells were largely produced. Exposed to LL-3 reversed this result in a dose-dependent way with
apoptotic ratios at 2.5 µM (56.34%), 5 µM (46.27%), 10 µM (34.06%), 20 µM (21.24%) (Figure 5B). All
these results suggested that LL-3 may exert a role in protecting cells from apoptosis induced by Aβ25-35.
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2.7. LL-3 Inhibited Aβ25-35-Treated Cells from Apoptosis Involved NF-κB and p53 Pathways

With mitochondrial apoptosis occurring, molecular mechanism was studied using western blot
experiment. The Cleaved-caspase 3, bcl-2, Bax, Cytochrome C, p53, NF-κB anti-bodies were applied to
detect the compounds molecular mechanism further. Results showed that LL-3 decreased expressions
of Bax, Cytochrome C, p53, NF-κB, and cleaved-caspase 3 and increased expression of bcl-2 indicating
that compound reversed cellular apoptosis via p53 and NF-κB pathways (Figure 6).
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Figure 6. Effect of LL-3 on expressions of NF-κB, p53, bcl-2, Bax, Cytochrome C, and Cleaved-caspase 3
protein through Aβ25-35-induced SH-SY5Y cells. Different concentrations of LL-3 were added in cells for
30 min prior to 25 µM Aβ with 48 h. Representative image of western blots of NF-κB, p53 protein (A),
Cytosol Cytochrome c, Mitochondria Cytochrome c protein (B), bcl-2, Bax protein (C), Cleaved-caspase
3 protein (D). Densitometric analysis of respective changes in levels of values of NF-κB, p53, ratio of
Cytosol Cytochrome c/Mitochondria Cytochrome c, ratio of Bcl-2/Bax, and Cleaved-caspase 3. β-actin
was used as the internal control. Data were mean ± SD, * p < 0.05, ** p < 0.01, and *** p < 0.001 compared
to Aβ25-35 alone.

3. Discussion

In an important age-related AD symbol, senile plaque which is caused by aggregations of Aβ

protein occurs [1]. The accumulations of Aβ cause injury of the brain associated with oxidative stress
and cell apoptosis [28]. It is widely accepted that soluble oligomers Aβ triggers the onset of AD mainly
through its interaction with brain parenchyma [29–32]. Aβ25-35, short toxic segment corresponding to
amino acids 25-35, has full protein encompassing β-sheet [33]. Therefore Aβ25-35 has been regarded as
vitro model of AD. However, the certain mechanism of AD has not been understood.

Consistent with these reports, a current study found reverse effect of LL-3 on Aβ25-35-induced
cytotoxicity via MTT assay. According to this, DAPI and Annexin V-FITC/PI methods were used to
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verify the neuroprotective effect of LL-3 further. Results showed that co-administration of LL-3 can
protect cells from apoptosis induced by Aβ25-35 in a dose-dependent way.

In the apoptotic process, the bcl-2 family which is defined as two sub-categories: inhibition of
apoptosis proteins including primary bcl-2 and bcl-xl maintaining cell survival and another promotion
of apoptosis protein represented by Bax, Bid inducing perturbation of mitochondria and cell apoptosis,
plays an important role [34]. Activation of Bax and inhibition of bcl-2 induce Cytochrome C that commits
cell apoptosis by activating caspase related proteins release. Caspase 3 considered as phenotype of
apoptosis which results in maturation of procaspase-3, cleavage of caspase-3 substrates plays an vital
role in neuronal apoptosis [35]. Nuclear transcription factor p53 which is also a tumor suppressor may
mediate apoptosis in neurons, which can be induced by oxidative stress, DNA damage hypoglycemia,
viral infections, and so on. NF-κB a transcription factor can be activated by Aβ deposition to translocate
important apoptotic gene expressions in nucleus. Both p53 and NF-κB exert vital roles in mediating
these protein expressions. According to this, western blot assay was used to detect apoptotic molecular
mechanism further. Aβ25-35 exposure leaded to increase expressions of p53, NF-κB, Bax, Cytochrome
C, and Cleaved-caspase 3 and decrease expression of bcl-2 but co-administration with LL-3 reversed
this phenomenon in a dose-dependent way.

Dysfunction of MMP that causes apoptotic activator Cytochrome C release plays a vital role in
increased apoptosis. In agreement with this, JC-1 probe with flow cytometry was used to assess its
role. Th Aβ25-35 exposed cells showed significantly depletion of MMP while co-administration of LL-3
reversed this grievous phenomenon with elevating MMP in a dose-independent way.

Several studies have affirmed that Leontopodium longifolium has anti-inflammation and cough
abilities [36]. Persuasive evidences have substantially reported pivotal function of Aβ induced the
generation of free radicals which expedite oxidative stress that contributes a lot to process of AD [37,38].
Oxidative stress triggers the onset of mitochondrial apoptosis [39] and indicates a result wherein
ROS [40]. ROS, the core resulting in both oxidative stress and decline of MMP also contributes a lot
to AD [41]. The superfluous ROS disrupts cellular detoxification through decreasing GSH and SOD
levels and augmenting MDA level [41]. Results found that co-administration of LL-3 maintained
detoxification system balance through reducing ROS and MDA levels and increasing SOD and
GSH levels.

In conclusion, LL-3 inhibited cells from oxidative apoptosis via p53 and NF-κB pathways by
maintaining oxidative stress balance, MMP, and inhibiting cell death without obvious cytotoxicity.
These findings indicated that LL-3 may become a potential agent for AD therapies.

4. Materials and Methods

4.1. Preparation of LL-3 Compound

LL-3 (C20H28O3, 316.4345) was produced by our Nature Products Department and spectral data
was described previously [26]. LL-3 with the form of purity exceeding 95% colorless crystals was
dissolved in the dimethyl sulfoxide (DMSO) as 10 mM, which was diluted in the definite concentration
before use. And the control groups were treated with maximum concentration of DMSO alone.

4.2. Chemicals

MTT, DAPI, Aβ25-35 were purchased from Sigma-Aldrich (St. Louis, MO, USA). DMEM was
purchased from Gibco (Gibco, Invitrogen, USA) firm. ROS, SOD, and JC-1 assay kits were purchased
from Beyotime Institute of Biotecnology (Shanghai, China). GSH and MDA kits were provided by
Nanjing Jiancheng Bioengineering Institute (Nanjing, Jiangsu, China). Annexin V-FITC/PI dyeing
kit was from BD Bioscience (San Jose, CA, USA). The anti-bodies of β-actin, p53, NF-κB, bcl-2, Bax,
Cleaved-caspase 3, and Cytochrome C were provided by Cell Signaling Technology (CST, Inc, Beverly,
MA, USA). The secondary horseradish per-oxidase goat anti-mouse immunglobulin G (IgG) and
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anti-rabbit IgG were bought from Santa Cruz Biotechnology (Santa Cruz Biotechnology, Inc, Dallas,
TX, USA).

4.3. Cell Culture

SH-SY5Y (passage 17-30) cells were purchased from the Shanghai Institute Science (SIBS) and
were grown in Dulbecco’s modified Eagle medium (DMEM) which contains 10% fetal bovine serum
(FBS) (Li Wei Ning, Jinan, China) with 100 units/mL streptomycin and 100 units/mL penicillin at 37 ◦C
in a humidified environment including 5% CO2 in cell incubator.

4.4. Preparation for Aβ25-35 Aggregates

Double distilled water was used to dissolve Aβ25-35 with 10 mM concentration that was cultured
in cell incubator for seven days to form soluble aggregates. Before use, Aβ25-35 aggregates stored at
-20◦C were diluted to 25 µM.

4.5. Determination of Cell Cytotoxicity via MTT Assay

Cells were cultured in 96-well plates at 5× 104/mL density and treated with different concentrations
of LL-3 (2.5–40 or 2.5–20 µM) without or prior to 25 µM Aβ25-35 for 30 min. Briefly, after 48 h cells
were exposed to 20 µL MTT (5 mg/mL) for 4 h and 150 µL DMSO was used to dissolve crystals. The
absorbance was measured with microplate reader (Molecule Device, San Francisco, CA, USA) at
570 nm. The absorbance of control group without LL-3 and Aβ25-35 treatments was considered as
100%. All experiments were repeated three times.

4.6. ROS Assay

The cultured six-well plates cells were treated with different concentrations of LL-3 (2.5–20 µM)
prior to Aβ25-35 (25 µM) for 30 min. After 24 h, cells were collected at 1000 rpm for 5 min. Then
phosphate buffer saline (PBS) was used to wash cells two or three times. After that cells were loaded
with probe at 37 ◦C for 30 min and mixed it upside down every five minutes. Washed with PBS
twice, cells were resuspended with PBS and used flow cytometry (BD Bioscience, San Jose, CA,
USA) via FL1-H channel to detect its fluorescence intensity. All experiments were performed three
independent times.

4.7. Measurement of Intracellular SOD, GSH and MDA Levels

The cells that were cultured in six-well plates were pretreated with different concentrations of
LL-3 (2.5–20 µM) for 30 min and then Aβ25-35 was added. After 24 h, MDA, GSH, and SOD levels
were detected according to manufacturer protocols using microplate reader. All experiments were
performed three independent times.

4.8. MMP Assay

MMP was measured by flow cytometry using JC-1 probe. Cells were cultured in six-well plates
and after indicated treatments, cells were collected at 1000 rpm for 5 min. After this, JC-1 probe was
put in cells and co-incubated in 37 ◦C for 20 min. Then ice-bath JC-1 dyeing buffer washed cells twice.
Finally, serum was used to resuspend cells and we detected them via Cytation 5 Imaging Reader
(Bio Tek, USA) or flow cytometry through FL2-H and FL1-H channels. Experiments were repeated
three times.

4.9. Assessment of Morphological Alterations

Six-well plates cells were treated with different concentrations of LL-3 (2.5–20 µM) prior to 25 µM
Aβ25-35 for 30 min. After 48 h, cells were washed with cold PBS twice and then fixed with ice acetone
associated with methanol (1:1 = v/v) for 5 min. After PBS washed, cells were added in 4 µg/mL DAPI
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to dye for 10 min in a dark environment. Then Triton-100: PBS (1:1000 = v/v) was employed to wash
cells three times every 5 min. Lastly, anti-fluorescent quenching solution was added in cells. Then
apoptotic morphological alteration of cells, which was identified by fragmented or condensed nucleus
was detected under Cytation 5 Imaging Reader. Experiments were carried out three times.

4.10. Measurement of Cell Apoptosis

Annexin V-FITC/PI dyeing was used to measure cell apoptosis. Cells were cultured in six-well
plates. Briefly, post treatment cells as described above were collected at 1000 rpm for 5 min. After
washed with PBS, 400 µL binding buffer was added in cells. Then 5 µL Annexin V-FITC was used at
4 ◦C for 15 min and 10 µL PI was added at 4 ◦C for another 5 min. Finally, the cells were detected via
flow cytometric assay. The proportions about apoptotic cells of total cells were analyzed. Experiments
were performed three times.

4.11. Western Blot Assay

Cells were cultured in six-well plates. In a word, post treated cells were lysed using RIPA (lysis and
extraction buffer) lysate which contains a protease inhibitorphenylmethanesulfonyl fluoride (PMSF)
(1 mL RIPA/10 µL PMSF) at 4 ◦C for 30 min. Then a centrifuge was used to deal with lysate at 12000× g
for 20 min. Obtained supernatant was used to make protein quantification using BCA kit and western
blot assay using 12% SDS-PAGE (polyacrylamide gel electrophoresis) to detect NF-κB, p53, bcl-2,
Bax, Cytochrome C, and Cleaved-caspase 3 protein expressions. After being transferred to the NT
membrane, apolipoprotein was used to block nonspecific proteins. Following this, corresponding
primary antibodies (1:1000) were used to combine with membranous antigens at 4 ◦C for overnight.
Next day, TBST (10 mmol/L Tris-HCL, 150 mmol/L NaCl, and 0.1% Tween-20; pH 7.8) and TBS
(150 mmol/L NaCl and 10 mmol/L Tris-HCL; pH 7.8), two wash buffer solution, were used to wash
out primary antibodies and secondary horseradish peroxidase goat anti-mouse immunglobulin G
(IgG) (1:3000) and anti-rabbit IgG (1:3000) were used to incubate with proteins. Later redundant
IgG was washed as described before. Finally, an enhanced chemiluminescence detection system
(ECL, Amersham Bioscience) was used to measure target protein expressions. The protein densities
were quantified by density software Image J 2.0 (National Institutes of Health, Bethesda, MD, USA).
Experiments were performed three times.

4.12. Statistical Analysis

GraphPad Prism 7 (Graph-Pad, San Diego, CA, USA) was used to perform statistical analysis and
all data are presented as ± SD and * p < 0.05, ** p < 0.01, or *** p < 0.001 are considered as significant
difference compared to Aβ25-35 alone group using one way ANOVA followed by Tukey’s post hoc test.
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