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Abstract: Proteomics researchers today face an interesting challenge: how to choose among the
dozens of data processing and analysis pipelines available for converting tandem mass spectrometry
files to protein identifications. Due to the dominance of Orbitrap technology in proteomics in recent
history, many researchers have defaulted to the vendor software Proteome Discoverer. Over the
fourteen years since the initial release of the software, it has evolved in parallel with the increasingly
complex demands faced by proteomics researchers. Today, Proteome Discoverer exists in two distinct
forms with both powerful commercial versions and fully functional free versions in use in many labs
today. Throughout the 11 main versions released to date, a central theme of the software has always
been the ability to easily view and verify the spectra from which identifications are made. This ability
is, even today, a key differentiator from other data analysis solutions. In this review I will attempt to
summarize the history and evolution of Proteome Discoverer from its first launch to the versions in
use today.
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1. Introduction

Today, there are over 1000 different tools for the processing of proteomics data [1].
This daunting number counts both active software and tools that have fallen by the way-
side during the rapid evolutions toward the realization of analyzing all the proteins in a
biological system. The primary search tools used by most researchers today are a much
smaller number. While any surveys that have been conducted have their own biases,
today most users are likely divided primarily between MaxQuant [2,3], Mascot [4], Spectro-
Naut [5], Proteome Discoverer and PEAKS [6] with the rest of users divided between other
powerful commercial and open source solutions that are often linked to a user’s history
or background. For example, many new trainees in proteomics that are migrating from
genomics or transcriptomics gravitate toward the use of R-based proteomics pipelines [7,8].
In addition, in western Europe near where they are currently developed, you will find a
larger number of users of OpenMS [9] and CompOmics [10,11] pipelines.

Proteome Discoverer (PD) is a commercial product of Thermo Fisher Scientific that
was first released in 2007 as a replacement for the aging BioWorks proteomics framework.
PD has evolved over the years from humble beginnings as little more than a wrapper for
Sequest and Mascot. Today it is a powerful and flexible environment with both commercial
and freely available tools to address nearly any proteomics workflow, from both labeled
and label-free quantification to crosslink analysis, glycoproteomics and even top– down
proteomics [12,13]. PD has always had limitations and critics have rightfully pointed
out that relying on a commercial software team for development and deployment with
mandatory rounds of internal troubleshooting will always produce a software package
that is behind the times at launch [14]. However, for users who appreciate a steady and
tested interface and a help line for software issues, PD has been a stalwart companion of an
increasing number of researchers in this field. In this text, I will attempt to detail the history
of PD as well as highlight the key points in the development of the PD environment, as
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well as what sets it apart from other tools in use at the time and today. This list is in no
way meant to be comprehensive, and in the lack of references please assume that these
statements are derived from lessons learned as an operator of every version of this software
released to date.

2. Common Themes

Over the last 14 years and 11 main releases of PD, the software has evolved to meet
the challenges faced by proteomics scientists at that point in time. Figure 1 is a summary of
some of the key changes in the evolution of PD. However, four common themes have been
present in all versions of the software.

Flexible data input: While PD is, at heart, a product of Thermo Fisher Scientific and
intended for the processing of instrument files from that vendor, PD has always accepted
data from other vendor platforms when the files have been converted to universal formats.
Today, PD can accept any mass spectrometry data files that have been converted to Mascot
Generic Format [15], mzML [16] and mzXML [17]. Furthermore, data from previous
iterations of Thermo software including BioWorks and previous versions of PD, as well as
output files formatted in the mzData [18] format can be imported into PD for filtering and
analysis.

The combination of search results: An early characteristic that set PD apart from other
solutions at the time was the ability to combine results from multiple search engines. PD
1.0 released with a direct interface to on-drive or network linked instances of Mascot as
well as on-drive installations of Sequest and the ZCore search engine. ZCore was an engine
specifically designed for the searching of MS/MS spectra that were the result of electron
transfer dissociation [19]. Today, results from seven or more distinct search engines can be
combined into a single output. In addition, multiple instances of the same search engine
can be utilized in series or in parallel for complex experiments. Perhaps the best example
of this flexibility was exhibited in Rinas et al., where 11 separate search engines were
utilized for the fast photochemical oxidation of proteins (FPOP), with settings optimized to
reflect the biochemical likelihood of the oxidative modifications occurring on each amino
acid [20,21].

Direct access to the unaltered MS/MS spectra leading to each identification: Perhaps
the most striking central philosophy of PD compared to other search tools has been the
constant ease of access to the original MS/MS data. For comparison, the popular and
powerful MaxQuant data analysis package had no direct way to visualize the MS/MS
spectra from which identifications were made until 2015 [22]. Popular data processing
pipelines such as MSFragger [23] rely on secondary programs such as the Proteome Data
Viewer for the visualization of peptide spectral match data [24]. MSFragger does have direct
access to spectral data, but only when MSFragger is operated within the PD environment.

As software tools in proteomics continue to improve, particularly with the addition
of more intelligently designed false discovery rate (FDR) estimation and filtering tools,
it is tempting to trust identifications without verifying the spectra themselves. However,
many of the most embarrassing retractions that have occurred in proteomics could have
been prevented by the verification of the peptide spectral matches (PSMs) by trained mass
spectrometrists [25–27]. For a more comprehensive discussion on the manual analysis of
PSMs, please see the thoughtful review and tutorial by Dr. Simone König titled “spectral
quality overrides software score” [28]. By placing the unaltered MS/MS spectra within easy
reach at all times in its output interface, PD helps to ensure the validity of identifications
made by automated tools. A screenshot of the PD 1.0 interface displaying this unchanged
core philosophy of the program is shown in Figure 2.
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Figure 2. A result screenshot from the first release of Proteome Discoverer (PD) in 2007. In this output protein identification,
supporting PSMs leading toward that identification and the original MS/MS spectra can be easily visualized and verified
for quality by the end user.

Rapid porting from discovery to validation: The final key thread throughout all
versions of PD is the ability to migrate identifications made within the software rapidly
to methods for targeted validation. In the earliest versions of PD, peptides and proteins
identified could be directly exported to the now retired PinPoint software from the same
vendor. Today, results can be directly exported into an inclusion list format for all Orbitrap
instruments. In addition, filtered proteins and peptides of interest can be exported in
various formats, including the direct generation of FASTA files from these filtered proteins
and peptides. Most powerfully, however, the PD output files can be directly imported into
a number of tools for validation and analysis thanks to collaborative efforts between the
PD development team and those at Proteome Software, [29] OptysTech [30] and the Skyline
software of the University of Washington. [31,32]

3. Software Architecture and Data Formats

All versions of PD appear to be compiled in Microsoft Visual Studio with all core
framework components based on NET frameworks in the C# programming language.
Accepted input formats have increased over time, with today’s iteration accepting all
versions of the Thermo RAW instrument outputs as well as flexible input of variations of
other universal mass spectrometry file formats including Mascot Generic Format (MGF),
mzML, mzXML and mzData [15–18]. Sequencing information for matching against MS/MS
spectra can be accepted by default with the accurate parsing of all standard protein FASTA
files. A flexible parsing system with definable rules was added in later versions to facilitate
the input of non-traditional formats such as the files from “next-generation” sequencing
instruments. Default data output in all versions up to 1.4 are a MSF SQLite database file
that can be readily opened by generic SQLite database tools as well as more specialized
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proteomics tools such as Scaffold, M2Lite and MS2Go [33]. PD versions 2.0 and above
produce both an MSF file as well as a second SQLite pdresult file. In these versions, the MSF
contains the peptide spectral match data and the pdresult file containing the assembled and
filtered values used to construct the peptide and protein identifications. For downstream
validation, targeted LCMS tools such Pinpoint, Pinnacle and Skyline can directly import
MSF and pdresult files and use these processed results to create targeted mass spectrometry
methods. Processed data in nearly every version can be exported directly to Microsoft Excel
format as well as to CSV, with recent versions providing the option for header formats
compatible with the increasingly popular statistical programming language R.

4. A Brief History of Proteome Discoverer Versions and Key Highlights

PD 1.0, 2007: The initial launch version of PD, v1.0 was more of a skeleton of the
framework that it is today, but multiple central components remain unchanged. PD 1.0
was compatible with Windows XP 32-bit, in line with most commercial computer hardware
of the time. PD 1.0 featured the Sequest and ZCore search engines with direct compatibility
with Mascot input and output. The output of all three engines, if applicable, could be
combined into a single output file and the peptide spectral matches could be directly
visualized for each peptide and protein. PD 1.0 was compatible with all Thermo RAW files
and could accept files in Mascot Generic Format (MGF). PD 1.0 output was, as it is today,
an SQLite database file. Data processing occurred primarily using “wizards” that walked
the end user step-wise through a logical data processing workflow.

PD 1.1, 2009: The release of PD 1.1 in 2009 saw a larger migration of users from the
popular BioWorks software from Thermo due to the relative ease of the interface compared
to its predecessor and promotions that allowed users of BioWorks to freely transition to
the new software interface. To obtain high coverage proteomes on any instrument at this
point in history, extensive two dimensional fractionation was a critical step in the workflow,
either offline or online with then-popular methods such as MuDPiT [34]. The support for
fractionated samples was added in this version. The commercial release of PD 1.1 added
the now familiar node-based logical workflow interface. PD 1.1 also saw improvements in
the universal input and output nature of the software with import capabilities extended
to mzXML and outputs of mZData. This release of the software was also accompanied
with the Daemon executable, which allowed a central computer to function as the main
data processing center and up to 20 PCs to send data to that PC for processing. In addition,
the Daemon could be configured through Xcalibur processing methods to enable the
automatic transfer, queuing, and processing of acquired LCMS files. These events could
be programmed to occur either in parallel with the queue acquisition or immediately
following the completion of a sample queue for fractionated samples. These functions,
though rarely employed, still exist in every version today.

PD 1.2, 2010: The 2010 release of PD added many more key functions in popular
use in proteomics at the time, particularly stable isotope labeling and the first addition
of false discovery rate filtering in the software. Stable isotope labeling by amino acids in
cell culture (SILAC) had, by this time, been labeled as the “gold standard in proteomics
quantification” and variations on the laborious process of labeling all the proteins in cells
in culture were the focus of most proteomic research [35,36]. Similar techniques, such as
dimethyl labeling, were utilized for samples that could not be grown in culture for the
days necessary to fully incorporate these expensive amino acids [37,38]. PD 1.2 added
new nodes for quantification from the MS1 spectra to support multiple isotopic labeling
techniques. In addition, a new precursor ion area detector node was added that allowed
label-free quantification based on the abundance of the three most intense peptides from
each identified protein. The addition of these critical key workflows led an even larger base
of customers to migrate to the PD interface from BioWorks and MaxQuant. The addition
of false discovery rate (FDR) estimation and filtering by target decoy [39,40] was a major
step toward improving the validity of peptide and protein identifications by the software.
A final key improvement in PD 1.2 was the addition of a separate installation file for the
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Viewer program, which could be installed on any desktop computer and allowed multiple
users to transfer processed MSF files and evaluate results simultaneously. The Viewer
allowed end users to both visualize the peptide spectral matches and to filter processed
data locally without reprocessing.

PD 1.3, 2011: The next release of PD featured a landmark event for the further develop-
ment of the software: the integration of software developed by external groups. This came
in the form of the first Percolator node and phosphoRS. The use of Percolator for FDR esti-
mation and filtering is now commonplace, with various iterations of the semi-supervised
PSM re-evaluation tool in use in nearly every proteomics software today [41]. Improve-
ments on the base Percolator design have often focused on simply increasing the speed [42]
of this pressure-tested solution or in applying it to alternative datasets [43]. Although PD
was compatible with 64-bit architecture, it functioned in emulation mode, as all key compo-
nents of the software, including Percolator, were natively 32-bit. The second external tool
for PD was the first of many nodes produced by the Institute of Molecular Pathology (IMP).
PhosphoRS is similar to the aScore algorithm and uses secondary evidence in the PSM to
provide a localization confidence score for the possible sites of phosphorylation within that
peptide [44]. Further node development occurred at the IMP, including the development of
a new search engine specifically designed for high resolution MS/MS spectra, MSAmanda,
as well as multiple accessory nodes [45]. The IMP-MS2 spectrum processor node allowed
for the deconvolution of high resolution MS/MS spectra to produce a new spectra where all
baseline resolved fragment ions could be replaced with their corresponding single charged
fragment ions. The removal of obvious isotopes could also be simultaneously performed.
Later iterations of this node allowed for the reassignment of the monoisotopic mass in the
case of an inaccurate assignment of an isotope as the monoisotopic ion by the instrument.

The IMP-Spectrum Merger node addressed the common instrument method design
of the time in reporter ion quantification, where two MS2 scans were obtained for each
parent ion. In this workflow, collisional-induced dissociation (CID) scans in the ion trap
were used for peptide sequence identification. A second fragmentation event using higher
energy collisional dissociation (HCD) of the parent ion was used to liberate the reporter ion
fragments for quantification in the Orbitrap. Two scan events were utilized due to technical
limitations of both the early Orbitrap hardware and the reagents of the time. Early iterations
of the LTQ Orbitrap instruments had difficulty controlling HCD fragmentation and ion
transfer to the mass analyzer. The Orbitrap XL featured multiple versions of the HCD
cell throughout its lifetime in order to mitigate these challenges [46]. The most popular
isobaric reagent of the time, the iTRAQ 8-plex reagent, featured chemistry that required
significantly higher collisional energy to fully liberate the reporter region than was optimal
for peptide identification [47]. The dual fragmentation method helped alleviate both
limitations and allowed for higher multiplexed quantification, albeit at slower acquisition
rates. The IMP-Spectrum Merger allowed for the combination of the data from these two
scans into a single MS/MS spectrum.

The IMP-Post match search recalibrator allowed the results of a search to be used
in tandem with the spectrum exporter node to readjust all monoisotopic masses in the
exported file. The exported file could then be searched with tighter mass tolerances at
the precursor level to obtain results with higher confidence. While many of these tools
were compatible with PD 1.3, these were primarily used in house at IMP and associated
institutions. These nodes became accessible to the wider community with the launch of
pd-nodes.org, which corresponded more closely to the release of the next version of PD.

PD 1.4, 2013: From 2005 to 2018, each release of Orbitrap instrumentation arrived
with an increase in the number of fragmentation spectra that could be obtained in the same
amount of time [48,49]. The corresponding increase in overall data density gradually added
additional pressure to existing tools and pipelines. In 2011, the first Orbitrap analyzer with
a smaller internal diameter and corresponding increase in curvature of the electric field [50]
was released in the form of the LTQ Orbitrap Elite system. The reduction in Orbitrap size
in addition to an enhanced Fourier transform algorithm resulted in a 2× increase in the
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overall data density. While this giant step in hardware performance played a key role in the
completion of high profile proteomic studies such as the NCI-60 proteome project [51,52]
and the first two drafts of the human proteome [53,54], this massive increase in data density
pointed out multiple weaknesses in proteomic informatics of the day. Updates in PD 1.4
helped alleviate many of these hurdles with native 64-bit compatibility and the first instance
of the Sequest algorithm that was capable of multithreading. In addition, PD 1.4 brought
the first use of spectral library search nodes in the form of the SpectraST [55,56] engine,
originally developed by the Institute of Systems Biology and the MSPepSearch node long
used as a stand-alone tool available from the US National Institute of Standards [57]. On
the commercial front, newcomer ProteinMetrics enabled the direct use of both Preview
and Byonic through nodes in PD 1.4 for labs with licenses for these packages and local
installation [58]. After launch, a faster version of Percolator was released for customers
struggling with long processing times and this version would be available at install in the
next iteration of the software.

PD 2.0, 2014: The basic framework of PD 1.0 was designed to meet the demands of
proteomic scientists in 2007. As the field developed through the decade, experimental
designs became increasingly complex due to more ambitious overall study goals. The PD
1.0 framework required a comprehensive overhaul to address this increase in complexity
and to meet the new demands of the time. No studies more aptly encapsulated the potential
and challenges of proteomic informatics of the day than the two human proteome drafts
released in Nature in 2014. In order to compile the data from highly fractionated samples
from multiple organs in PD, the fractions from each organ would realistically need to be
processed separately and combined with external tools [53]. Reanalysis of these studies
identified other flaws in the PD architecture with the identification of false discoveries in
the initial analysis that were biologically improbable [59]. PD 2.0 launched with a new
experimental design interface and the separation of workflows into a processing step to
create MSF files containing PSMs and a consensus workflow for assembling the PSMs into
peptides and proteins. The expansion into two parts required several new nodes, the most
notable perhaps being the critical addition of FDR tools to estimate errors at the peptide
and protein level, in addition to the traditional tools for PSM filtering.

Further community support for the PD environment arrived in the form of two
new nodes from the OpenMS community. The first, the LFQProfiler, brought powerful
MS1 feature-based quantification to PD. The second, RNPxl, enabled the identification of
peptides that were bound to RNA fragments [60]. In addition, new nodes were available
for purchase that enabled, for the first time, top-down proteomic analysis in PD in the form
of nodes that could directly connect PD with the ProsightPC software tools [61].

PD 2.1, 2015: PD 2.1 featured primarily improvements to the general structure of PD
2.0 with multiple tweaks in the study design and a series of bugfixes inevitable in the
release of an entirely new software architecture.

One subtle change for researchers came in the form of a new strategy for protein group
inference. In all previous iterations of PD, when identified peptides could be assigned
equally to multiple proteins in the FASTA file being examined, the protein with the highest
percent coverage was chosen for display. A consequence of this strategy was that the
shortest protein isoforms and protein fragments were displayed more commonly than the
full length sequence. In PD 2.1 this strategy was flipped and the protein with the longest
sequence was chosen as the “master” protein when equal evidence exists to support two
proteins or proteoforms.

The most powerful improvements to the PD 2.1 interface would come from external
developers in the form of the IMP-PD nodes which, for the first time, allowed for the full
use of the PD interface without any purchases. The IMP-PD nodes effectively replaced any
nodes that the vendor paid royalties on by replacing these steps in the pipeline with open-
source alternatives. IMP-PD features other tools and capabilities beyond the commercial
released version with downstream quantitative analysis through the LIMMA node, which
executed statistical analysis through a local iteration of R.
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A common and accurate criticism of protein informatics is the lack of complex sta-
tistical models in use in other -omics fields [62]. To address these shortcomings, PD 2.1
included more quantitative statistical tools than any previous iteration with intuitive filter-
ing through volcano plots and principal component analysis data reduction tools. IMP-PD
improved on this further through the first two nodes that directly interfaced with the R
statistical programming language. IMP-apQuant (originally PeakJuggler) and IMP Nor-
malization and LIMMA brought powerful tools for quantitative analysis from tools in R
directly into the PD interface [63].

IMP-PD further extended the open source capabilities of the software with the intro-
duction of the glycoproteomics search tool SugarQb. SugarQb uses an iterative search
functionality whereby spectra possessing oxonium fragment ions characteristic of gly-
copeptide fragmentation are searched separately using a large list of glycan moieties [64].
SugarQb currently installs with a glycan modification library of approximately 1600 mam-
malian glycan chains. Glycopeptide analysis has long been possible using the commercial
Byonic program, but SugarQb opens the growing field of glycoproteomics to a wider
number of scientists.

Two other accessory programs appeared for this version, MS2Go [65], for the pro-
duction of output reports with information most biologists are actively seeking. Finally, a
useful stand-alone tool from IMP, the PD node manager can be indispensable for power PCs
loaded with multiple versions of PD and even some of the second party nodes described in
this text. The PD node manager provides instant insight details of the tools and versions
installed on that local computer.

PD 2.2, 2017: The next release of PD brought a dramatic improvement in label-free
quantification in PD, in the form of the Minora nodes. All previous versions of PD utilized
a precursor ion node in which the intensity of the most abundant parent ions from each
protein were compared between runs. False discoveries due to excessive shifts in the
retention time were filtered by the end user and no retention time alignment algorithm was
in use. Retention time alignment was, at that time, a central component of multiple tools
including MaxQuant, IonStar, Progenesis and OpenMS. [9,66]

Additional new features in PD came from external development in the world of
crosslinking analysis. The XlinkX software brought powerful new tools to a field increas-
ingly focused on the direct analysis of protein–protein interactions. New crosslinking
reagents and intelligent crosslink identification capabilities made possible in the Orbitrap
Tribrid architecture ushered in a new era in protein crosslinking studies by enabling, for
the first time, some progress toward the dream of true in vivo crosslinking studies [67–69].

An additional major external update was the release of the MSFragger-PD nodes.
MSFragger is one example of the recent next generation proteomics search tools possessing
true open search functionality. The MSFragger PD nodes allows for the identification of
unknown post-translational modifications within the PD environment. [23] The MSFragger
PD nodes also bring in the PeptideProphet FDR tools which can be used in conjunction with
other PD nodes. [70] It is also notable that MSFragger primarily exists in its original form
and through the FragPipe environment as Java-based tools. The direct implementation
of this with the PD environment is a demonstration that other Java tools may be made
compatible with PD.

PD 2.3, 2018: The next commercial PD release was highlighted by drastic improve-
ments in the XlinkX nodes and a new functionality that allowed the visualization and
filtering of the synchronous precursor selection (SPS) steps in MS3-based isobaric quantifi-
cation experiments. Through post-processing analysis, peptides could be discarded when
evidence was present to suggest that the SPS functioned inadequately in picking fragment
ions derived from the parent for quantification [71]. Improved functionality allowed for
direct links between protein reports and pathway analysis web tools, including KEGG,
WikiPathways and Reactome [72–74].

PD 2.4, 2019: The ASMS 2019 release of PD brought native support of chimeric spectra
through SequestHT and a flurry of new powers for developers in the shape of open and
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flexible scripting nodes. Examples of the application of these nodes at ASMS primarily
centered on interfacing with R, although there is no reason that other programs and batch
scripts cannot be executed through the node. A central focus for the proteomics field
should continue to be on the improvement and advancement of statistical models. The
integration of tools already existing in R, including the powerful MSStats package, could
be an ideal next step toward meeting these goals [75–77]. Figure 3 is a screenshot from
PD 2.4, demonstrating some of the capabilities of the software that have been described,
including the use of the MSAmanda 2.0 engine, IMP-Hyperplex and visualization functions
for quantification between samples.

Proteomes 2021, 9, x FOR PEER REVIEW 9 of 13 
 

 

fragment ions derived from the parent for quantification [71]. Improved functionality al-

lowed for direct links between protein reports and pathway analysis web tools, including 

KEGG, WikiPathways and Reactome. [72–74] 

PD 2.4, 2019: The ASMS 2019 release of PD brought native support of chimeric spec-

tra through SequestHT and a flurry of new powers for developers in the shape of open 

and flexible scripting nodes. Examples of the application of these nodes at ASMS primar-

ily centered on interfacing with R, although there is no reason that other programs and 

batch scripts cannot be executed through the node. A central focus for the proteomics field 

should continue to be on the improvement and advancement of statistical models. The 

integration of tools already existing in R, including the powerful MSStats package, could 

be an ideal next step toward meeting these goals [75–77]. Figure 3 is a screenshot from PD 

2.4, demonstrating some of the capabilities of the software that have been described, in-

cluding the use of the MSAmanda 2.0 engine, IMP-Hyperplex and visualization functions 

for quantification between samples. 

 

Figure 3. A result screenshot from PD 2.4 operated entirely with open source community developed nodes, demonstrating 

both searching and quantification functions. 

PD 2.5, 2020: The most obvious changes in the newest release of PD come from inter-

nal developments from the vendor. To meet an increased external interest in the use of 

deep learning tools for proteomics, the vendor has licensed new tools named Inferys. In-

ferys utilizes CPU-based deep learning, similar to the Prosit GPU-based algorithms. [77] 

While limited in the number of cores in Central Processing Unit architecture, compared 

to the thousands of processing cores in modern Graphics Processing Units, Inferys is a 

valuable new addition to the PD environment. Inferys can be utilized in multiple ways in 

PD, for the construction of deep learning-based spectral libraries as well as for rescuing 

MS/MS spectra that were incorrectly discarded as low quality by other tools in the PD 

pipeline. Currently, Inferys is only compatible with unlabeled peptides that have been 

reduced and alkylated with iodoacetamide and digested with trypsin. The PD 2.5 manual 

indicates that further developments in this toolkit are underway for later versions. 

5. Conclusions: A biphasic future for Proteome Discoverer? 

Since the initial release of PD, upgrades of the software have often been either free or 

accompanied with marginal costs through “maintenance” license agreements. PD is going 

in two clear directions, with powerful open-source tools continuing to grow at a steady 

rate in parallel with commercial tools, beginning with PD 2.5 upgrades to the newest ver-

sions with licensed content require upgrade fees to cover royalty fees incurred by the ven-

dor. It is easy to see a biphasic future of PD, with both open and licensed versions begin-
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PD 2.5, 2020: The most obvious changes in the newest release of PD come from
internal developments from the vendor. To meet an increased external interest in the use
of deep learning tools for proteomics, the vendor has licensed new tools named Inferys.
Inferys utilizes CPU-based deep learning, similar to the Prosit GPU-based algorithms [77].
While limited in the number of cores in Central Processing Unit architecture, compared
to the thousands of processing cores in modern Graphics Processing Units, Inferys is a
valuable new addition to the PD environment. Inferys can be utilized in multiple ways in
PD, for the construction of deep learning-based spectral libraries as well as for rescuing
MS/MS spectra that were incorrectly discarded as low quality by other tools in the PD
pipeline. Currently, Inferys is only compatible with unlabeled peptides that have been
reduced and alkylated with iodoacetamide and digested with trypsin. The PD 2.5 manual
indicates that further developments in this toolkit are underway for later versions.

5. Conclusions: A Biphasic Future for Proteome Discoverer?

Since the initial release of PD, upgrades of the software have often been either free or
accompanied with marginal costs through “maintenance” license agreements. PD is going
in two clear directions, with powerful open-source tools continuing to grow at a steady rate
in parallel with commercial tools, beginning with PD 2.5 upgrades to the newest versions
with licensed content require upgrade fees to cover royalty fees incurred by the vendor.
It is easy to see a biphasic future of PD, with both open and licensed versions beginning
to further diverge. A fully licensed commercial version of PD with all available accessory
licenses, including ProsightPD and Byonic, carried a total price tag of nearly USD 30,000
when initially purchased by our facility. Nearly a dozen operators have processed data for
scores of their own projects over the years, reducing the cost to pennies per file searched.
At this time, there is no reason to not install the second party nodes described in this text
in the commercial version and these are increasingly used by our core operators, often in
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conjunction with the commercial tools. In the opposite phase, students increasingly have
fully functional free versions of PD with various combinations of the nodes described in
this text that are the most applicable to their own research goals.

I use other software in my research and will continue to do so, but when a proteomics
tool identifies an important peptide or the presence of a post-translational modification of
interest, I always seem to default to reanalysis with tools in PD to get me to the original
spectra from which that identification was made. For 14 years, PD has been the fastest way
to find that spectra and to verify that trained human operators agree with that identification,
and it is hard to see that changing anytime soon.
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