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Abstract

Background: The developmental origin of health and disease concept identifies the brain, cardiovascular, liver, and
kidney systems as targets of fetal adverse programming with adult consequences. As the limits of viability in
premature infants have been pushed to lower gestational ages, the long-term impact of prematurity on kidneys still
remains a significant burden during hospital stay and beyond.

Objectives: The purpose of this study is to summarize available evidence, mechanisms, and short- and long-term
renal consequences of prematurity and identify nephroprotective strategies and areas of uncertainty.

Results: Kidney size and nephron number are known to be reduced in surviving premature infants due to
disruption of organogenesis at a crucial developmental time point. Inflammation, hyperoxia, and antiangiogenic
factors play a role in epigenetic conditioning with potential life-long consequences. Additional kidney injury from
hypoperfusion and nephrotoxicity results in structural and functional changes over time which are often unnoticed.
Nephropathy of prematurity and acute kidney injury confound glomerular and tubular maturation of preterm
kidneys. Kidney protective strategies may ameliorate growth failure and suboptimal neurodevelopmental outcomes
in the short term. In later life, subclinical chronic renal disease may progress, even in asymptomatic survivors.

Conclusion: Awareness of renal implications of therapeutic interventions and renal conservation efforts may lead to
a variety of short and long-term benefits. Adequate monitoring and supplementation of microelement losses,
gathering improved data on renal handling, and exploration of new avenues such as reliable markers of injury and
new therapeutic strategies in contemporary populations, as well as long-term follow-up of renal function, is
warranted.

Keywords: Developmental origin of health and disease, Fetal origin of adult disease, Renal development,
Tubulopathy of prematurity, Prematurity, Kidney disease, Nephrotoxicity, Acute kidney injury

Introduction
Recent advances in medical care and technology have
resulted in improved survival of extremely premature
infants. Exposure to conditions that lead to preterm
birth, premature birth itself, and the management of
these fragile neonates may lead to permanent change of
organ function and structure. Consequences of alter-
ations in organ function may be more evident in
lungs and brain and less evident in other organs, such
as the kidney. In keeping with the developmental ori-
gin of health and disease (DOHD) concept, survivors
of prematurity are at increased risk at later stages of

their lives for development of metabolic disease and
chronic renal dysfunction [1]. The delay in onset and
painlessness of renal disease make recognition and
modification difficult but should not deter risk aware-
ness and prudent follow-up.

Review
Epigenetic effects
Prevalence rates of premature births are rising due to
advanced maternal age, increased use of reproductive
technology, and its concomitant increase in multiple
gestations [2]. With advances in neonatal care, the
survival of preterm infants has substantially improved
over the past decades. This has not been consistently
mirrored by outcomes in morbidity which remain high,
especially in extremely preterm survivors of less than
28 weeks gestational age (GA) at birth [3]. While the
pulmonary and neurodevelopmental consequences of
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prematurity are well under surveillance, the renal effects
of prematurity may be less appreciated [4]. Systematic
review of over 2 million former low birth weight (LBW)
infants concludes an odds ratio of 1.73 to develop
chronic renal disease [5]. The National Institute of Child
Health and Human Development described the DOHD
concept based on Barker’s hypothesis, a concept of
developmental plasticity through which a selection of
genes are switched on and off in critical periods to adapt
the organism to environmental factors [6]. Target organs
identified within this concept are the brain, cardiovascu-
lar system, liver, and kidney, and its potential life-long
impact is recently gathering attention [7].

Renal development and prematurity
At term, there are usually 300,000 to over one million
nephrons, a number closely related to birth weight [8].
Nephronogenesis in the human fetus continues until
about 34–36 weeks of gestation with more than 60% of
nephrons being formed in the last trimester of preg-
nancy [9]. Organogenesis may be impaired antenatally
due to inflammation or intrauterine growth restriction
(IUGR) frequently caused by placental insufficiency,
resulting in cerebral redistribution and diversion of
blood from less vital organs seen via Doppler [10].
Specific antenatal ultrasonographic changes in the kid-
ney are often detectable in these cases with a sausage
shape, thought to reflect cell migration failure [11]. In
clinical management of high-risk pregnancies affected by
these changes, the presence of typical Doppler patterns
themselves makes preterm delivery more likely. The very

antenatal factors causing prematurity may impact on
developmental alterations, with implications caused by
prematurity overlapping (Fig. 1).
Prematurity has been a consistently implicated cause

for dose-dependent reduction of nephron endowment
with lowering GA [12]. A common feature of extremely
preterm birth is the disruption of organogenesis and
arrest in branching organs. The lungs, vascular tree, and
kidney share similar ontogenesis and morphogenesis
with branching that normally continues to or past term
age. Preterm birth forces the developmental adaptation
to an extra-uterine environment with immediate, short-
term, and long-term implications. There are similarities
in adaptive microstructural changes in these organs
with simplification, fibroproliferation, and rarefied, dys-
morphic capillaries [13–15].

Molecular mechanisms of nephron endowment
Molecular pathologic mechanisms implicated in redu-
cing nephron endowment are multifactorial: Poor ante-
natal perfusion with lack of oxygen and nutrition, in
particular protein and micronutrients at a time-critical
window for the developing kidney impact nephron num-
bers [16]. Key molecular influences described perinatally
are inflammatory cytokines, reactive oxygen species, and
antiangiogenic factors. Inflammation is often thought to
be causative in prematurity, and its indicators are associ-
ated with later cardiovascular disease [17]. Reactive
oxygen species inevitably are generated due to the rela-
tive hyperoxia after preterm delivery compared to fetal
oxygen tension [18]. Further exposure to oxygen radicals

Fig. 1 Pathophysiology of preterm kidney disease
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such as from parenteral nutrition, medications, plastics,
and X-rays may overcome the immature antioxidant
system of the neonate [18]. Increased hypoxia-induced-
factor 1 (HIF-1), reduced vascular endothelial growth
factor (VEGF) signaling, as well as neonatal endothelial
progenitor cells (EPC) being more susceptible to relative
hyperoxia result in vessel paucity due to arrest of prolifer-
ation and increased apoptosis [19]. There is also increased
vessel constriction due to impaired endothelium-mediated
vasodilation with oxygen exposure [19]. Furthermore, ex-
perimental exposure to hyperoxia for 7 days during post-
natal nephrogenesis in mice resulted in a 25% reduction
of nephron numbers that persisted into adulthood [20].
Antiangiogenic factors such as endoglin and tyrosine

kinase have been shown to be elevated in proportion to
the degree of prematurity and ensuing hypertension
[14]. The resultant capillary rarefaction and smaller
vessel diameter result in undervascularized glomerula in
relation to the degree of function [19]. There is a loss of
nephrogenic zone in favor of accelerated maturation
which leads to early termination of glomerulogenesis
[19]. Glomerulogenesis was thought to arrest completely
after about 40 days following preterm birth [21]. How-
ever, there seems to be a maturational effect of kidney
function over time with hyperfiltration, in which fewer
glomeruli uptake more blood flow in compensation [22].
Histopathologically, there is evidence of continuous but
abnormal glomeruli formation, cystic dilatation of the
Bowman’s capsule and atrophic glomerular tufts in up to
18% in a primate model [21, 23]. The body’s mechanism
to ameliorate oligonephronia is the activation of the
renin-angiotensin system (RAS) to increase glomerular
filtration rate (GFR) which is a key factor in genetic
hypertension, vascular dysfunction, vessel rigidity, and
further constriction [24]. Furthermore, since elastin
generation and integration into the vessels occur toward
the end of pregnancy, enhanced arterial stiffness is
observed in survivors of prematurity [25].

Aspects of renal impairment in preterm children
Renal injury often remains unnoticed even in adults, as
symptoms are rarely life-threatening until potentially
irrevocable changes have occurred. In the Neonatal
Intensive Care Unit (NICU) setting, optimizing cardiore-
spiratory function takes precedence in therapeutic tar-
geting to improve mortality. It is well recognized that
long-term neurodevelopmental outcomes beyond mere
survival are critically dependent on nutrition and opti-
mal growth [26]. Protein accretion in turn is dependent
on cellular acid-base status, electrolyte homeostasis, and
the conservation of micro- and macroelements. Renal
function and its influence on all these factors therefore
play a crucial role in optimizing short- and long-term
outcome of neonates.

Glomerular function
The cation primarily responsible for regulation of extra-
cellular fluid volume is sodium. Sodium and fluid man-
agement in the very preterm infant is particularly
challenging in the immediate postnatal period with lim-
ited compensatory mechanisms. Extracellular fluid con-
traction within the first 3–4 days is a physiologic
adaptive response to postnatal life by natriuresis and
water loss [27]. In the sick or extremely premature neo-
nate, this process is compounded by systemic and re-
spiratory illness, renal immaturity, environment, and a
total dependence on parenteral therapy to maintain
homeostasis [28]. Total body sodium and other electro-
lytes, fluid, and acid-base status in this initial period of
contraction in preterm infants balances precariously be-
tween intake, the amount and composition of intraven-
ous fluid and oral feeding [29], innate reserves due to
maternal sodium and the neonate’s conservation efforts,
and ongoing insensible and tubular losses, aggravated by
drugs such as diuretics, and those with diuretic effects
such as caffeine [30].

Tubulopathy of prematurity
In older children and adults, renal compensatory mecha-
nisms in pre-renal hypoperfusion states would result in
concentration of urine to an osmolality of up to
1000 mOsm/l, urinary sodium concentration of less than
10–20 mEq/l, and fractional excretion of sodium of <1%
[31]. However, the maximum urine osmolality in prema-
ture infants is about 400 mOsm/l with a fractional ex-
cretion of sodium of <4% [32]. A mostly transient
condition of “leaky tubules” referred to as tubulopathy of
prematurity is recognized clinically. It describes a condi-
tion of renal immaturity in which, aggravated by limited
responsiveness to aldosterone [33], premature kidneys
are unable to adequately handle free water, electrolytes,
small proteins, and bicarbonate (Fig. 2). This impaired
renal concentration ability results in increased free water,
which has been implicated in ventilator dependence [34],
edema of prematurity, and risk of developing bronchopul-
monary dysplasia (BPD) [35]. Loss of bicarbonate, electro-
lytes, and small proteins may lead to metabolic acidosis,
electrolyte imbalance, and poor growth.
Sodium management is particularly challenging with one

quarter of infants with GA of less than 33 weeks having a
documented episode of hyponatremia of Na <130 mmol/l
while in hospital [36]. Inevitably in a number of infants, an
evolving sodium deficit remains a challenge to overcome.
Supplementation with sodium at a recommended dose of
3–5 mmol/kg/day is generally commenced after weight
loss thought to be physiological at around 7% of birth
weight has been attained [37], which may not always be
achieved, particularly in lower GAs [28]. Monitoring for
losses usually occurs as measurement of serum and urine
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sodium levels. Supplementation is continued in doses
aimed at maintaining serum concentration of sodium
within an acceptable range (135–145 mmol/l) which
in practice often requires amounts well in excess of the
recommended dose. The decision how to best supplement
is challenging, as serum sodium concentration may be lag-
ging total body sodium depletion and its value is inevitably
affected by hydration status [38].
Though easily available, interpretation of preterm urin-

ary sodium loss is difficult, as a high fractional excretion
of sodium (FeNa) could signify excess supplementation in
functioning tubules, or inability to reabsorb sodium in
tubulopathy. Especially in growth-restricted infants, there
often is increased combined glomerular permeability of
microproteins such as albumin with tubular impairment
to reabsorb N-acetyl-beta-D-glucosaminidase [39].

Maturation of renal function in the preterm
With premature delivery, kidney function dynamically
changes within the first weeks: The kidney receives
2.5–4% of cardiac output at birth which increases to
15–18% by 6 weeks of life, approaching adult values
of 20–25%. The GFR increases from 10–20 to 30–
40 ml/min/1.73 m2 within days to reach adult values
of >75 ml/min/1.73 m2 around 2 years of life [40].
Both glomerular and tubular function maturation in

the preterm neonate is dependent on GA and postnatal
age: Glomerular function is impacted by low initial GFR
which increases over time. At day 28, creatinine clear-
ance was still well below term infants’ [39]. There is a
high incidence of pathologic proteinuria which may be
confounded by immaturity or acute kidney injury (AKI)
[39]. However, there is considerable variability in urine

albumin and β-2-microglobulins (β2-M) which do not
correlate with renal injury markers. Similarly, neutrophil
gelatinase-associated lipocalin (NGAL) had been pro-
posed as renal injury marker in prematurity, and does
correlate with renal maturity, but not with other injury
markers [39]. Urinary cathepsin B activity, a lysosomal
tubular proteinase, was proposed as a marker for neph-
ron numbers as it had the strongest inverse correlation
with other markers of nephron endowment [39]. There
is great capacity for tubular maturation with FeNa
approximating term babies at 28 days of life. Protein re-
absorption may be lower and slower to recover function
compared to electrolyte recovery [22].

Risks of secondary renal impairment in the preterm infant
Reduced nephron numbers and limited function make
impact and consequences of postnatal renal insults
greater. Endogenous and iatrogenic factors in the inten-
sive care environment play a role in AKI. Renal failure
in premature infants with normal uro-renal morphology
may often be subclinical (Fig. 1) and is usually caused by
noxious insults such as hypoperfusion and nephrotox-
icity which can be classified as pre-renal, or intrinsic.
Hypoperfusion is a consequence of cardiovascular de-
compensation and hypotension, due to a variety of rea-
sons such as asphyxia, blood loss, sepsis or patent
ductus arteriosus (PDA). In these settings, the healthy
regulation of blood flow via dilatation of the afferent by
prostaglandins and vasoconstriction of both efferent and
afferent renal vessels by angiotensin is often inhibited
resulting in oliguria [40]. Nephrotoxic insults commonly
occur from medications, such as antibiotics, antifungals,
non-steroidal anti-inflammatory drugs, and diuretics

Fig. 2 Renal outcomes in prematurity
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[41]. Despite limited studies to support its use, diuretics
are commonly used to reduce ventilatory and oxygen
requirements, and methylxanthines like caffeine are ubi-
quitous, due to the proposed beneficial short and long-
term effects on respiratory and developmental status
[42]. All of these can be associated with AKI with poten-
tially long-term deleterious effects in summation [43].

Assessment of renal injury
Assessment of renal function in premature infants and
its impairment is difficult and limited. Clinical signs may
be late or nonspecific such as olig- or anuria, edema,
and electrolyte imbalances with accumulation of nitro-
gen waste products [38]. Newborns with pre-renal
insults or hypoxic-ischemic renal failure are more likely
to respond with oliguria/anuria due to the cortical ne-
crosis, infants with nephrotoxic renal insults due to
medications are more likely to maintain normal urine
output, thus leaving the clinician with limited clinical
signs [44]. Serum creatinine is the most commonly used
marker of renal function and the gold standard to diag-
nose AKI. Creatinine is influenced by age, muscle mass,
and maturity, as well as maternal creatinine in the first
72 hours of life, after which it slowly increases [45].
Cystatin C is a novel marker which is independent of

body composition and size and believed not to be influ-
enced by maternal renal function [46]. Compensatory
surface increase and hyperfiltration of fewer glomeruli
may affect serum levels of both creatinine and cystatin C
[47]; assessment of GFR, however, is superior using
cystatin C as a marker [48]. Conclusions about renal
endowment based on these markers may be question-
able, as it has been shown that effective renal plasma
flow is the better marker prognosticating renal outcome
[49]. More accessible in the NICU may be clearing
pharmacokinetics of common neonatal medications such
as aminoglycosides which also approximate effective
renal plasma flow [50].
Neonatal definitions for AKI have been recently pro-

posed by Kidney Disease: Improving Global Outcomes
(KDIGO) and rely on an acute increase of serum cre-
atinine above baseline to 150–200% (stage 1), 200–300%
(stage 2), or >300% or dialysis (stage 3) [51] (Table 1).
These represent modifications from the adult AKI

definition and are applicable to neonates in the first
120 days of life [40]. With this definition applied, 18% of
LBW infants developed some degree of AKI during their
hospital stay which was independently associated with an
increased mortality of 42% [51]. Reversible alterations of
kidney function occur in about 40% of premature infants
who are treated with non-steroidal anti-inflammatory
agents such as indomethacin for a PDA [40].

Hyponatremia, acidosis, and neonatal growth
Low serum or whole body sodium depletion is associated
with decreased postnatal growth [52]. Hyponatremia itself
has been implicated as a noxious pro-inflammatory condi-
tion and an independent risk factor for poor neuromotor
outcome at 2 years of age [36]. Somatic growth by cell
proliferation is thought to be mediated via a sodium
dependent Na/H antiporter system located in the cell wall
which increases the action of Na/K ATPase and stimulates
growth by alkalinization of the cell interior [53]. With
sodium depletion and acidosis, this antiporter system’s
activity is diminished and growth failure occurs despite
adequate macronutrient intake [54]. Growth of 15 g/kg/
day of lean tissue, which is generally considered the target
growth for premature babies, requires a net storage of
about 1–1.5 mmol/kg/day of sodium to build the extracel-
lular compartment [55]. Suboptimal weight gain in itself is
associated with impaired long-term neurodevelopmental
outcome [56]. Less than optimal weight gain despite ad-
equate nutritional intake may eventually be found to be
one of the markers of tubulopathy (Fig. 2). First shown in
surgical neonates, but also in those less than 32 weeks at
birth, prophylactic sodium supplementation from 7–
35 days of life has achieved improved weight gain without
increasing adverse events [57, 58].
Classic late metabolic acidosis of prematurity and

inability to adequately excrete acidic equivalents is un-
common with contemporary neonatal care; however,
mild metabolic acidosis, i.e., base excess less than minus
4 or bicarbonate less than 18 mmol/l, remains a concern
in up to 30% of neonates with tubulopathy of prematur-
ity and with use of human milk fortifiers (HMF) [59].
This is often not easily appreciated in some infants due
to relative renal compensation for respiratory acidosis
associated with BPD as a consequence of very preterm
birth. Tachypnea as only manifestation of mild acidosis
may go unnoticed or be confounded with mild BPD.
There is evidence that the stable growing premature
infants with high acid load and age-related low renal
capacity to excrete acid exhibits impaired growth and
reduced bone mineral content [59].

Long-term renal consequences
Post-discharge follow-up in premature babies of less
than 34 weeks gestation at birth showed a risk of

Table 1 Adapted from KDIGO neonatal AKI definition 2013

Serum creatinine
(μmol/l) rise by

Serum creatinine
rise × reference value*

Urinary output
(ml/kg/h)

0 < 26.5 < 1.5 ≥0.5

1 ≥26.5 (48 h) ≥1.5–1.9 (7 days) <0.5 × 6–12 h

2 ≥2–2.9 <0.5 x > 12 h

3 ≥221 or dialysis ≥3 <0.3 x ≥ 24 h or anuria
x ≥12 h

*Reference creatinine is defined as the lowest previous serum creatinine value
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nephrocalcinosis in 14%, associated with nephrotoxic
medication use such as dexamethasone, furosemide, theo-
phylline, and aminoglycosides [60]. At follow-up at 2 years
of age, survivors with nephrocalcinosis showed impaired
tubular function with increased Uca/Ucrea ratio [61].
Although it is not directly associated with systemic hyper-
tension and appears to resolve in the majority of children
within a few years, it may persist in 25% up to 7 years of
age with unknown life-long consequences [62, 63]. In
persistent cases, other reasons for hypercalciuria such as
hyperparathyroidism should be excluded.
In survivors of extreme prematurity, renal structural

and functional differences were noted: smaller kidney
volume and higher cystatin C and blood urea nitrogen
(BUN) were detectable in 7- to 11-year-old former ex-
tremely low birth weight (ELBW) infants compared to in-
fants who were born at term [64]. Follow-up at 6 years
showed that survivors of prematurity less than 33 weeks
had similar rates of microalbuminuria, but those with add-
itional AKI also had a lower GFR than those without AKI
[65]. Mild renal tubular insufficiency and significantly
lower tubular phosphate and bicarbonate reabsorption as
well as lower early-morning urine osmolality have been
documented up to 7 years of age [63].
In former LBW infants baseline blood pressures were

higher, GFRs lower, and salt sensitivity was dispropor-
tionally higher, especially in infants with growth restric-
tion, with 47% compared to 18% in term peers [66]. Salt
sensitivity, thought to be due to nephron deficit, corre-
lated with ultrasonographic kidney length [66]. There is
evidence of microvascular endothelial dysfunction with
increased vascular resistance, and reduced vascular
diameter which aggravate the effects of nephron deficit
in the premature kidney. Increased glomerular capillary
pressure distributed over less glomeruli and with less
capability of the afferent renal arterioles to adjust incom-
ing pressure results in compensatory glomerulomegaly,

hyperfiltration, proteinuria via activation of RAS, and
glomerulosclerosis over time [67].
This process can be compensated over many decades

until homeostasis can no longer be maintained resulting
in premature aging of the kidney [68]. Lifestyle such as in-
creased maternal body mass index (BMI) pre-pregnancy,
and excessive weight gain in at-risk populations exacer-
bate the risk for secondary changes such as arterial hyper-
tension and metabolic syndrome [69]. In term infants,
these modifiable risk factors seem to even surpass the
effect of birth weight [69]. Secondary focal glomerular
sclerosis on top of marginal renal function can lead to
progressive chronic kidney disease and ultimately the need
for dialysis.

Conclusions for neonatal care
Renal conservative strategies start right after delivery
and continue throughout NICU stay and long-term
follow-up with awareness of renal implications of prema-
turity and avoidance of further injury. Monitoring
markers of kidney function such as creatinine, electro-
lyte, fluid, weight, and acid-base status, careful attention
to type and amount of intake, and addressing medication
needs with choosing kidney friendly alternatives where
possible, as well as monitoring drug levels of renally
excreted drugs and reducing prescribed amounts ad-
equately are commonly employed strategies (Table 2).
The use of diuretics in oliguria may be a double-edged
sword as the increase in urinary output is often offset by
an increase in creatinine [70].
Advancement in renal protective strategies may be in

avoidance of edema and fluid overload which seems to
be detrimental, with renal replacement therapy. Renal
replacement therapy can be considered in refractory
acidosis, uremia, electrolyte disbalance, nutritional defi-
cits, and especially fluid overload [71]. The method of
choice in the preterm, peritoneal dialysis, may be

Table 2 Proposed practice guidelines for optimization of renal conservation efforts

During NICU Health Maintenance for survivors of prematurity

Monitoring renal function Volume status, weight, ins and out
Vital signs
Serum electrolytes, crea, and FeNa:
Supplementation if prudentMaintain
target serum electrolyte values

Awareness of prematurity-related increased risk
throughout lifespan [7]
Assess serially volume status, weight, diuresis
Vital signs (esp BP)
Tubular parameters (FeNa/β2-M)
Glomerular parameters (albumin/creatinine)

Medications Drug levels/pharmacist input=>
Dosing adjustment
Taking renal maturation into account
Daily evaluation of medications

Awareness of baseline renal function
appropriate choice and adjustment of
potential medications

Arterial hypertension Blood pressure monitoring daily as needed
in the acute/sick phase or if abnormal
Rule out coarctation aortae
Consider renal vascular Doppler

Blood pressure measurement
With every health maintenance visit
Target age-appropriate values [74]
Counseling about salt sensitivity

Nephrocalcinosis Renal ultrasound before discharge Follow-up ultrasound for resolution
If progression consider urine Ca/creatinine
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considered earlier and although there is a paucity of data
on efficacy and practicality, it has been employed in
neonates as small as 830 g [72]. An important consider-
ation beyond peritoneal dialysis is the availability of con-
tinuous renal replacement therapy systems designed for
the neonate which accommodate smaller extracorporeal
volumes and higher accuracy [73]. This therapeutic
modality will likely expand, as centers’ expertise, comfort
level and further evidence gathers.
Long-term strategies include the following: Regular

search for and documenting presence of hypertension
with appropriate workup and choice of medication if
necessary [74]; Documenting and following serially the
presence of nephrocalcinosis; and Communication to
families and health care providers regarding influence-
able lifestyle choices such as salt intake and other risk
factor for metabolic syndrome in follow-up care.

Open questions and implications for research
It is important to recognize that the complications of
neonatal renal impairment may present significant chal-
lenges in the adult future even in asymptomatic survi-
vors of premature birth. Awareness of deleterious side
effects and renal consequences of therapies in the mod-
ern NICUs and improved post-discharge care and longi-
tudinal renal follow-up as well as parental and health
care provider awareness are warranted. Monitoring of
neonatal sodium values in serum and total body sodium
monitoring with exploration of non-invasive longitudinal
markers of sodium loss such as urinary sodium values
may be prudent. Gestation-specific parameters in urinary
sodium handling may be helpful to assess whole body
sodium status non-invasively. Meticulous attention to
nutritional support along with supplementation with bi-
carbonate, sodium, phosphate, and other micronutrients
in neonates with increased tubular losses may be benefi-
cial. Improved neonatal growth is associated with better
long-term neurodevelopmental outcomes of prematurity
[56]. Normative data to assess renal/tubular function in
extreme preterm infants will help in the understanding of
their unique physiology of postnatal adaptation and
growth. Long-term implications of nephrocalcinosis are
missing. Novel ways to assess for severity of nephron
reduction and AKI such as urinary cathepsin B and NGAL
may be expanded upon. More data on consideration of
aminophylline to prevent the adenosine-mediated renal
vasoconstriction in asphyxia may be gathered [75].
The application of the KDIGO definition of AKI and

its implication for outcomes are unanswered questions,
as well as novel reno-protective strategies such as avoid-
ance of fluid overload and its impact on neonatal out-
comes, as well as the exploration of renal replacement
therapy to minimize the trajectorial risk toward chronic
kidney disease.

Conclusions
The toll of prematurity-related renal injury on the prob-
ability of kidney disease in adulthood is understudied. Data
on renal handling and improved kidney care in contempor-
ary populations is rare. Survivors of extreme prematurity
suffer arrested development of organs with reduced neph-
ron endowment as a consequence of hypoxic-ischemic and
nephrotoxic renal insults. Short-term consequences in-
clude electrolyte disbalances, acidosis, and impaired free
water handling. These could potentially result in prolonged
respiratory support, growth failure, and suboptimal neuro-
developmental outcomes in the short term.
In later life, subclinical chronic renal insufficiency may

progress even in the asymptomatic survivor. For the
neonatologist, the new frontier of improving extremely
premature infants’ outcomes also depends on the aware-
ness of renal implications of therapeutic interventions
and renal conservation strategies with adequate supple-
mentation and prudent follow-up. Novel markers of AKI
such as cystatin C, NGAL, and urinary cathepsin, as well
as new treatment strategies such as early dialysis can be
explored further. Finally, a same language with AKI defi-
nitions in the neonatal population and its impact on out-
comes should be the focus of interest.
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