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African swine fever virus (ASFV) is the sole member of the family Asfarviridae, and the

only known DNA arbovirus. Since its identification in Kenya in 1921, ASFV has remained

endemic in Africa, maintained in a sylvatic cycle between Ornithodoros soft ticks and

warthogs (Phacochoerus africanus) which do not develop clinical disease with ASFV

infection. However, ASFV causes a devastating and economically significant disease

of domestic (Sus scrofa domesticus) and feral (Sus scrofa ferus) swine. There is no

ASFV vaccine available, and current control measures consist of strict animal quarantine

and culling procedures. The virus is highly stable and easily spreads by infected swine,

contaminated pork products and fomites, or via transmission by theOrnithodoros vector.

Competent Ornithodoros argasid soft tick vectors are known to exist not only in Africa,

but also in parts of Europe and the Americas. Once ASFV is established in the argasid soft

tick vector, eradication can be difficult due to the long lifespan of Ornithodoros ticks and

their proclivity to inhabit the burrows of warthogs or pens and shelters of domestic pigs.

Establishment of endemic ASFV infections in wild boar populations further complicates

the control of ASF. Between the late 1950s and early 1980s, ASFV emerged in Europe,

Russia and South America, but was mostly eradicated by the mid-1990s. In 2007, a

highly virulent genotype II ASFV strain emerged in the Caucasus region and subsequently

spread into the Russian Federation and Europe, where it has continued to circulate

and spread. Most recently, ASFV emerged in China and has now spread to several

neighboring countries in Southeast Asia. The high morbidity and mortality associated

with ASFV, the lack of an efficacious vaccine, and the complex makeup of the ASFV

virion and genome as well as its lifecycle, make this pathogen a serious threat to the

global swine industry and national economies. Topics covered by this review include

factors important for ASFV infection, replication, maintenance, and transmission, with

attention to the role of the argasid tick vector and the sylvatic transmission cycle, current

and future control strategies for ASF, and knowledge gaps regarding the virus itself, its

vector and host species.
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ASFV EMERGENCE AND RE-EMERGENCE

Since its identification in Kenya in 1921 (1, 2), African swine
fever virus (ASFV) has remained endemic in Africa, affecting
up to 35 African countries (3). Between the late 1950s and
early 1980s, ASFV genotype I emerged in Europe, Russia, the
Caribbean and South America. ASFV was first identified in
Europe in 1957 in Portugal, then was re-introduced in 1960
from which it quickly spread into Spain, Italy, France, Sardinia,
Malta, Belgium, and The Netherlands (1, 4, 5). ASFV was
first reported in Russia in 1977 (4), and in the late 1970s it
emerged in Brazil, Cuba and the Caribbean Islands, with the
last outbreaks in the Americas occurring between 1980 and 1984
(6). By the mid-1990s, ASFV had been eradicated outside of
Africa, with the exceptions of an isolated outbreak in Portugal
in 1999 and the island of Sardinia where it has remained
endemic (7, 8).

In 2007, ASFV genotype II emerged in the Republic of
Georgia and continued to spread through the Caucasus region
and subsequently into the Russian Federation and Eastern
Europe, where it has continued to circulate and spread as
illustrated in Figure 1A (1, 4, 9). ASFV re-emerged in north-
western Europe in Belgium in 2018 in wild boar (10). More
recently it was detected in carcasses of wild boar in western
Poland near the German boarder (https://www.vettimes.co.uk).
In August 2018, ASFV was reported for the first time in the
People’s Republic of China, and by the end of September of
2019, ASFV was detected in neighboring countries including
Mongolia, Vietnam, Cambodia, Democratic People’s Republic
of Korea (North Korea), Lao People’s Democratic Republic,
Myanmar, Timor-Leste, the Philippines, the Republic of Korea
(South Korea), and Indonesia as shown in Figure 1B (FAO
situation update, www.fao.org). African countries which have

FIGURE 1 | Recent ASF status in Europe, Asia, and Africa. (A) Eurasian Epidemic, 2007-September 2019: Within European nations, continuing outbreaks (yellow) are

reported in Sardinia, Belgium, Bulgaria, Hungary, Latvia, Moldova, Poland, Romania, Slovakia, Serbia, Russian Federation, and Ukraine. Resolved outbreaks (blue) are

reported for Belarus, Czech Republic, Estonia, and Lithuania. (B) Transcaucasus and Asian Epidemic, 2007-September 2019: Continuing outbreaks (yellow) are

reported in People’s Republic of China, Democratic People’s Republic of Korea, Lao People’s Democratic Republic, Myanmar, The Philippines, Russian Federation,

Republic of Korea, and Vietnam. Resolved outbreaks (blue) include Armenia, Azerbaijan, Cambodia, Republic of Georgia, and Mongolia. (C) African Nations with

OIE-Notified ASF Outbreaks Since 2018: Countries which have notified the OIE of the presence of ASF from 2018 through September 2019 include Benin, Burkina

Faso, Burundi, Cabo Verde, Central African Republic, Democratic Republic of the Congo, Gambia, Ghana, Guinea-Bissau, Madagascar, Malawi, Mozambique,

Namibia, Nigeria, Rwanda, Senegal, Sierra Leone, South Africa, Tanzania, Togo, Uganda, Zambia, and Zimbabwe. Source: OIE WAHIS African Swine Fever (ASF)

Report: September 13–26, 2019.

notified the OIE of the presence of ASF from 2018 through
September 2019 include Benin, Burkina Faso, Burundi, Cabo
Verde, Central African Republic, Democratic Republic of the
Congo, Republic of the Congo, The Gambia, Ghana, Guinea-
Bissau, Madagascar, Malawi, Mozambique, Namibia, Nigeria,
Rwanda, Senegal, Sierra Leone, South Africa, Tanzania, Togo,
Uganda, Zambia, and Zimbabwe, indicated in Figure 1C [OIE
WAHIS African Swine Fever (ASF) Report: September 13–26,
2019; www.oie.int].

Impact of Recent ASFV Emergence as of
February 2020
ASFV does not cause disease in humans, is highly contagious
and causes high mortality in domestic and feral swine, and has a
significant economic impact on the global swine industry. While
the situation remains ever-changing due to continued outbreaks
and spread of ASFV globally, information from peer-reviewed
manuscripts, situation reports, and press releases provide some
indication of the impact of ASFV emergence on animal health
and economics of effected countries.Table 1 summarizes the ASF
affected countries of Europe and Asia from 2007 to February
2020 including reported estimates of number of animals lost.
ASF has especially affected China, which is the world’s largest
pork producer and consumer, producing about 50 percent of the
world’s pork supply (ChinaDaily.com.cn, 9/11/2019, “Swine fever
may affect pork for several years,” global.chinadaily.com.cn).
Since the first reported outbreak in China in August 2018, ASF
has been detected in at least 8 other countries in Asia and has
resulted in the death or culling of more than 5 million pigs,
with losses accounting for more than 10 percent of the total
pig population in China, Mongolia and Vietnam [(11, 12); FAO
situation update, www.fao.org; FAO press release, 09/08/2019,
“One year on, close to 5 million pigs lost to Asia’s swine fever
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TABLE 1 | ASFV in Eurasia from January 2007 to February 2020.

Country Year or date reported Status Estimated animal losses Species

Georgia 2007–2008 Resolved 87,412 Swine

Armenia 2007–2008, 2010–2011 Resolved 2,483 Swine

Azerbaijan 2008 Resolved 4,832 Swine

Russian Federation 2007–2019 Continuing 79,632 Swine, wild boar

Ukraine 2012, 2014–2019 Continuing 20,166 Swine, wild boar

Belarus 2013 Resolved 20,627 Swine

Lithuania 2014–2019 Resolved 23,735 Swine

Latvia 2014–2019 Continuing 294 Swine, wild boar

Estonia 2014–2019 Resolved 26 Wild boar

Poland 2014–2019 Continuing 37,396 Swine, wild boar

Czech Republic 2017, 2018 Resolved 202 Wild boar

Romania 2017–2019 Continuing 90,698 Swine, wild boar

Hungary 2018–2019 Continuing 1,536 Wild boar

Bulgaria 2018–2019 Continuing 137,973 Swine, wild boar

Moldova 2016–2019 Continuing 348 Swine, wild boar

Belgium 2018–2019 Continuing 540 Wild boar

Slovakia 2019 Continuing 70 Swine, wild boar

Serbia 2019 Continuing 290 Swine

People’s Republic of China/32 provinces August 3, 2018 Continuing 1,193,000 Swine, wild boar

Mongolia/6 provinces January 15, 2019 Resolved 3,115 Swine

Vietnam/19 provinces February 19, 2019 Continuing 5,960,000 Swine

Cambodia/5 provinces April 2, 2019 Resolved 3,673 Swine

Democratic People’s Republic of Korea May 23, 2019 Continuing 124 Swine, wild boar

Lao People’s Democratic Republic /15 provinces June 20, 2019 Continuing 40,130 Swine

The Philippines July 25, 2019 Continuing 70,000 Swine

Myanmar August 1, 2019 Continuing 128 Swine

Republic of Korea September 17, 2019 Continuing 10,000 Swine, wild boar

Timor-Leste September 9, 2019 Continuing 1,600 Swine

Indonesia September 2019 Continuing 42,000 Swine

FAO situation update, www.fao.org, 02/19/2020; OIE WAHIS Interface, Disease information, Immediate notifications and Follow-ups, www.oie.int, 09/21/2019; OIE WAHIS Interface,

Disease information, Disease Timelines, www.oie.int, 10/23/2019.

outbreak”], and industry insiders predict a 30–60% loss of pig
stocks due to ASF (ChinaDaily.com.cn, 9/11/2019, “Swine fever
may affect pork for several years,” global.chinadaily.com.cn). This
has put other countries on high alert, including Thailand which
culled 200 pigs in response to mysterious pig deaths although
no confirmed cases of ASF had been reported, as of September
2019 (Reuters Health News, 09/18/2019, “Thailand culls 200 pigs
amid heightened fears over African swine fever,” www.reuters.
com). Since its identification in 1921, outbreaks of ASFV have
been reported in more than 60 countries around the world, and
global ASF outbreaks since late 2018 have increased 25 percent
according to media reports (Global Times, 09/18/2019, “A global
battle against African swine fever,” www.globaltimes.cn).

ASFV INFECTION, MAINTENANCE, AND
TRANSMISSION

Ornithodoros Soft Ticks
The Ornithodoros genus of soft ticks in the family Argasidae
serve as biological vectors and reservoir hosts for ASFV. To date,
eight Ornithodoros species have been demonstrated as vector

competent for ASFV (13). ASFV-infected Ornithodoros porcinus
porcinus soft ticks (often referred to asO. moubata porcinus orO.
moubata) in Africa have been well-documented (14–19) and have
also been found in Madagascar (20). Additionally, competent
Ornithodoros vectors are also known to exist in parts of Europe
and the Americas (13, 18). Ornithodoros erraticus (also known as
O. marocanus and renamed Carios erraticus) soft ticks inhabit the
Iberian Peninsula and Mediterranean areas of Africa and Asia,
and were an important vector and reservoir for ASFV in Portugal
and Spain during the ASF epidemic in the twentieth century
(7, 21–23).

Ornithodoros ticks have long lifespans, and ASFV can replicate
to high titers and be maintained for long periods of time in the
vector with minimal cytopathological effects or increased tick
mortality (7, 14–18, 20, 24, 25); although increased mortality
rates have also been reported (26–31). A study following ASFV
infection in O. porcinus porcinus ticks after feeding on viremic
pigs showed ASFV titers of 6 log10 HAD50/tick, which were
maintained at that level for at least 290 days and declined only
2 log10 HAD50/tick or less after 3 years (18, 25). ASFV was
isolated fromO.moubata ticks from a farm inMadagascar 4 years
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after the culling of all pigs (20). ASFV transmission to pigs by
infected the Iberian soft tick has been demonstrated up to 588
days after infection (29) and ASFV persistence has been shown
for at least 5 years in O. erraticus ticks collected from infected
farms in Portugal (7). However, viral clearance after one year has
also been observed (28, 32). Nonetheless, virus-tick adaptation
is likely necessary to achieve high virus titers since significantly
lower infection rates and viral titers, and increasedmortality have
been observed in studies using ASFV isolates not derived from
ticks, or Ornithodoros species not native to Africa (18, 25, 33).

Multiple ASFV genetic elements have been identified as
being associated with infectivity, replication, and generalized
dissemination of ASFV in Ornithodoros ticks. Deletion of three
multigene family (MGF) 360 genes (3Hl, 3IL, and 3LL) from
the tick-derived pathogenic ASFV Pr4 isolate resulted in reduced
infectivity and a 2–3 log10 decrease in viral titer within O.
porcinus porcinus ticks compared to the parental virus (34).
CD2v, the protein responsible for viral hemadsorption (HAD)
in ASFV strains displaying the HAD phenotype, has also been
demonstrated to possess an important function in virus-tick
interaction. Restoration of the HAD phenotype to the non-
hemadsorbing NH/P68 strain carrying a CD2v gene interrupted
by frameshift mutations results in an∼1,000-fold increase in viral
titer within O. erraticus ticks after feeding on infectious whole
blood, most likely due to effects on virus uptake and replication
in the tick midgut epithelium (35).

Studies of ASFV infection and replication in soft ticks
show that ASFV infection takes 15–21 days to reach the
midgut epithelium where viral replication is initiated, with peak
virus titers achieved by 28 days post-infection (25). Restricted
replication within midgut epithelial cells reduces the infectivity
of the Malawi Li 20/1 strain for soft ticks orally exposed to the
virus (36). For successful transmission, ASFV replication in the
coxal and salivary glands is required, which is usually achieved
by 48 days post-infection (25).

Within the tick life cycle, ASFV can be transmitted sexually
from infected male to female (17, 32), transovarially from
infected female to offspring (15, 27, 37), and maintained
transstadially through the various life stages [(28, 29, 38, 39); see
Figure 2]. An increase in mortality rates in ASFV-infected ticks
has been reported during the first three ovipositions (18, 32).
The number of infected ticks observed under field conditions is
typically lower than infection rates observed after experimental
infections (18, 40).

ASFV Sylvatic Cycle
In Africa, ASFV is mainly maintained in a sylvatic cycle between
Ornithodoros soft ticks and warthogs (Phacochoerus africanus);
warthogs become viremic but do not develop clinical disease
after ASFV infection (3, 19, 22, 41). The sylvatic cycle has been
documented primarily for countries in southern and eastern
Africa (3). Juvenile warthogs dwelling in burrows are infected
by soft ticks carrying the virus, and transmission to naive ticks
occurs when the ticks take a blood meal from viremic young
warthogs [(14, 41); Figure 2]. ASFV warthog blood titers of at
least 103 HAD50/mL are required to infect feeding ticks, which
is typically only achieved in young warthogs compared to adults

which rarely have ASFV titers above 102 HAD50/mL (19, 41).
Other wild suids in Africa such as bush pigs (Potamochoerus
larvatus) can also become infected and transmit ASFV, but are
generally considered to play a minor role compared to warthogs
in the sylvatic cycle since their behaviors are less conducive for
interactions with soft ticks; only one incidence of infection in a
giant forest hog (Hylochoerus meinertzhageni) has been reported
(3, 19, 22, 42, 43).

Tick-Pig (Sus scrofa domesticus and Sus

scrofa) Transmission
Ornithodoros soft ticks including species of O. moubata complex
in Africa and O. erraticus in Europe are capable of transmitting
ASFV to domestic swine (Sus scrofa domesticus), and can become
infected after feeding on viremic animals [(22, 25, 29, 44);
Figure 2]. In Africa and Madagascar, infected ticks of the O.
moubata complex have been isolated from pig sties and farms in
locations affected by ASF outbreaks, including sites where little or
no contact between wild and domestic swine occurs, suggesting
an important role for soft ticks in disease maintenance in these
areas (20, 45–47). A similar pattern was also observed in the
Iberian Peninsula, where O. erraticus ticks were associated with
the persistence of ASFV (7, 21–23, 40).

The genotype II Georgia 2007/1 strain responsible for the
contemporary European epidemic has been experimentally
demonstrated to replicate efficiently in liveO. erraticus ticks (48).
However, it is unlikely that a soft tick cycle plays a significant
role in the ongoing outbreak in Europe and most likely also Asia,
as soft ticks are largely absent in Central Europe and the Baltic
nations, and most of the soft tick species in Eastern Europe and
the Caucasus region do not infest domestic and wild swine (49).
A study investigating potential contact between wild boar and
soft ticks in Germany via serum screening for antibodies against
O. erraticus in wild boar showed little evidence for feeding and
infestation of wild boar by soft ticks, and limited interaction
between these ASFV hosts is assumed (50).

Domestic (Sus scrofa domesticus) and
Wild Boar (Eurasian Wild Pig; Sus scrofa)
ASFV Infection in Domestic Swine
Infection with ASFV can produce a variety of clinical
presentations ranging from chronic, subclinical, or low-level
disease to hemorrhagic fever and peracute death, depending
on viral strain, and host susceptibility (51). Studies of highly
virulent Eurasian genotype II isolates have produced mortality
rates of 100% in domestic pigs and wild boar, with disease
rapidly progressing from non-specific clinical symptoms (fever,
depression, anorexia, diarrhea) to death (52, 53). In contrast,
the non-fatal genotype I isolates OUR T88/3 and OUR T88/4
obtained from O. erraticus ticks on a farm in Portugal
produce no clinical disease after experimental infection of
pigs (44). Genotype I ASFV strain NH/P68, isolated from
a chronically-infected pig, is another example of a naturally
occurring, non-fatal ASFV strain (54). However, attenuated
ASFV strains including OUR T88/3 and NH/P68 can cause
chronic infection in some pigs and have been associated with

Frontiers in Veterinary Science | www.frontiersin.org 4 May 2020 | Volume 7 | Article 215

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Gaudreault et al. ASFV Emergence and Arbovirology

FIGURE 2 | Schematic of ASFV transmission cycles. In Europe, Asia, and Africa, ASFV is readily transmissible between domestic pigs through direct contact and

contaminated pork products and fomites. (A) In Europe and Asia, two-way transmission between pigs and boars can occur at the livestock-wildlife interface,

especially where poor farm biosecurity exists. Transmission between wild boar is capable of maintaining and spreading the virus across large geographic areas. ASFV

can be transmitted between soft ticks of the Ornithodoros erraticus complex and domestic swine, and soft ticks can serve as persistent reservoirs for the virus as

seen in the Iberian Peninsula. There is little evidence to support transmission between soft ticks and Eurasian wild boar and domestic pigs in contemporary European

and Asian epidemics. (B) The sylvatic cycle in Africa involves virus transmission between juvenile warthogs (Phacochoerus africanus) and soft ticks of the

Ornithodoros moubata complex. Infected ticks transmit ASFV to juvenile warthogs when taking a blood meal, and uninfected ticks are infected after feeding on viremic

juvenile warthogs, while adult warthogs typically do not maintain high levels of viremia and are dead-end hosts. (C) Within soft ticks of the O. moubata and O.

erraticus complexes, virus is transmitted via sexual and transovarial routes and can be maintained across multiple life stages.

chronic lesions affecting the skin and joints (54–58). Swine
populations displaying increased resistance to clinical ASF
have been previously described; however, offspring from these
pigs reared in quarantine facilities showed no difference in
survival rates compared to non-selected, susceptible animals
after virulent ASFV challenge, suggesting resistance is not
directly heritable (59). Clinical outcomes of ASFV infection

are therefore influenced by a variety of host, virus, and
epidemiological factors.

Domestic Pig-Wild Boar Transmission
Domestic pigs readily transmit ASFV to other susceptible swine,
and outbreaks of virulent strains display high levels of morbidity
and mortality (22). Direct contact with infected pigs effectively
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spreads disease to other wild and domestic pigs (22, 60); however,
varying levels of transmission efficiency have been observed
for high-, moderate-, and low-virulence strains, likely due to
differences in levels of viremia and virus shedding (44, 60–63).
Blood, body fluids, feces, and carcasses of infected pigs serve as
indirect routes of infection (60). Animals which recover from
infection with low or moderate virulent strains can become
subclinical carriers potentially capable of spreading the virus to
other pigs (60, 61, 64, 65). The illegal movement of infected pigs
by producers or pork products has played a significant role in
outbreaks of ASF in Africa, Europe, and Asia (9, 11, 66).

Eurasian wild boar are highly susceptible to the virulent
ASFV genotype II isolates circulating in Europe (52, 53), and
contact between infected wild boar and domestic pigs has been
a significant contributing factor to the spread of ASFV in Eastern
Europe, the Caucasus and the Russian Federation, where small-
scale backyard pig farms with poor biosecurity are common (9).
ASFV has been detected in wild boar throughout Eastern and
Central Europe, and as far west as Belgium (1, 10). The existence
of a geographically widespread wild pig population in which
ASFV can circulate poses a significant challenge to disease control
and eradication efforts.

Other Modes of Transmission
ASFV is stable under extreme environmental conditions,
allowing it to be easily spread and transmitted. Modes of
transmission other than direct contact with infected swine,
tissues, carcasses or bites from infected soft ticks, include
importation of infected pork products and contamination
of fomites such as feed, equipment, vehicles, and clothing
(22). ASFV can remain viable in a variety of animal feed
ingredients under a range of environmental conditions, including
those characteristic of trans-Atlantic shipping routes (67, 68),
and efficient disease transmission through ASFV-contaminated
liquids and plant-based animal feeds has been experimentally
demonstrated (69). The movement of contaminated pork
products and swill-feeding of domestic swine have been
important epidemiological factors in ASFV outbreaks in the
Caucasus and Russian Federation as well as the emergence of the
disease in China (9, 11).

MOLECULAR PROPERTIES OF ASFV

ASFV has a large double-stranded DNA genome ranging
from 170 to 190 kilobase pairs (kbp) that encodes more
than 150 open reading frames (ORFs), depending on viral
strain; it is the only known DNA arbovirus (70, 71). The
observed significant differences in genome size are primarily
due to gain or loss of gene copies belonging to the multigene
families (MGFs) and variation within the number of tandem
repeats in non-coding regions of the ASFV genome (70, 71).
Mass spectrometry has identified 68 virion-associated structural
proteins from purified virions of strain BA71V and up to 94
virion-associated polypeptides were detected in virions from
3 different mammalian cell lines infected with a recombinant
OURT 88/3 strain; the precise function of a significant proportion
of the structural and non-structural ASF viral proteins is

unknown (72, 73). The virion is ∼200 nm in diameter and
possesses a multi-layered structure consisting of the nucleoid,
core shell, inner envelope, capsid, and a host-derived outer
envelope (74). The p72 major capsid protein and four minor
capsid proteins, M1249L, p17, p49, and H240R, make up the viral
capsid (75).

Genotyping of ASFV has historically been based on the
nucleotide sequence of a 478 bp variable region in the C-terminus
of the viral p72 gene (76), though other viral genes have also been
used to further characterize ASFV strains (77–79). Currently,
there are 24 genotypes based on themajor capsid protein p72, and
8 serotypes based on the viral hemagglutinin CD2-like protein
(CD2v) and C-type lectin (80–83). All of the 24 ASFV genotypes
have been identified in Africa (3). Strain virulence cannot be
accurately predicted by p72 genotype (80). The first emergence
of ASFV outside of Africa consisted of genotype I viruses, which
are predominantly described in West Africa (22). Genotype II
ASFVwas introduced into the Caucasus in 2007, most likely from
East Africa, and remains the current ASFV genotype circulating
throughout Europe, the Russian Federation and Southeast Asia
(22, 84).

Details of virus-host interactions and events involved in the
ASFV replication cycle have been reviewed previously (71, 85–
88) and are summarized in the following sub-sections and
Figure 3.

Target Cells
In swine, ASFV preferentially replicates in cells of the
monocyte/macrophage lineage (89). It can also replicate in some
established cell lines although with less efficiency (87, 90). The
virulent ASFV BA71 strain was adapted to replicate in Vero
cells (BA71V). Vero cells derived from African green monkey
kidney, and have been widely used as a model for in vitro ASFV
infection and replication studies (91). However, adaptation in cell
culture can cause genetic modifications to the virus that result in
attenuation of virulence and decreased fitness in primary swine
macrophage cultures, which is the case for BA71V and other
cell-adapted ASFV strains (92, 93). Therefore, only virus derived
from infected animal tissues or propagated in primary swine
macrophage cultures usually retains the natural characteristics
and phenotype of the original virus (90).

ASFV Entry and Early Events in the
Infectious Cycle
Several modes of cell entry for ASFV have been demonstrated
(86, 94–96). Early studies on ASFV entry indicate receptor-
dependent mechanisms including low pH and temperature-
dependent events, and determined that ASFV binding to cell
surfaces was saturable (97–100). Given the cell tropism of ASFV,
several macrophage receptors have been implicated as playing
a possible role including CD163, CD45, MHC II, and others,
although no specific receptor for ASFV has yet been identified
(101, 102). Earlier in vitro studies supported CD163 as being a
significant receptor for ASFV, demonstrating that monoclonal
antibodies could block infection (101). However, ASFV infection
of gene-edited pigs lacking CD163 showed no difference in
the course of infection or survival compared to wild type
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FIGURE 3 | ASFV replication cycle. (A) ASFV entry is primarily mediated through an unknown receptor and/or macropinocytosis; Fc-receptor mediated entry and

phagocytosis have also been suggested entry mechanisms. (B) The virus is then trafficked through early endosomes or macropinosomes to late endosomes, where

viral uncoating takes place via endosomal acidification. (C) Viral replication takes place in the cytoplasm in viral factories, with brief replication events occurring in the

nucleus. Gene expression occurs temporally, first with early genes to produce replication proteins, followed by intermediate and late genes that produce structural

proteins that are assembled into the virion. (D) Virions are assembled and bud from the infected cell within 24 hpi. Known major host (orange dots) and viral (blue

diamonds) factors involved in the ASFV replication cycle, which are discussed in the text, are indicated. ASFV, African swine fever virus; mpi, minutes post-infection;

hpi, hours post-infection; vRNApol, viral RNA polymerase; vDNApol, viral DNA polymerase; PI3K, phosphoinositide-3-kinase; Rac1, Rac-1 Rho-GTPase; Pak1, Pak-1

kinase; PtdIns3P, phosphatidylinositol-3-phosphate; PtdIns (4, 6); P2, biphosphate PtdIns (4, 6) diphosphorus.

CD163-expressing pigs, indicating that other receptors or entry
mechanisms are critical (103).

Fc-receptor mediated entry of ASFV into cells has also
been proposed, although the results from one study indicated
Fc-receptors do not mediate ASFV infection of macrophages
(104). Nonetheless, several studies suggest antibody-dependent
enhancement of ASFV infection characterized by early and
increased viremia and accelerated disease, supporting in vivo Fc-
receptor involvement (105). Antibody-dependent enhancement
of infection occurs through entry of macrophage-tropic
microorganisms facilitated by IgG antibody-antigen complexes
and Fc-receptor signaling, and has been demonstrated for several

viruses including porcine reproductive and respiratory virus,
Dengue virus, and West Nile virus, among others (106–110).
Accelerated disease has been observed in vaccinated swine
compared to non-vaccinated controls following virulent ASFV
challenge (111–113), and enhancement of ASFV infection was
observed in vitro in the presence of sera from immunized
animals, all of which coincide with the presence of non-
neutralizing ASFV-antibodies (111, 114). Further investigations
are warranted to elucidate the mechanisms involved in ASFV
enhancement of infection and pathogenesis.

Other mechanisms including phagocytosis (115) and non-
receptor mediated entry by macropinocytosis have also been
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investigated (94, 116). Macropinocytosis is the non-selective,
actin-dependent uptake of molecules, and is utilized by several
large DNA viruses, including poxviruses and herpesviruses (117).
ASFV apparently also utilizes macropinocytosis, demonstrated
by the use of chemical inhibitors, purified labeled virions, and
fluorescent and transmission electron microscopy to monitor
early events of ASFV infection in swine macrophages (94, 116).

The current working model for ASFV entry includes both
clathrin-mediated endocytosis andmacropinocytosis (86, 95, 96).
Actin modulation through phosphoinositide-3-kinase (PI3K),
Rac-1 Rho-GTPase and Pak-1 kinase signaling is important
for ASFV internalization via macropinocytosis (85, 94, 96,
118). PI3K is essential for ASFV infection, likely playing a
critical role in endosomal trafficking of ASFV (85, 94, 118).
Clathrin, dynamin, and cholesterol are required for ASFV
transport through endosomes in both Vero cells and swine
macrophages (118–120). Following internalization into early
endosomes or macropinosomes, ASFV particles are transported
to late endosomes where the cellular factor Rab7 was shown to
play an important role (116, 118). ASF virions can be found in
early endosomes between 1 and 30min post-infection (mpi) and
in late endosomes at 30-90 mpi. Increasing acidification through
endosomal trafficking plays an essential role in the uncoating
of the ASFV outer envelope and capsid. A pH below 5.0 was
shown to be required for virion uncoating (116). Fusion then
occurs between the ASFV inner envelope and late endosomal
membranes, releasing the viral core into the cytoplasm where
viral factories will subsequently form and ASFV replication takes
place. Host cell phosphatidylinositol-3-phosphate (PtdIns3P)
and biphosphate PtdIns (4, 6) diphosphorus are important for
the progression of early infection events to the start of ASFV
replication (85, 118).

ASFV Proteins Involved in the Initial Steps of Infection
ASFV structural proteins involved in virus attachment to
permissive cells include p12, p72, and p54 (121–124). ASFV
p30 is an early and abundantly expressed phosphoprotein and is
necessary for virus internalization (124). The pp220 polyprotein
is cleaved into 4 major protein components of the viral core, all
of which are required for core detachment and release (125–127).
The internal envelope protein pE248R is essential for viral fusion
with endosomal membranes and core release (116, 128).

ASFV Gene Expression and Replication
Similar to other large DNA viruses such as poxviruses and
herpesviruses, ASFV uses a temporal gene expression strategy
(71, 85). The viral RNA polymerase recognizes and initiates
the expression of early, intermediate and late genes throughout
the respective stages of the ASFV replication cycle. Early
gene expression occurs around 4–6 h post-infection (hpi), and
produces proteins necessary for viral replication. At 6–8 hpi,
ASFV replication is initiated via its own DNA polymerase
encoded by gene G1211R. While ASFV replication primarily
occurs in viral factories in the perinuclear region of the
cytoplasm, an initial brief replication phase takes place in the cell
nucleus (88). Intermediate and late gene expression then follows
at 8–16 hpi producing structural proteins that are incorporated

into the virion. ASFV encoded E2 ubiquitin-conjugating enzyme
[E215L; (129)], histone-like protein [pA104R; (130)], RNA
helicases [QP509L and Q706L; (131)], and topoisomerase II
[pP1192R; (132, 133)] have all been shown to localize to
viral factories as well as diffusely within the cell cytoplasm
and nucleus. Localization and expression studies along with
siRNA knockdown experiments indicate that these viral factors
play important roles during ASFV gene expression, genome
replication and packaging (134).

Virion Assembly and Transport of Mature
Virus Particles
Microtubules play an essential role in ASFV cellular transport
and viral factory formation (85, 86, 135, 136). Microtubules and
kinesin work together to support budding of ASF virions from
the infected cell (136). ASFV p54 interacts with microtubules and
is required for formation of viral factories and the recruitment
of envelope precursors to virion assembly sites (137, 138). The
viral capsid protein pE120R facilitates transport of mature virus
particles from assembly sites to the plasma membrane, where
the virus acquires its host-derived outer envelope (74, 139).
Altogether, an entire ASFV infection cycle, from attachment and
entry to budding of mature virus particles, is completed within 24
hpi (85).

ASFV Gene Functions and Virulence
Factors
ASFV encodes for at least 150 proteins. So far, 38 ASFV
proteins are associated with known or predicted functions in
nucleotide metabolism, transcription, replication and repair;
more than 24 ASFV proteins are involved in virion structure
and morphogenesis, and at least 8 ASFV proteins are likely
involved in host cell interactions (71). However, the functions of
a large number of ASFV-encoded proteins still remain unknown.
ASFV encodes several gene products involved in virulence and
counteracting host antiviral responses. The ASFV protein DP96R
has been shown to inhibit the cGAS-STING pathway, thereby
blocking IFN-β production, a key mediator between innate and
adaptive immune responses (140, 141); ASFV gene product I329L
has been shown to inhibit toll-like receptor 3 signaling and
type I interferon induction (142). In addition, ASFV proteins
CD2v and I215L block the transcription of immunoregulatory
genes, and ASFV proteins DP71L, A179L, A224L, and EP153R
promote cell survival (71, 85). CD2v has also been shown to
bind to host adaptor protein 1 (AP-1) and localizes around viral
factories, which suggests a role in subversion of cell protein
trafficking to promote viral replication and packaging (143).
ASFV genes of the multigene families MGF360 andMGF505/530
are also associated with counteracting antiviral host responses
involving interferon-associated mechanisms (144–146), and are
host range determinants (147). MGF360 genes have the most
copies and are the most variable among ASFV strains (71).
Naturally attenuated ASFV strains typically lack multiple copies
of MGF360 and MGF505/530 genes as well as the CD2v gene
(70, 71). Furthermore, it has been demonstrated that targeted
deletion of certain genes within MGF360 and MGF505, or of
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CD2v, is capable of attenuating certain wild-type ASFV strains,
but not all, indicating other ASFV virulence genes/factors are also
important for the virulence of ASFV (148–151).

CONTROL OF ASFV

Successful prevention and mitigation of ASF outbreaks is
hindered by multiple factors, including the lack of an effective
vaccine, the broad geographic distribution of wild and feral
swine and potential arthropod vectors capable of maintaining
the virus, as well as the increasingly globalized nature of animal
agriculture. As a result, ASF control strategies primarily focus
on early detection, restriction on livestock movement, and
culling of herds affected by or potentially exposed to the virus.
The development of effective countermeasures for ASF will be
essential in combatting current and future epidemics, and the
associated trade restrictions.

Vaccines
Despite decades of research, a broadly protective, commercially
available vaccine for ASFV remains elusive. Multiple vaccine
development strategies have been employed, with varying
levels of success. Inactivated whole viral antigen does not
induce protective immunity (152). Subunit, vector-based,
and DNA vaccines targeting specific viral proteins have
produced inconsistent results, ranging from variable protection
to enhancement of disease and accelerated mortality (105,
113, 153–155). Attenuated modified live virus (MLV) vaccines,
derived from extensive viral passaging in cell lines or through
targeted gene deletions, have been extensively investigated
and can confer protection against homologous parental virus
challenge (156), but generally provide little to no cross-protection
against heterologous virulent strains (157). Additionally, MLV
vaccines usually have a limited safety profile with modest to
severe side effects causing arthritis, skin necrosis and chronic
infections. Further research into the correlates of protection
and basic ASFV immunology is needed to facilitate targeted,
rationally-designed vaccine development (105, 157–159). A
number of highly immunogenic ASFV antigens have been
identified, yet the role of ASFV-specific cellular and humoral
immune responses in protection from ASF is still not completely
clear. Results regarding the role of ASFV-specific neutralizing
antibodies in protection are conflicting, and high levels of non-
neutralizing antibodies appear to have a detrimental effect (105,
160). For example, the presence of neutralizing antibodies does
not always confer protection and in some cases immunization
with ASF proteins is associated with enhanced ASFV infection
and pathology, despite induction of antibodies which are
neutralizing in vitro (105, 113, 153). Importantly, cell-mediated
immunity, including induction of CD8+ T-cells and natural
killer cells, appears to play an important role in protection
against ASF (54, 161, 162), since pigs exposed to the low-
virulence OUR/T88/3 strain and subsequently depleted of CD8+
lymphocytes were no longer protected from challenge with the
virulent OUR/T88/1 isolate.

Basic research to elucidate ASFV gene functions and the
mechanisms of ASFV replication, pathogenesis and immune

responses is critically needed to facilitate rational vaccine
development (105, 157–159). This research will be important
for identifying protective proteins as vaccine targets and feasible
delivery systems that induce both humoral and cellular immune
responses which correlate with protection. Other important
elements needed for successful ASFV vaccine development are
a permanent cell culture system for MLV vaccine production
as well as the design of companion diagnostic assays that
are capable of differentiating infected from vaccinated animals
(DIVA) (157, 158).

Detection and Diagnosis
Since its discovery over 90 years ago, an array of diagnostic
assays have been developed and employed for ASF. However,
current methods for ASFV diagnosis often possess significant
limitations such as (i) suboptimal analytical and clinical
sensitivity/specificity, (ii) inadequate ability to detect early
acute or chronically-infected animals, (iii) high cost, (iv) long
time intervals for receiving results, and/or (v) the need for
specialized equipment and high containment facilities (163).
Consequently, the development of accurate, rapid, affordable,
and field-deployable highly sensitive and specific diagnostic tests
for ASFV remains a significant priority.

Detection of Virus and Viral Antigen
Methods for detection of virus and viral antigens include
virus isolation and hemadsorption (HAD), fluorescent antibody
testing, and antigen detection by ELISA or lateral flow tests
(163, 164). A positive virus isolation or HAD test is considered
definitive for ASFV; however, both assays are expensive, require
primary cell cultures, and take >7 days to complete, and are
therefore only performed by a few reference laboratories (163,
165, 166). Furthermore, not all ASFV isolates are hemadsorbing
and some would therefore test negative in the HAD test. Direct
fluorescence antibody testing and a commercial antigen-based
ELISA and lateral flow tests are available, but their utility is
hampered by lower sensitivity and specificity (163, 164, 167).
Because of these limitations, PCR is often the best methodology
for detecting virus in clinical samples.

Molecular Detection of ASFV DNA
Real-time quantitative PCR (qPCR) testing is the recommended
method for screening and confirmatory testing during active
infection, due to high sensitivity, specificity, and sample
throughput (163, 164). Both, conventional and qPCR formats
targeting conserved regions of the viral p72 gene and capable of
detecting multiple genotypes have been developed and validated,
though real-time qPCR assays are considered preferable (164,
168–171). The two OIE-recommended qPCR assays use TaqMan
or Universal Probe Library (UPL) probes, the latter of which
provides greater sensitivity for animals with low level viremia
(164, 169, 171). The two qPCR assays recommended by the
OIE possess significantly greater sensitivity than commercially-
available antigen detection ELISAs, for both experimental and
field isolates, and can be useful for detecting ASFV in poorly
preserved or degraded samples where virus isolation and direct
antigen detection may not be viable (164, 166, 167). In addition
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to its use as a diagnosticmethod in swine, conventional and qPCR
formats can be used to detect ASFV inOrnithodoros ticks, and are
used in combination with sequencing to genotype viral isolates
(40, 76, 172, 173).

Traditional real-time qPCR testing typically needs high-
throughput thermocyclers and associated laboratory equipment
such as automated RNA/DNA extraction instruments which
are costly, difficult to transport, and require reliable access
to electricity, as well as the use of reagents that must
be kept cold (166, 174). Consequently, these assays are
generally restricted to laboratory settings. Several challenges
are associated with performing PCR in the field beyond
the need for a portable, battery-operated thermocycler,
which include performing nucleic acid extractions without
a centrifuge/electricity, protecting samples against cross-
contamination, and maintaining a cold chain for materials
that may require refrigeration. Additionally, available portable
thermocyclers for qPCR assays are low-throughput because
they can only run a limited number of samples at one time.
Selection of the proper thermostable PCR reagents and diluents
can overcome some of the above mentioned issues (174).

Progress toward field-deployable molecular diagnostics for
ASFV has involved research into novel DNA amplification and
detection strategies, as well as the usage of portable equipment
which can be run independent of electricity (e.g., GeneReach
PockitTM or Biomeme FranklinTM), and lyophilized reagents
which are stable at room temperature for several years (174).
In addition, portable next generation sequencing (NGS) devices
(e.g., Nanopore MinION) can be efficiently utilized to rapidly
determine the genotype of PCR positive ASFV isolates and even
sequence a significant part or the entire genome for downstream
phylogenetic analyses.

The use of a commercial battery-powered portable
thermocycler (T-COR 4TM) for the detection of ASFV via a
real-time PCR assay has previously been evaluated (174, 175).
In one study, reduced sensitivity of the portable thermocycler
for clinical samples with very high Ct values on the gold
standard qPCR was observed on a RT-PCR/PCR duplex assay
for Classical and African swine fever viruses (175). In our
hands, portable thermocyclers (e.g., GeneReach PockitTM or
Biomeme FranklinTM) show comparable clinical and analytical
sensitivity and specificity using ASF positive and negative
experimental and field samples when compared to a laboratory
thermocycler (Bio-Rad CFX 96). Rapid detection of ASFV is
key to activate respective control measures. To address this
need and provide near immediate detection of ASFV infected
swine at the farm, fair, the sale barn, or the slaughter house, our
group has developed a point of need (PON) molecular detection
method using the USDA-approved qPCR ASFV assay for the
detection of the ASFV p72 gene (170). The POCKITTM Nucleic
Acid Analyzer (GeneReach USA) is a portable PCR device,
which uses insulated isothermal polymerase chain reaction
(iiPCR) technology and reports out plus/minus detection of the
gene target for up to 8 samples within 1 h. DNA preparation
is performed on the portable TacoTMMini (GeneReach, USA)
automatic nucleic acid extraction system using the GeneReach
total NA extraction kit using a magnetic bead extraction

protocol (113). EDTA whole blood was collected from swine
experimentally infected with genotype II ASFV at various time
points post-infection and the ASFV p72-specific qPCR was run
side-by-side on the laboratory thermocycler BioRad CFX 96
and on the POCKITTM portable iiPCR device. The results from
this side-by-side analysis demonstrated similar sensitivity and
specificity of the laboratory and portable PCR devices for the
detection of ASFV p72 in blood samples.

Isothermal amplification strategies are performed at a single
temperature, thereby avoiding the need for thermal cycling
of traditional laboratory thermocycler. Early research into a
linear isothermal amplification assay for ASF by combining
an oligonucleotide with an overlapping probe and the cleavase
enzyme (Invader R©) showed high specificity but poor sensitivity
relative to other molecular diagnostic techniques (176). A study
of loop-mediated isothermal amplification (LAMP) targeting the
viral topoisomerase II gene (P1192R) showed good sensitivity
near that of the OIE TaqMan real-time PCR assay and
demonstrated the potential feasibility of a lateral flow device
for detecting LAMP amplicons (177). Subsequent comparison of
LAMP and TaqMan-based qPCR showed comparable sensitivity,
depending on the cutoff value set for a positive LAMP
reaction; the variability in reaction time to positivity for
different samples on LAMP assays and its poor correlation
with ASFV DNA levels as determined by qPCR Ct highlights
the difficulty in establishing robust diagnostic parameters
for LAMP assays (166). Two studies using the recombinase
polymerase amplification (RPA) technique targeting the ASFV
p72 gene have shown high sensitivity in this very rapid assay
format that produces results in under 10min; importantly,
robust sensitivity could be maintained when the ASFV RPA
assay was combined with a convenient lateral flow dipstick
to detect ASFV amplicons (178, 179). Further validation of
isothermal amplification assays for ASFV is needed to better
understand the reliability and utility of these techniques as ASF
diagnostic methods.

Detection of ASFV Antibodies
Duet to the lack of an available vaccine, ASFV-specific antibodies
are always the result of current or prior ASFV infection (or are
maternally-derived). ASFV-specific antibodies in convalescent
animals can persist for months or years (163, 164). Several
immunogenic proteins of ASFV have been previously identified,
including both structural and non-structural proteins (55, 180–
185). A variety of serological tests for the detection of ASFV-
specific antibodies have been developed using multiple formats
including ELISAs, immunoblots, indirect fluorescent antibody
tests (IFATs), indirect immunoperoxidase tests (IPTs), and lateral
flow tests (LFTs); several of these tests are recommended by the
OIE for disease surveillance and for determining freedom from
ASFV infection prior to animal movement (163, 164, 182, 184–
190). The above-mentioned serological assays are limited by a low
sensitivity in detecting ASFV-infected animals with early-stage
infections (<7 days post-infection) or swine which are infected
with highly virulent strains that produce peracute ASF disease
and death before the induction of ASFV-specific antibodies can
occur (163, 164).
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ELISA is the most commonly used method for high
throughput ASF serological testing, with multiple commercial
and in-house formats validated as fit-for-purpose by the OIE
(164). Soluble antigens from the cytoplasmic fraction of ASFV-
infected Vero cells are more sensitive than semi-purified viral
p72 at detecting early antibody responses and can be used in
an indirect ELISA format that is well-established but requires
BSL-3 biocontainment facilities capable of handling live ASFV
(164, 188). Utilization of recombinant ASFV proteins as ELISA
antigens circumvents the need for virus propagation in BSL-
3 containment and can provide comparable or even improved
sensitivity and specificity, as well as better consistency, compared
to the indirect ELISA using native ASFV antigens, especially
with poorly preserved sera (184, 185, 191, 192). Variable
sensitivity using sera from different geographic areas of East
and West Africa have been demonstrated for recombinant ASFV
protein ELISAs, depending on the ASFV protein used as target
antigen (185). ELISAs have also been adapted to screen other
clinical samples besides serum such as oral fluids or meat
juice, which are easier or less invasive to collect than serum.
A modified version of the OIE recommended indirect ELISA
was able to detect ASFV-specific antibodies in oral fluids from
pigs experimentally inoculated with the attenuated genotype I
strain and challenged with virulent genotype II ASFV, albeit
with reduced sensitivity relative to serum; this is likely due
to the comparatively lower level of ASFV-specific antibodies
in oral fluids (193). Indirect ELISAs using semi-purified p72
derived from genotype I ASFV isolate BA71V grown in Vero
cell culture or using recombinant ASFV p30 have also shown
positive reactivity with ASFV-specific antibodies present in feces
from pigs infected with the attenuated Ken05/Tk1 isolate (194).
Further evaluation of fecal, meat juice and oral fluid specimens
collected from experimentally and field-infected pigs are needed
to assess their viability and reliability as diagnostic samples for
serological testing.

Confirmatory testing using an alternative serological or
antigen/virus detection assay is recommended for ELISA-positive
serum, especially for endemic areas, and/or poorly preserved
samples (164). The IFAT is an established confirmatory test
utilizing African green monkey kidney cells (Vero cells) infected
with culture-adapted viral (e.g., BA71V) and a fluorophore-
conjugated secondary antibody capable of detecting swine
immunoglobulins (Ig). It provides a high level of specificity
by allowing direct visualization of antibody reactivity with
intracellular ASFV antigens in virus factories of infected cells,
facilitating discernment from background noise (164, 189,
195). The ASFV IPT is conceptually similar to IFAT and
has comparable sensitivity and specificity but instead uses a
peroxidase-tagged secondary anti-swine Ig detection antibody,
thereby avoiding the requirement for a fluorescent microscope
and facilitating larger scale testing (164, 186). The IPT has
been shown to possess greater sensitivity in detecting early
ASFV-specific antibody responses than the OIE-recommended
indirect ELISA and multiple commercial ELISAs (167). Both the
IFAT and IPT are OIE-recommended confirmatory serological
tests recommended for ELISA-positive samples from areas
free of ASFV and for inconclusive ELISA samples from

endemic areas; the IPT is considered preferable over the IFAT
(164). Immunoblots (IBs) or Western blots (WBs) use soluble
cytoplasmic ASFV proteins as antigens, and can be used as an
alternative to the IFAT and the IPT. They are highly specific and
not too difficult to interpret since the immunoreactive proteins
of ASFV detected by antibodies in the IB/WB test have been well-
described (164, 187). Antibodies from positive animals maintain
reactivity on IBs for longer than with the OIE-recommended
indirect ELISAwhen the test serum is stored at room temperature
or 37◦C; the IB can be advantageous for poorly-preserved
sera samples or where reliable refrigeration is not available
(196). IBs using recombinant p54, a highly immunogenic ASFV
protein expressed in Escherichia coli or baculovirus systems,
have been described, and are easier to interpret than ASFV-
infected cell-based IBs, and avoid the need for ASFV antigens
produced in cells (182, 191). E. coli-expressed p30 has also
been demonstrated to be a highly sensitive and specific antigen
for IBs, capable of detecting serological responses as early as
6–8 days post-infection (197). IBs/WBs based on individual
ASFV proteins do not offer the multiple ASFV antigen array
present in ASFV-infected cell lysate. Therefore, future IB/WB
approaches for ASF serological diagnosis should include multiple
recombinant ASFV antigens in order to increase specificity
and sensitivity.

CONCLUDING REMARKS

ASFV is a complex DNA arbovirus having a significant impact
on the global swine industry. The lack of a safe and efficacious
vaccine and the reliance on culling of herds to prevent disease
spread has resulted in in significant economic losses. Therefore,
improved early detection, and on-farm biosecurity measures, as
well as movement control continue to be of significant priority.
Further studies on ASFV gene functions, virus and cellular
factors involved in ASFV replication, pathogenesis, as well as
host immune responses to determine the correlates of protection,
will be critical for the development of a rationally-designed, safe,
efficacious, and DIVA-compatible ASFV vaccine. In addition,
given the vast distribution of susceptible soft tick vectors, wild
boar, and feral pigs, methods to prevent and control ASFV
establishment, and spread in populations of these species are also
critically important.
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