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Abstract: Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent
against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes
against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions.
Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues,
limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors
(BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present
the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of
restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens.
Subsequently, we will discuss several promising alternative approaches such as bacteriophages,
antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic
repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight
against Gram-negative pathogens.
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1. Introduction

Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against
staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes. BLAs are
the most widely used antibacterial agents against infectious diseases, reaching a percentage of 65% of
all medical prescriptions. In general, they are well tolerated and have high efficiency in eliminating
resistant bacteria. However, side effects such as allergic responses or delayed hypersensitivity reactions
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could often occur [1]. BLA’s mechanism is based on blocking the formation of the bacterial cell wall
following covalent binding to penicillin-binding proteins (PBPs), enzymes involved in the final stages
of cross-linking of the peptidoglycan layer (PG) in the bacterial cell wall, both of Gram-negative and
Gram-positive bacteria.

Initially, the inhibition mechanism of PG transpeptidation by penicillin was described in 1965 by
Tipper and Strominger [2]. They observed a structural similarity of penicillin G to the D-ALA-D-ALA
dipeptide from the PG structure. This mechanism involves either binding penicillin to an active site of
serine located in functional PBPs or binding to an allosteric site of PBP2a from Staphyloccocus aureus.
In the first case, the penicillin-binding to the active site determines the enzyme’s acylation and the
antibiotic hydrolysis [3]. In the second case, binding to the allosteric site leads to an increased sensitivity
response of the body [4,5]. Inactivation of PBPs by BLAs causes the accumulation of PG precursors
leading to the hydrolases activation in the cell wall, which also degrade the intact PG, causing the lysis
of the actively dividing cells [6]. In Gram-positive bacteria, the PG is 50–100 times thicker than in
Gram-negative and strongly intertwined, which maintains structural integrity in Gram-positive [7].
Therefore, BLAs have a more decisive action on Gram-positive bacteria. It is also worth mentioning that
all the Gram-negative pathogens present an additional membrane layer often referred to as the “outer
membrane” [8]. This asymmetrical lipid bilayer composed mainly of glycolipid lipopolysaccharides
(LPS) and glycerol phospholipids acts as a robust barrier for protection against various environmental
stimuli and toxic compounds, including antibiotics, whose targets are particularly located beyond this
layer [9]. The barrier function of the outer membrane is responsible for the endotoxin shock associated
with the septicaemia caused by Gram-negative organisms and proteins that mediate the passive or
active uptake of small molecules [10].

BLAs have saved countless lives by now and remain the backbone of therapy for the majority
of bacterial infections, including those caused by ESKAPE pathogens. The Gram-negative group,
that encompasses the Gram-negative ESKAPE pathogens withstand resistance to a broad group of
antimicrobial compounds, including carbapenems, which are considered “last resort” BLAs [11].
The phenomenon of antimicrobial resistance is a multifaceted one and multiple mechanisms have been
associated with BLAs failure, including the production of β-lactamases (enzymes able to hydrolyze
the BLAs), structural alterations in PBPs, decreased expression of outer membrane porins (OMPs),
and increased drug efflux. Among all of them, β-lactamase-mediated resistance to BLAs is by far the
most common and important mechanism of resistance in Gram-negative species [12]. In Gram-negative
bugs, the enzymatic resistance may be mediated by either plasmid- or chromosomal β-lactamases;
notably, inducible expression of chromosomal β-lactamases is common in almost all Gram-negative
microbes, while plasmid-mediated enzymes are usually expressed constitutively [13]. The plasmidial
enzymes are usually class A enzymes, whereas the chromosomal β-lactamases belong to class C
enzymes [14]. The epidemiological dimension of increased resistance to BLAs is mainly linked
with the global spread of plasmid-mediated β-lactamases, such as the CTX-M-type enzymes [15,16].
Unfortunately, the emergence and diversification of β-lactamases threaten the clinical effectiveness
of all current BLAs, and one solution is to develop β-lactamase inhibitors (BLIs) capable of restoring
the activity of β-lactam drugs or alternatively to develop new representatives from this class. In this
review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an
update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE pathogens.
Subsequently, we will discuss several other promising alternative approaches such as bacteriophages,
antimicrobial peptides, nanoparticles, CRISPR cas technology, or vaccination developed to limit
antimicrobial resistance in this endless fight against these pathogens.

2. Classification of β-Lactam Antibiotics (BLA)

Depending on the molecular weight, PBPs are divided into two classes: low molecular weight
PBPs, which generally function as carboxypeptidases, and high molecular weight PBPs divided into
two classes, A and B [17]. Class A includes bifunctional enzymes, consisting of a transpeptidase
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domain and a transglycosylase domain. Class B comprises transpeptidases containing the dipeptide
D-Ala-D-Ala. A unique set of PBPs for each bacterial species can contain up to eight enzymes per
species [18]. Examples of these PBSs in Gram-negative bacteria are PBP1a, PBP1b, PBP2, and PBP3.
Their inhibition blocks the cellular division, causing shape changes (e.g., the occurrence of filamentous
forms following the β-lactams treatment) or bacterial cell lysis.

2.1. Penicillins

Either natural or semi-synthetic, penicillins are the longest-used antibiotics in managing bacterial
infections globally, being suitable even in the pediatric context [1]. Penicillins are part of the penam
group and contain a β-lactam ring, a thiazoldine core, and a side chain with variable dimensions
that differentiates penicillins from each other [19]. The side chain is responsible for the biological
activities and chemical properties of different penicillins (Figure 1) [20]. Penicillins are classified as
natural (penicillin G and penicillin V) or semi-synthetic, including penicillinase-resistant-penicillins,
aminopenicillins, and antipseudomonal penicillins.
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Natural penicillins such as benzylpenicillin (penicillin G) and phenoxymethylpenicillin
(penicillin V) have low oral bioavailability, and therefore, are usually administered intravenously or
intramuscularly. However, they are useful only in treating Gram-positive cocci and streptococci and
several other non-penicillinase-producing microorganisms [1]. After prolonged exposure to natural
penicillins, many penicillinase-producing strains have also emerged among Gram-positive rods. This
problem has fueled the search for new semi-synthetic derivatives resistant to β-lactamases, thus
giving rise to the second generation of penicillins including oxacillin, dicloxacillin, and methicillin [20].
Although more stable, these drugs were less effective than initially anticipated. They brought a slight
improvement in managing penicillinase-susceptible Gram-positive microorganisms compared to
natural penicillins and no activity against Gram-negative species.

Furthermore, many studies have reported methicillin-resistant S. aureus (MRSA) strains occurring
throughout the world. MRSA can cause life-threatening infections in hospitalized and non-hospitalized
patients, which, in turn, has limited methicillin use in this clinical setting [21]. Methicillin resistance is
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correlated with the abundant production of an altered PBP protein: PBP2a, which can replace other
PBPs and confer resistance to all BLAs [22].

The introduction of the third generation of penicillins, aminopenicillins (ampicillin and amoxicillin),
has brought considerable advantages over its predecessors. Aminopenicillins showed increased
activity against Enterococcus spp. and several Gram-negative species such as Haemophilus influenzae,
Escherichia coli, Salmonella spp., and Shigella spp. [20,23]. Ampicillin is usually given parenterally, whereas
amoxicillin is orally administered. However, their stability is relatively weak, being susceptible to
the attack of staphylococcal penicillinase and β-lactamases produced by Gram-negative bacteria [6].
The limited efficiency of penicillins against Gram-negative organisms has considerably accelerated
the pharmacological research in the field, leading to new classes of compounds with an enhanced
spectrum of action. Such examples are the antipseudomonal penicillins carboxypenicillins (ticarcillin
and carbenicillin) and the ureidopenicillin piperacillin [23].

Interestingly, in recent years, it has been observed that the effectiveness of penicillin-based
regimens can be accelerated by combining them with β-lactamase inhibitors (BLIs), such as clavulanic
acid, tazobactam, and sulbactam. BLIs act mainly on enzymes, allowing BLAs to exert their
antibacterial effects [12]. Piperacillin is used in conjunction with tazobactam in the management of
appendicitis, skin, and soft tissue infections, as well as community and hospital-acquired pneumonia
(CAP and HAP) [12,24]. Ampicillin-sulbactam combinations administrated both intravenously and
intramuscularly effectively treat gynecological, intra-abdominal, and dermatological infections [12].
Clavulanate can be administered orally in conjunction with amoxicillin (Augmentin) or parenterally,
combined with ticarcillin; in these formulations, it can be used to treat from uncomplicated sinusitis
and otitis to complicated sepsis [12,25].

2.2. Cephalosporins

Cephalosporins are another category of BLAs isolated from Acremonium chrysogenum, also known
as Cephalosporium spp. There are six generations of cephalosporins, and each generation is administered
in a specific clinical context. The basic structure of cephalosporins is the 7-aminocephalosporanic
acid (7-ACA). The chemical changes in position 7 of the β-lactam nucleus cause the pharmacological
properties of cephalosporins and help their stratification (Figure 1) [26]. The first and second generation’s
cephalosporins are potent against Gram-positive rods, while the third and fourth generations are
more active against Gram-negative species. The identification of ceftaroline, an effective anti-MRSA
cephalosporin that displays an increased affinity for PBP2a, marked the transition to the fifth-generation
cephalosporins [27]. Cephalosporins are much more resistant to β-lactamases and have a broader
spectrum of action than penicillins; however, extended-spectrum β-lactamases (ESBLs) may interfere
with the therapeutic efficacy of even the third-generation cephalosporins [6].

The first-generation cephalosporins include cephalothin, cefazolin, cephalexin, cephapirin,
cephradine, and cefadroxil; they have great action on methicillin-susceptible cocci and moderate
activity on several enterobacteria (E. coli, Klebsiella spp., and Proteus mirabilis). These cephalosporins
have multiple indications, being recommended in the prophylaxis of post-surgical infections in the
clinical management of otitis media, bacteremia, biliary tract infections, and many infections in the
cardiac, respiratory, intra-abdominal, orthopedic, dermatological, and genitourinary settings [28].
However, first-generation cephalosporins cannot cross the blood–brain barrier (BBB) and are often
associated with recurrent infections [6].

Second-generation cephalosporins are subdivided into two major groups: ‘true’-second-generation
cephalosporins and the cephamycins. The subgroup of true cephalosporins includes cefuroxime and
cefprozil, whereas the cephamycins are represented by cefmetazole, cefoxitin, cefminox, and cefotetan.
Usually, most second-generation compounds have similar indications as to their predecessors. However,
the second generation of cephalosporins has a broader spectrum of action on some Gram-negative
rods species and on H. influenzae and Neisseria spp. [23]. A remarkable compound in this group is
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cefoxitin, active on both Gram-positive and Gram-negative anaerobes. It is also extremely potent in
the complications associated with Lyme disease [27,29].

The third-generation cephalosporins include cefotaxime, ceftriaxone, ceftazidime, ceftazidime,
ceftazidime/avibactam, cefdinir, cefixime, and cefoperazone. They are much more resistant to
β-lactamases produced by Gram-negative bacilli but can be hydrolyzed by ESBLs, such as
carbapenemases and AmpC enzymes [30]. Remarkably, ceftazidime is one of the most active compounds
from this class against Pseudomonas aeruginosa; this activity is mainly due to the methoxyamino group’s
replacement with a dimethylacetic acid residue [23]. Due to their broad spectrum of action, these
cephalosporins are recommended for the treatment of a wide range of infections, including infectious
endocarditis, spontaneous bacterial peritonitis, digestive tract infections, urological infections, human
and animal bites, genital tract infections, and other sexually transmitted infections [29,31–35]. Notably,
due to their ability to reach a sufficient concentration in the central nervous system, they are also
recommended to treat meningitis caused by Gram-negative bacilli [23].

The fourth generation of cephalosporins, which includes cefpirome and cefepime, has a broader
spectrum of action than their predecessors and remarkable stability to the action of chromosomal or
plasmid-mediatedβ-lactamases [1]. Cefepime is active against an increased number of Enterobacteriaceae,
P. aeruginosa, and various Gram-negative β-lactamases producing strains [27]. Interestingly, due to
the remarkable penetration rate through OmpF outer-membrane porin, cefepime has the lowest MIC
values against Enterobacteriaceae of all broad-spectrum cephalosporins [36,37]. Fourth-generation
cephalosporins are also more potent against Gram-positive cocci and are usually used as critical
interventional therapy when other cephalosporins cease to function [6].

The fifth-generation cephalosporins include representatives such as ceftaroline, ceftobiprole,
and ceftolozane. These compounds are highly effective against Gram-positive cocci (e.g., Streptococcus spp.,
methicillin-susceptible S. aureus- MSSA, MRSA) and Gram-negative bacilli, except for ESBLs- and
AmpC-producing strains such as Acinetobacter baumannii [38]. Ceftaroline fosamil is an N-phospho
prodrug metabolized in vivo to the active compound, ceftaroline, after intravenous administration.
Ceftaroline is a broad-spectrum cephalosporin that has been developed to target resistant bacterial
strains, especially MRSA. This agent’s effectiveness is mainly due to the high affinity for all six PBPs,
especially PBP2a. In addition to its activity on MRSA, ceftaroline has also been documented to be
effective against vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA),
various Staphylococcus spp. such as S. hominis, S. epidermis, and S. hemolyticus and also on H. influenzae [1].
Notably, ceftaroline is 2–4 times more effective in inhibiting the microbial growth of staphylococci and
streptococci than ceftobiprole and is widely used in the management of CAP and HAP [39].

Ceftobiprole is a metabolite prodrug of the ceftobiprole medocaril, which is also parenterally
administered. Its spectrum of activity includes mainly the same species on which ceftaroline acts,
with small differences in anaerobic bacteria [23,28]. In addition to the increased affinity for PBP2a in
MRSA, ceftobiprole has been shown to bind to PBP2a in S. epidermidis and PBP2x in penicillin-resistant
S. pneumoniae [40–42]. Interestingly, ceftobiprole is not hydrolyzed by class A β-lactamases (TEM),
AmpC-β-lactamases, and Staphylococcal PC1 enzymes, but remains vulnerable to the action of class B,
D of β-lactamases, and ESBLs [43]. Interestingly, ceftobiprole has a lower MIC value than ceftaroline in
treating A. baumanii or P. aeruginosa infections [1,6].

Ceftolozane, administered in conjunction with tazobactam, is a cephalosporin that has not been
included in the cephalosporin generation series. This combination is distinguished from all other
agents by its activity against various ESBLs-producing enteric species, including P. aeruginosa [44].
Ceftolozane/tazobactam was approved by the Food and Drug Administration (FDA) in 2014 to treat
abdominal infections, pyelonephritis, and other complicated urinary tract infections (cUTIs) [1].

Another compound recently added to the cephalosporin arsenal is cefiderocol. It has a structure
similar to that of cefepime and ceftazidime, but which also has a siderophore catechol group, which
allows it to penetrate the periplasmic space by exploiting the ion iron transfer system [45]. The FDA
recently approved it in September 2019, being one of the strongest β-lactams with remarkable
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structural stability against various Ambler class A, C, D β-lactamases, and some β-lactamases
from class B. This confers activity on multi-drug resistant (MDR) A. baumannii, P. aeruginosa,
and Stenotrophomonas maltophilia [46,47]. Cefiderocol is more potent than ceftazidime-avibactam
(CAZ-AVI) and meropenem in the treatment of A. baumannii, including strains resistant to meropenem
or MDR. Also, the antimicrobial activity of cefiderocol is superior to CAZ-AVI in isolates not susceptible
to meropenem and K. pneumoniae carbapenemase (KPC-) producing Enterobacteriaceae [46].

Interestingly, although cefiderocol showed superior efficacy than CAZ-AVI in P. aeruginosa, several
strains acquired resistance to this compound. The main mechanisms reported were the reduction of
the components of the ion transport system, and mutations in these components positioned in the
bacterial outer membrane [48,49]. Potential clinical applications of cefiderocol include, but are not
limited to, the treatment of HAP, ventilator-associated pneumonia (VAP), and cUTIs with limited or no
treatment options.

2.3. Monobactams

Monobactams, or monocyclic β-lactams, are active against Gram-negative rods and have virtually
no activity on anaerobic and Gram-positive microorganisms (Figure 1) [23]. Aztreonam is one of the
archetypal representatives of this group, being the only one currently approved. It is resistant to several
types ofβ-lactamases and is used successfully against Gram-negative bacteria, including P. aeruginosa [1].
The antibacterial properties of aztreonam are due to its increased affinity for PBP3 and moderate
affinity for PBP1a in Gram-negative bacilli [50]. In routine clinical practice, aztreonam is recommended
to manage patients with complicated infections caused by Gram-negative rods which does not tolerate
penicillins and cephalosporins [51]. Although aztreonam is resistant to metallo-β-lactamases (MBLs)
(Imipenemase-IMP, VIM-Verona Imipenemase, NDM-New Delhi MBL), its efficiency against MDR and
extensively drug-resistant (XDR) microorganisms is still questionable since a significant proportion of
MBL producers co-produce ESBLs, thus making them aztreonam resistant [52,53].

BAL30072 is a new monocyclic β-lactam belonging to the class of sulfactams. The siderophore
group from its structure is essential to forming the complex with iron ions and efficient penetration into
the periplasmic space. Besides the increased spectrum of aztreonam action, BAL30072 brings additional
activity on non-fermenting Gram-negative bacteria [54]. Notably, available preclinical studies to
date potentiate that this compound is potent against several carbapenem-resistant A. baumannii
(CRAB) clones and MBL-producing P. aeruginosa strains [54–56]. Additionally, it has been reported that
BAL20072 is hydrolyzed almost 3000-times less efficiently by KPC-2 than aztreonam [55].

2.4. Carbapenems

Carbapenems, including imipenem, ertapenem, meropenem, and doripenem, are the most potent
β-lactams due to their increased resistance to most existing β-lactamases, including ESBLs. They
distinguish from other β-lactams by having a carbon atom that replaces the sulfur or oxygen atom at
the C-1 of the five-membered penicillin-like ring and a hydroxyethyl group in trans configuration at C-6
(Figure 1). Due to the increased penetration power through the outer membrane, formidable stability
to the action of β-lactamases, and increased affinity for almost all PBPs, carbapenems are potent against
Gram-positive, Gram-negative, aerobic, and anaerobic microorganisms. However, carbapenems are
restricted only to complicated infections caused by E. coli, K. pneumoniae, and P. aeruginosa. Surprisingly,
carbapenems are ineffective against MRSA, E. faecium, and several Gram-negative aerobic rods, such as
Burkholderia cepacia [23].

Meropenem and ertapenem are very active on Gram-negative microorganisms, while imipenem
and doripenem only on Gram-positive bacteria. Ertapenem, imipenem, and meropenem have a higher
efficacy against Enterococcus spp., Acinetobacter spp., and P. aeruginosa [57]. However, doripenem
remains the most stable carbapenem to the action ofβ-lactamases [58] and has been documented to have
lower MIC values than imipenem and meropenem on two notorious ESKAPE pathogens: P. aeruginosa
and A. baumannii [59,60]. However, several studies report carbapenemases in various Gram-negative



Int. J. Mol. Sci. 2020, 21, 8527 7 of 46

species; this is of particular importance. Thus, these bacteria become refractory to almost all available
BLAs and other classes of compounds, such as fluoroquinolones and aminoglycosides [61,62].

Around the 2000s, the United States firstly reported a K. pneumoniae strain carrying
a class A β-lactamase-encoding plasmid, capable of hydrolyzing penicillins, cephalosporins,
and carbapenems [63,64]. As more than one-third of K. pneumoniae isolates are carbapenemase producers,
the spread of these strains pose a global epidemiological challenge [65]. Until now, many other
carbapenemases have been identified around the world. For example, two carbapenemase encoding
genes blaNDM-1 and blaIMP-4 have been documented in K. pneumoniae producing strains [66]; additionally,
two other carbapenemase genes blaKPC and blaNDM have been reported in Enterobacter cloacae [67].
Further complicating this scenario, an isolate of K. oxytoca was shown to produce three types of
carbapenemases KPC-2, NDM-1, and IMP-4. Plasmids carrying these three resistance genes have been
subsequently reported in other Enterobacteriaceae strains [68,69].

In Japan, there have been approved two other carbapenems very similar to meropenem and
doripenem, namely biapenem [57] (excellent stability to MBLs) and tebipenem (with deficient
antipseudomonal activity) [1,70].

3. β-Lactamases in Gram-Negative Bacteria

β-lactamases inhibit the β-lactams antimicrobial activity by dissociating the -CO-NH bond at
alanyl-alanine dimer level during the PG synthesis. Due to their steric omology, BLAs bind to the
alanyl-alanine dimer in a similar region as PBP. On the other hand, β-lactamases and PBPs have similar
structures and have common peptidase activity, leading to the idea that β-lactamases were derived
during the evolution of PBP [71] (Figure 1).

In Gram-negative bacteria, β-lactamases have played a significant role over time, representing the
main mechanism of resistance to BLAs (Figure 2). The first β-lactamase reported was discovered by
Abraham and Chain in 1940 in Bacillus coli [72], today considered class C cephalosporinase from E. coli.
In general, enzymatic resistance to BLAs has been associated with Gram-negative pathogens, many
species, such as P. aeruginosa and several enteric bacteria having been shown to produce chromosomal
inducible β-lactamases [73]. However, one acute problem in the case of β-lactamases is represented by
the enzymes encoded by genes located on mobile genetic elements (MGE) that could be transferred by
horizontal gene transfer (HGT). In the early 1980s, the transfer of β-lactamases was observed in only a
few enterococcal strains [74]. Subsequently, the spread of β -lactamases through MGE proved to be the
most important resistance mechanism in Gram-negative bacteria.
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3.1. Origins

β-lactamases are enzymes with a diverse molecular structure whose common feature is their ability
to degrade the BLAs’ structure. Although in 1979 [75], it was specified that β-lactamases appeared
with the discovery of the first enzyme capable of degrading penicillin by Abraham and Chain [72],
phylogenetic analyses estimated that β-lactamases date to about 2 billion years [76]. The analysis of
some permafrost sediments in Canada dating back about 30,000 years and some sediments in Papua
New Guinea, dating back about 10,000 years, led to the discovery of amino acid sequences with high
similarity with TEM type [77,78]. Metagenomic analysis of ancient samples led to the detection of
MBLs in a bone sample from the 14th century [79]. β-lactamase production has been shown in soil and
ice core samples in Antarctica and South America populations that have not been administered at all
or very rarely commercial BLAs [80,81], thus proving the existence of β-lactamases even in the absence
of the selective pressure exerted by antibiotics used in therapy. Interestingly, in studies that analyzed
ice samples, MBLs such as IMP, a β-lactamase less commonly involved in BLAs resistance in clinical
isolates, were discovered [80].

3.2. Classification

In general, β-lactamases are classified biochemically into two broad categories, depending on
how they perform the hydrolysis of the β-lactam ring. β-lactamases can perform hydrolysis either by
forming an acyl-enzyme with an active serine site [82] or by a hydrolysis reaction based on zinc ions
from the active sites of MBLs [83]. Initially, Sawai et al. classified β-lactamases into penicillinases and
cephalosporinases, depending on the substrate [84]. In 1976, the introduction of isoelectric focusing
(IEF) allowing the analysis of the amino acid sequences of key β-lactamases [64]. Ambler made the first
molecular classification ofβ-lactamases in Gram-negative bacteria that divided into four classes, A, B, C,
and D. For classes A, C, and D, the active enzyme site contains serine and class B includes Zn-dependent
metallo-enzymes (Figure 3) [85]. Between 1979 and 1985, almost 1800 enteric bacteria were analyzed
based on IEF profiles to observe the presence of β-lactamases [86–90]. 63% of the analyzed isolates
showed blaTEM-1 and blaTEM-2 genes, 9.9% of the strains showed SHV-1, and 7.8% showed OXA
type enzymes. These studies laid the groundwork for the subsequent complex characterization of
β-lactamases. Furthermore, besides the common β-lactamases TEM and SHV, the ESBLs, especially
those from the CTX-M family, have been found as essential enzymes responsible for Gram-negative
rod resistance [91,92].
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Class C-type cephalosporinases have been implicated over time in resistance to cephalosporins
and carbapenems in enteric bacteria and non-fermenting pathogens. AmpC type enzymes have been



Int. J. Mol. Sci. 2020, 21, 8527 9 of 46

proved to exhibit high levels and high hydrolysis capacity, leading to antibiotic resistance, especially in
strains with low permeability [93]. Since 1990, the emergence of AmpC-type enzyme-carrying plasmids
has become problematic due to inter-species transfer, increasing the resistance to different BLAs [94].

Although initially considered irrelevantβ-lactamases, occasionally encountered [95], carbapenemases
became today the principal mechanism of carbapenem resistance in Gram-negative bacteria. Class A
carbapenemases, such as the SME enzymes from Serratia marcescens, have been identified since 1980
in Europe and America [96]. MBLs were initially identified in Japan, where the first enzyme was
IMP [97], and in Italy, where VIM β-lactamase was identified [98]. However, at present, these enzymes
are associated with some geographical regions without having a considerable spread [99,100]. Since
2000, KPC-type carbapenemase-encoding plasmids have been identified in many parts of the world,
especially in K. pneumoniae, the most common being KPC-2 and KPC-3 [101,102], but they may occur in
most Gram-negative bacteria. KPC-producing bacteria are associated with high mortality rates, with
approximately 51% of infections being caused by colistin-resistant K. pneumoniae strains [103]. Another
category of carbapenemases associated with several infection outbreaks is class D, also called oxacillinase
(CHLD) due to their ability to hydrolyze oxacillin. Over 400 OXA enzymes have been characterized,
mostly having the ability to hydrolyze carbapenems. In A. baumannii, the presence of OXA-type
β-lactamases, which hydrolyze carbapenems, is one of the significant mechanisms of resistance,
OXA enzymes such as OXA-23, OXA-24/40, and OXA-58 being among the most prevalent in this
species [104,105]. OXA-23 was identified in Scotland [106], later disseminated globally, now reaching a
high frequency in A. baumannii isolates [107,108]. Genes encoding OXA-type β-lactamases have been
identified mainly chromosomally or plasmid located in A. baumannii strains [109,110]. In P. aeruginosa,
carbapenemases were reported in several parts of the world, especially in the case of strains harvested
from hospitalized patients. In a cross-sectional study conducted in Iran, 146 strains associated
with nosocomial infections were investigated, in which the blaOXA23 and blaOXA24/40 genes were
identified [111]. Following the investigation of 1969 P. aeruginosa strains collected from four hospitals
in Dubai, MBL genes such as VIM-2, VIM-30, VIM-31, and VIM-42 were identified [112]. Increasing
rates of carbapenem-producing P. aeruginosa isolates were reported in an extensive study conducted
in Canada, in which 3864 isolates were analyzed. Broad genetic diversity was observed among both
carbapenem-resistant and XDR phenotypes of P. aeruginosa, with blaGES, blaKPC, blaNDM, blaIMP, blaVIM,
and blaOXA-48 encoding genes [113]. Many reports have also highlighted the presence of carbapenemases
in Enterobacter spp., another category of pathogens belonging to ESKAPE group. Studies have
reported the presence of NDM, KPC [114,115], OXA-48 [116,117], VIM, and IMP enzymes [115,118],
demonstrating the vast epidemiology of this carbapenem-producing Enterobacteriaceae.

Subsequently, β-lactamases were classified based on functional analysis. One of the best-known
classification schemes based on the functional structure is the one proposed by Bush, Jacoby,
and Medeiros in 1995. Within this classification, β-lactamases are divided into three groups,
depending on the degraded β-lactam substrate and the inhibitors’ effects. The first group includes
class C cephalosporinases from the molecular structure classification. The second group comprises
β-lactamases other than those from the first group, which have serine at the active site. The third
group includes MBLs corresponding to class B of Ambler’s classification [119]. In 2010, Bush and
Jacoby expanded the functional classification scheme, with avibactam’s addition differentiating
carbapenemases with the active site of serine from MBLs, representing a possible diagnostic marker in
phenotypic cellular reactions [120,121].

In more recent β-lactamase classification schemes, the classification criterion is the association
between three-dimensional structure and functional characteristics, especially in class A/group 2
β-lactamases [122]. Currently, the number of β-lactamases continues to increase almost exponentially
due to the possibility of genomes sequencing [123]. However, increasing the number of β-lactamases
brings new challenges such as incomplete sequencing of genes declared as encoding for β-lactamases,
incorrect annotation, or lack of correlation with function due to lack of expression [124].
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4. β-Lactamase Inhibitors (BLIs)

Since the introduction of penicillin, the rapid evolution of pathogen resistance to most antimicrobial
compounds has remained challenging. The emergence of bacterial resistance to most antibiotics used in
therapy has led to the development of new compounds that block β-lactamases involved in resistance.
BLIs can be used in combination with antibiotics to prevent their degradation byβ-lactamases. Although
attempts have been made to improve the action of BLAs, as well as to introduce new generations,
the combination of BLAs and BLIs is still an effective strategy to combat β-lactamase-mediated
resistance [12]. Since the discovery of clavulanic acid [125] as an inhibitor of most class A β-lactamases,
various combinations of penicillins and inhibitors (amoxacillin-clavulanate, ampicillin-sulbactam,
piperacillin-tazobactam) have been used to treat infections caused by β-lactamase-producing
pathogens [126]. However, these inhibitors’ limited spectrum of action has led to the need to develop
compounds with more efficient action and a broader spectrum. One of the most significant categories
of recently introduced inhibitors is diazabicyclooctanones (DBOs), with avibactam being the first
inhibitor successfully used in the clinic in combination with oxyiminocephalosporin ceftazidime [127].
Avibactam has a bicyclic core structure and can reverse the active site of serine β-lactamases in a
reversible manner [128], being a potent inhibitor of class A and C β-lactamases. The combination
with ceftazidime has been clinically approved for treating abdominal and UTIs and pneumonia [129].
Success in the use of avibactam in the clinic has led to the introduction of new DBOs alternatives, of
which relebactam is in an advanced stage of development in combination with imipenem [130–132].
Next, the main β-lactamase inhibitors commonly used in therapy will be described, as well as the new
combinations of inhibitors and antibiotics.

4.1. Well Documented BLIs

Clavulanic acid and his combinations [co-amoxiclav (combined with amoxicillin) and coticarclav
(combined with ticarcillin)] are active against Ambler class A β-lactamases particularly. Clavulanic acid
inhibits the plasmid-encoded β-lactamases of E. coli and S. aureus, but not the chromosomally-encoded
variants revealed by Pseudomonas and Enterobacter strains [133]. Therefore, co-amoxiclav is active
against both amoxicillin-sensitive and select amoxicillin-resistant strains belonging to difficult to treat
pathogens [134].

Sulbactam and tazobactam are penicillanic acid sulfones with β-lactamase inhibitory activity
capable of inhibiting TEM-type β-lactamases, sulbactam being less effective against SHV- and
OXA-variants [135]. In A. baumannii strains, sulbactam can inhibit PBP3, proving a direct antibacterial
activity against this genus [136]. There have been introduced different combinations of sulbactam with
BLAs represented by ampicillin-sulbactam (low activity against ESBL-producers belonging to E. coli,
and K. pneumoniae strains [137], cefoperazone-sulbactam (active against Pseudomonas spp., Acinetobacter
spp., Klebsiella spp., E. coli ESBL-producing strains) [138]. Available combinations of β-lactams and
tazobactam are represented by ceftolozane-tazobactam (approved by FDA for the treatment of cUTIs
that shows activity against MDR P. aeruginosa, ESBL-producing K. pneumoniae, and E. coli strains) [139].
On the other hand, it has been proved that piperacillin-tazobactam has a higher spectrum of activity
against Pseudomonas spp., Klebsiella spp., E. coli, Enterobacter spp., and Citrobacter spp. ESBL-producing
strains compared to cefoperazone-sulbactam and ticarcillin-clavulanic acid [138].

Brobactam, structurally very similar to sulbactam and tazobactam, possess a 8–50 fold
higher potency than clavulanic acid against chromosomally-encoded cephalosporinase enzymes
in Enterobacteriaceae and the ampicillin-brobactam combination held a superior in vitro activity
to co-amoxiclav against Proteus vulgaris, Morganella morganii, Citrobacter freundii, and Yersinia
enterocolitica [140].
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4.2. Newer BLIs

Other BLIs were introduced for the next generation of combined therapy, one such class
of newer, non-β-lactam BLIs is represented by the diazabicyclooctanes (DABCOs), based on a
(5R)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulphate core, of which the approved compounds for
clinical use are: avibactam, relebactam, macubactam, zidebactam, and nacubactam (active against
MDR Gram-negative rods) and are able to augment the activity of β-lactams in the absence of
β-lactamases [141] in a different species including A. baumannii [142] and P. aeruginosa [131]; WCK 5107,
WCK 5153 (a β-lactam enhancer effect against A. baumannii [142] and P. aeruginosa strains [131]);
WCK 4234 and his combination with meropenem called WCK 5999, has been shown to be superior to
meropenem monotherapy against MDR clinical isolates of A. baumannii [143], including OXA-23- and
OXA-24-producing strains, K. pneumoniae [144], and P. aeruginosa [143]; ETX2514 (a DABCO analogue
with class A, C, and broad class D β-lactamase inhibitory activity) [132]; active especially against the
class D enzymes OXA-10, OXA-23 and OXA-24 [132], Enterobacteriaceae including mcr-1- positive E. coli,
E. cloacae, Stenotrophomonas maltophilia, Citrobacter spp. and class B β-lactamase-positive and -negative
CRE); GT-055 (active against class A, C, D, and some class B β-lactamases, has intrinsic activity against
some Enterobacteriaceae and is reported to potentiate GT-1 against MDR strains of A. baumannii and
P. aeruginosa strains) [145]; boronic acid transition state inhibitors (BATSIs) a BLI with activity against
serine β-lactamases and of the BATSIs—vaborbactam.

In the following paragraphs, the most frequently recommended DABCOs combinations will
be presented.

4.2.1. Ceftazidime-Avibactam (CAZ-AVI)

CAZ-AVI is an intravenous combination approved by the FDA and recommended for treating
complicated intraabdominal infections (cIAF) in combination with metronidazole, pyelonephritis,
and other cUTI, HAP, including ventilator-associated pneumonia (VAP), and other critical diseases
triggered by Gram-negative aerobes, in which treatment options are often limited [146]. As avibactam is
a non-β-lactam, β-lactamase inhibitor, it brings the advantage of being recycled; thus, after the covalent
acylation of β-lactamases, a process that is also reversible, follows the deacylation and the release of
avibactam in an integer and fully functional state [147]. Avibactam is potent over class A (KPC-2/3,
TEM-1), class C (AmpC-type β-lactamase), and some class D (OXA-10, OXA-48) enzymes, and has
no activity on MBLs-producing strains [127,148,149] (Table 1). Its introduction into clinical practice,
however, has brought significant advantages over many non-susceptible ceftazidime species, such as
some Enterobacteriaceae and P. aeruginosa; however, its activity on Acinetobacter spp., Gram-positive
cocci, and anaerobes remains moderate [127].

Table 1. β-lactamase classes susceptibility to the inhibitor’s action.

Agent(s). Class A Class B Class C Class D

CAZ-AVI

MER-VAB

IMI-REL

CEF-TAZ

Cefiderocol
Red—susceptibility; yellow—moderate susceptibility; white—no susceptibility.

A study conducted by the International Network for Optimal Resistance Monitoring (INFORM)
analyzed more than 34,000 strains of Enterobacteriaceae from patients with intra-abdominal, urinary tract,
lower respiratory tract, bloodstream, and dermatological infections between 2012–2014. In total, 99.5%
of Enterobacteriaceae were sensitive to CAZ-AVI following the FDA-indicated microbiological endpoints
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(susceptible MIC of ≤8 µg/mL; resistant MIC of ≥16 µg/mL). The MICs required for inhibiting 90% of
bacterial strains (MIC90) for CAZ-AVI was 0.5 µg/mL, lower than the MIC90 required for cephalosporin
alone (64 µg/mL) to achieve the same yield. Interestingly, of the 185 (0.5%) strains not susceptible
to CAZ-AVI, almost a third were MBLs producers (IMP, VIM, NDM) that were also resistant to
carbapenems [149]. In parallel, other studies have revealed significant differences in the susceptibility
of ESKAPE species to CAZ-AVI. For example, 92% of P. aeruginosa strains collected in another INFORM
trial were susceptible to this therapeutic combination, requiring an MIC90 of 8 µg/mL [150]. In contrast,
it was noticed that A. baumanii strains of European origin are not susceptible to CAZ-AVI, as MIC90 was
64 µg/mL [150]. This therapeutic combination is also not effective against Gram-positive bacteria [146].

The Phase 3 RECAPTURE program, which included two multicenter, randomized, double-blind,
double-dummy parallel group-trials, analyzed CAZ-AVI, and doripenem’s comparative efficacy in
1033 pyelonephritis and cUTI patients [151]. Out of the total number of these patients, only 810 were
eligible, with 393 and 417 receiving CAZ-AVI and doripenem, respectively. Hospitalized patients
were randomized 1:1 to receive CAZ- AVI intravenously 2.5 g every 8 h and doripenem 500 mg every
8 h, requiring slight changes where an impaired renal function was reported. After the first five days
of treatment, patients were allowed to receive oral therapy for the next 5 or 9 days until the end of
treatment. Interestingly, in more than 95% of the analyzed patients were reported Enterobacteriaceae
strains and almost 75% were E.coli. Of the non-Enterobacteriaceae group, P. aeruginosa was the most
common isolate. The non-inferiority of CAZ-AVI vs. doripenem was validated by FDA co-primary
end-points both in terms of a symptomatic resolution reported by the patient on day 5 [276 of 393 (70.2%)
vs. 276 of 417 (66.2%) patients (difference, 4.0%)], as well as microbiological eradication in the test of
cure [280 of 393 (71.2%) vs. 269 of 417 (64.5%) patients (difference, 6.7%)]. Notably, the safety profile of
CAZ-AVI was much better compared to that of cephalosporin given alone; however, no information
has been obtained on the effects of these compounds on renal function [151].

Additionally, Shield and collaborators compared the efficiency of CAZ-AVI (n = 13) with different
regimens based on a carbapenem and an aminoglycoside (CB + AG) (n = 25), a carbapenem with
colistin (CB + COL) (n = 30), and other types of agents in the management of carbapenem-resistant
K. pneumoniae. Interestingly, CAZ-AVI treatment was much more effective in the clinical setting than
the other two agents-based therapeutic regimens (85% vs. 44%, p = 0.006). Furthermore, it was shown
that CAZ-AVI can improve the overall survival rates at 90 days to 92% versus 56%, 63%, and 49%
respectively for patients treated with other therapeutic formulations (CB + AG, CB + COL, others).
Overall survival rates were also improved when CAZ-AVI was co-administered with gentamicin vs.
its single administration (100% vs. 87.5%). Last but not least, the nephrotoxicity of CAZ-AVI is lower
(18%) than that of CB + AG (44%), CB + COL (48%), which makes it suitable for the treatment of
carbapenem-resistant K. pneumoniae [152].

Other additional studies, such as that of van Duin and colleagues, have confirmed the CAZ-AVI’s
therapeutic efficacy in patients with carbapenem-resistant Enterobacteriaceae, affected by respiratory or
bloodstream infections. Thirty-nine patients received CAZ-AVI, while 99 were treated with colistin.
Statistical analyzes revealed that CAZ-AVI was associated with lower causal mortality in hospital at
30 days than colistin (9% vs. 32%, p = 0.001) and a 64% higher probability of achieving therapeutic
success [153]. Therefore, like other studies, this study potentiates that CAZ-AVI can be a safe and
effective therapeutic strategy in treating the most complicated infectious bacteria.

Several studies highlighted some potential mechanisms that can make bacteria refractory to
antibiotics regarding the resistance to this combination. As observed in the INFORM trial, the most
common mechanism involved in acquiring CAZ-AVI resistance is the production of MBLs that are
refractory to avibactam’s action [149]. Mutations in various KPC or AmpC-type enzymes have also been
identified as factors that counteract the antibacterial effects of CAZ-AVI [154,155]. Further complicating
this scenario, the observation that 41 of the 185 Enterobacteriaceae in INFORM are not displaying any
metal β-lactamase suggests that other mechanisms are involved in the process of CAZ-AVI resistance.
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These key determinants may probably include alterations in therapeutic targets (e.g., PBPs), amplified
drug efflux, or decreased outer membrane permeability [156].

4.2.2. Ceftolozane/Tazobactam (CEF-TAZ)

CEF-TAZ is a new semisynthetic antipseudomonal cephalosporin used in the treatment of cUTIs,
cIAF, and HAP. CEF is an oxyimino-aminothiazolyl cephalosporin very similar structurally to CAZ
but has a modified side chain that contributes to his stability in the presence of AmpC β-lactamases,
prevents the hydrolysis of the β-lactam ring, and thus confers potent activity against P. aeruginosa
strains [157]. CEF shows two times higher inhibitory activity and binding affinities for some PBPs
(e.g., PBP1b, PBP1c, PBP2, and PBP3) compared to CAZ [158]. On the other hand, TAZ is a β-lactamase
inhibitor able to protect the β-lactam against the hydrolysis and inhibits most class A narrow-spectrum
β-lactamases, ESBLs, and class C enzymes (Table 1) and enhances the activity of ceftolozane against
some ESBL-producing Enterobacteriaceae and anaerobes [159].

CEF-TAZ has in vitro activity against Streptococcus species; however, like ceftazidime,
ceftolozane–tazobactam has diminished activity against S. aureus strains; improved activity against
MDR or XDR P. aeruginosa and a significant number of species belonging to Enterobacteriaceae family
such as E. coli, K. pneumoniae (susceptibles at MIC of ≤8 mg/L); Enterobacter spp. (MIC50/90, 0.5/8 mg/L),
Citrobacter spp. (MIC50/90, 0.25/32 mg/L), Serratia spp. (MIC50/90, 0.5/2 mg/L), K. oxytoca (MIC50/90,
0.25/2 mg/L), and P. mirabilis (MIC50/90, 0.5/0.5 mg/L) [159,160]. It has also been demonstrated that
CEF-TAZ has in vitro activity against Bacteroides fragilis, Prevotella, and Fusobacterium spp; however,
it has diminished or no activity against other Bacteroides spp. and anaerobic Gram-positive cocci [161].

It has been shown that β-lactamases such as TEM-1, TEM-2, SHC-1, and OXA-1 have reduced
effect on the activity of CET-TAZ; furthermore, there have been described some ESBLs such as
TEM-3–9, SHV-2–4, OXA-2, and CTX-M-3–18 able to reduce the activity of the drug, however remaining
efficacious [44,162].

4.2.3. Imipenem/Relebactam (IMI-REL) and Meropenem/Vaborbactam (MER-VAB)

The first β-lactamase inhibitors displaying in vitro activity against class A and C β-lactamases
(Table 1) were introduced in combination with carbapenems REL (with IMI) and VAB (with MER) [163].
REL is structurally related to AVI, differing by adding of a piperidine ring to the 2-position carbonyl
group [164]. There have been demonstrated that the REL addition reliable reduces the MIC values for
IMI and increase IMI susceptibility level in P. aeruginosa strains [165,166]. It has been revealed variable
susceptibility levels to IMI-REL in carbapenem-resistant Enterobacteriaceae (CRE) by different authors:
e.g., Canver et al. [167] and Haidar et al. [168], demonstrated 100% susceptibility in K. pneumoniae
KPC-2 and KPC-3 producing isolates; opposite, Livermore et al. [169] have shown a minimum level of
susceptibility in K. pneumoniae VIM, IMP, and NDM producing strains.

Several authors evaluated by in vitro studies the IMI-REL activity against P. aeruginosa
strains and have demonstrated that approx. 94% of the tested isolates revealed susceptibility
to IMI- REL [165,166,169–171]. Compared to most Gram-negative ESKAPE pathogens, IMI-REL
susceptibility levels among A. baumannii strains were low [165,166]. For anaerobic Gram-negative
species such as Bacteroides spp., Parabacteroides spp., Prevotella spp., Fusobacterium spp., Desulfovibrio spp.,
and Veionella spp., the IMI-REL susceptibility levels were between 99 and 100% [172].

VAB is a cyclic boronic acid with high affinity to serine β-lactamases, and both can inhibit class A
β-lactamases such as TEM, SHV, CTX-M, KPC, class C (AmpC) (Table 1); however, they have not been
proven to significantly inhibit class B (e.g., IMP, VIM, NDM) or class D (e.g., OXA24/40) produced
by Gram-negative bacilli [163,166,173]. It has been shown that VAB can restore the MER activity,
inhibiting the activity of serine β-lactamases [174]. MER–VAB acts against several Gram-negative
organisms [144]. It has been established that by VAB addition the activity of MER is restored against
CRE isolates producing Ambler class A β-lactamases, such as KPC- and KPC-3 [166]. MER–VAB
demonstrated potent in vitro activity in nosocomial E. coli isolates co-producing AmpC and KPC [166].
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In nonfermenting Gram-negative rods, especially P. aeruginosa and Acinetobacter spp., the MER-VAB
activity is very similar to MEM because of carbapenem resistance in P. aeruginosa and Acinetobacter spp.
can be the result of several mechanisms that would not be impacted by VAB addition, including reduced
outer membrane permeability (commonly due to the loss of the OprD porin channel), overexpression
of efflux pumps (particularly MexAB-OprM or MexEF-OprN), and production of MBLs [175] or class
D β-lactamases in Acinetobacter spp. [175,176]. There is scarce information regarding the activity of
MER-VAB against Gram-positive bacteria and anaerobic bacteria, but it would be expected that the
anaerobic activity of MER-VAB should be similar to that of MER alone, considering that MER is active
against methicillin-sensitive S. aureus (MSSA), Streptococcus pyogenes, S. agalactiae, penicillin-sensitive
S. pneumoniae, and some strains of E. faecalis and E. faecium [174] and also against several anaerobic
bacteria, including B. fragilis and Fusobacterium spp. [177].

4.2.4. Cefepime/Zidebactam (WCK 5222)

WCK 5222 contains a BLI (zidebactam) and a fourth-generation cephalosporin (cefepime).
WCK 5222 revealed in vitro antimicrobial activity against Enterobacteriaceae, P. aeruginosa [178],
and A. baumannii strains [179]. Currently, this combination is in a clinical development program to
treat MDR infections caused by Gram-negative bacteria. Zidebactam is a non-β-lactam bicyclo-acyl
hydrazide that acts either by direct inhibition of β-lactamases or by inhibition of PBP2 [142]. It is
considered a broad-spectrum inhibitor of action against all four β-lactamase classes (A, B, C, and
D), although the action on MBLs is not recognized. Zidebactam binds with a high affinity to
PBP2, while cefepime has a high affinity for PBP3 and a lower affinity for PBP2 and PBP1a/1b. This
inhibitor acts by improving the antibiotic’s action by complementary binding to PBPs [131]. Regarding
clinical trials, Phase I clinical trials have already been performed that have analyzed the efficacy,
safety, and tolerability of these compounds by intravenous administration to healthy adult patients
(ClinicalTrials.gov registration no. NCT02674347 and NCT02707107). Rodvold et al. conducted a
clinical study in 36 patients in which they analyzed WCK 5222 levels in plasma, epithelial-lining fluid,
and alveolar macrophage. Following intravenous administration of WCK 5222, moderate adverse
reactions were observed in three patients. In general, the administration of WCK 5222 in seven doses
proved safe and well tolerated by subjects. The concentration of zidebactam and cefepime in alveolar
macrophage persisted 10 h after administration, demonstrating the possibility of using this combination
to treat nosocomial pneumonia [180]. The effects of WCK 5222 were analyzed in a neutropenic mouse
A. baumannii lung infection model. The cefepime MIC against these strains ranged from 2 to 16 mg/L,
suggesting a lack of significant expression of FEP-impacting β-lactamases. The addition of ZID did not
lower the MIC of FEP against any of these A. baumannii strains. However, time-kill studies revealed
that ZID mediated the enhancement of bactericidal activity at sub-MICs of FEP. This study revealed
that ZID exerted a reduction in the MIC of FEP, and in combination with the high FEP-ZID clinical
doses selected, this feature could help provide consistent clinical effectiveness even for the problematic
challenging patients, such as those with reduced drug exposures [181]. The activity of WCK 5222 was
investigated both in vitro and in vivo, in a neutropenic and pneumonia mouse infection model, against
K. pneumoniae [182], A. baumannii [183], P. aeruginosa [184,185], and Enterobacter spp. [186].

4.2.5. MBL Inhibitors (MBLi)

The clinical introduction of DBOs and vaborbactam has broadened the spectrum of options for
treating nosocomial infections caused by MDR Gram-negative bacteria. However, concerning MBLs,
none of these inhibitors exerts effective action, thus increasing the need to develop inhibitors that
specifically target MBLs. Currently, no inhibitors of MBLs have been approved for use in the clinic.
The development of MBLs inhibitors has focused on compounds that bind and/or chelate zinc ions within
the active enzyme site [187,188]. Aspergillomarasmine A, a fungal compound active against the MBLs
NDM-1 and VIM-2, acts by chelating and removing the active site zinc ions and can re-sensitize to MER
the Pseudomonas spp., Acinetobacter spp., and Enterobacteriaceae MBL-producing strains [134]. Another

ClinicalTrials.gov
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category of inhibitors that act by binding to zinc ions within the enzyme site is thiol-based compounds
such as bisthiazolidines and small bicyclic compounds with inhibitory activity against B1, B2, and B3
MBLs [189]. Phosphonate-containing compounds (6-phosphonomethylpyridine-2-carboxylates) are
another category of compounds whose action against B2 and B3 MBLs has been reported. In vitro
analyses have shown that these compounds interact with zinc ions in the enzyme active site [190].

Boronate compounds represent a new category of compounds with promising activity, especially
on MBLs. The boron feature to adopt a tetrahedral geometry gives it the ability to mimic the
tetrahedral species formed during hydrolytic reactions [191]. This property allows the use of these
compounds both as inhibitors and in the study of the mechanism of action of β-lactamases. This is
due to mimicking the tetrahedral transition of oxyanions in acylation or deacylation reactions during
β-lactams’ hydrolysis [192]. Currently, taniborbactam (VNRX-5133), a bicyclic boronate, is in phase 3
clinical testing in combination with cefepime to treat UTIs [193–196]. A new concept in the development
of MBLs inhibitors involves obtaining compounds that bind to highly conserved active sites of the
Lys224 type within B1 MBLs [197] or the Cys221 site within NDM-1 (ebselen compound) [198]. Recently,
these two concepts have been combined to form a dual inhibitor that binds to both Lys224 and Cys221
to obtain a broader spectrum of action against B1 and B2 MBLs subclasses [199].

Although there are studies that have demonstrated the action of some compounds against MBLs,
finding effective inhibitors with a spectrum of action encompassing the MBL superfamily remains a
challenge that must be considered in future studies.

5. Alternative Approaches to Combat ESKAPE Pathogens

5.1. Antimicrobial Peptides (AMPs)

With a large activity spectrum including protozoa, bacteria, archaea, fungi, plants, and animals,
AMPs (amphipathic molecules containing about 11–50 amino acid residues) may represent an alternative
to current antibiotics against ESKAPE pathogens [200], acting by interaction with cell membrane
through electrostatic interactions and causing the inhibition of protein and nucleic acid synthesis,
and final cellular lysis [201,202]. The diversity of AMPs (natural or bioengineered) makes them attractive
candidates against ESKAPE pathogens in clinical studies. However, further studies and tehcnologies
are required to improve the in vivo efficiency and stability of AMPs, and therefore, to increase the
specificity against the infectious agent and decrease cytotoxicity to mammalian cells. The diversity
of AMPs (natural or bioengineered) makes them attractive candidates against ESKAPE pathogens in
clinical studies (Table 2).

Resistance to AMPs

Similar to the conventional antibiotics another challenge is represented by the fact that bacteria
developed resistance against AMPs by alteration of the bacterial cell surface or by the release of
proteolytic enzymes, which results in the hydrolysis of the AMPs, for e.g., the proteases released
by Enterobacteriaceae included in the PhoPQ, PmrAB, and RcsBCD Phosphorelay system or elastases
in P. aeruginosa [236]; the K. pneumoniae capsule stops the AMPs entrance. There have been several
nanocarriers developed—such as novel polymeric and lipidic nanoparticles, carbon nanotubes,
micelles, liposomes, ethosomes, aquasomes, transferosomes, niosomes, catezomes, pharmacosomes,
cubosomes, polymersomes, microspheres, dendrimers, nanocapsules, for delivering the AMPs, which
may help in avoiding the low bioavailability, proteolysis, or susceptibility and toxicity associated with
APMs [237,238].
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Table 2. AMPs active against ESKAPE pathogens.

AMPs Main Activity Other Effects Animal Models References

HLR1–human derived lactoferin peptide in vitro—microbicidal effect against S. aureus anti-inflammatory properties
non-cytotoxic effect

mice, rats, and pig skin infected
with S. aureus [203]

Lactoferrin and Lactoferrin derived AMPs in vitro—antibacterial activity against E. coli,
S. aureus, Acinetobacter spp., P. aeruginosa anti-biofilm against P. aeruginosa strains mice [204]

Brevinin-2Ta (B-2Ta) in vitro—antimicrobial activities against
S. aureus, E. coli

low cytotoxicity
inflammatory effect in vivo using

K. pneumoniae-infected Sprague-Dawley rats
rats [205]

DPK-060 structurally derived from human
protein kininogen

in vitro—antimicrobial activity against
S. aureus including MRSA

ex vivo pig skin
in vivo—mouses [206]

Histatin 5—human salivary AMP
in vitro—antibacterial activity against S. aureus,

A. baumannii, E. cloacae, K. pneumoniae and
P. aeruginosa

anti-biofilm activity [207]

Feleucin-K3 AMP and his analogue FK-1D in vitro antimicrobial activity
against P. aeruginosa

low-toxicity
anti-biofilm activity

in vivo against clinical
infections caused by

P. aeruginosa
[208]

K11 hybrid AMP
in vivo—antimicrobial activity
against A. baumannii-infected

wounds (murine excision)
[209]

(P)ApoBL and r(P)ApoBS—Apolipoproin B
human defence AMPs

in vitro antimicrobial activity aginst MRSA
and P. aeruginosa

anti-biofilm activity
anti-inflamatory activity murine [210]

Bip-P113 [Bip: β-(4.4′-biphenyl)alanine] AMP in vitro antimicrobial activity against S. aureus
and E. faecium [211]

LL-37, a 37-residue AMP derived from
human cathelicidin and his derivate FK-16

titanium coated

in vitro antimicrobial activity against ESKAPE
patrogens particularly microbicidal effect on

P. aeruginosa, MRSA and A. baumannii

anti-adhesion anti-biofilm activities against
S. aureus, P. aeruginosa, and A. baumannii mice model [212,213]

Cathelicidin-BF in vitro antimicrobial activity against S. aureus
and P. aeruginosa

low hemolytic activity on red blood cells;
therapeutic potential against acne vulgaris [214,215]

hBD-3-human-β defensin 3;
AMP-29- a sheep myeloid peptide;

rCRAMP- a rat cathelin-derived AMP;
BMAP-27- a bovine myeloid AMP- 27

in vitro microbicidal activity against
A. baumannii, P. aeruginosa, and MRSA

anti-biofilm activity
anti- immunomodulatory activity [216–218]

Indolicidin in vitro bactericidal activity against
P. aeruginosa and S. aureus [219]

PMX-30063
(brilacidin) in vitro bactericidal activity against S. aureus [220]
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Table 2. Cont.

AMPs Main Activity Other Effects Animal Models References

POL7080 (murepavadin) in vitro antimicrobial activity against MDR
and XDR P. aeruginosa [221]

LTX-109 (lytixar) in vitro bactericidal activity against S. aureus mouse skin infection model [164]

chionodracine-derivatives AMPs
in vitro bactericidal activity against

K. pneumoniae, A. baumannii, MRSA and
P. aeruginosa

[222]

Ribonuclease 7 AMP in vitro antimicrobial activity against
P. aeruginosa, S. aureus, and VRE [223]

Chrysophsin-1 isolated from the gill cells of
Chrysophrys major in vitro antimicrobial activity against MRSA antiendotoxin properties [224]

Arenicins-1 isolated from Arenicola marina and
one of his variants Ar-1[V8R]

in vitro antimicrobial activity against
P. aeruginosa, K. pneumoniae and S. aureus

Ar-1[V8R]—cytotoxicity against
mammalian cells [225]

Pardaxins isolated from mucous glands of
Pardachirus marmoratus

in vitro antimicrobial activity
against S. aureus, A. calcoaceticus and

P. aeruginosa
[226]

Phosvitin from zebrafish in vitro antimicrobial activity
against S. aureus

immunomodulatory activity;
non-cytotoxic and non-hemolytic mice model [227]

Mytimacin-AF, isolated from marine mollusks in vitro antimicrobial activity
against S. aureus and K. pneumoniae [228]

PT-3 Populus trichocarpa crude
extract derived AMP

in vitro antimicrobial activity
against S. aureus

in vivo antibacterial activity
in S. aureus infected G. mellonella

model
[229]

Thanatin and its analog, S-thanatin in vitro antimicrobial activity against
K. pneumoniae low hemolytic activity mice model [230]

Pexiganan—a synthetic analog of magainin
isolated from Xenopus laevis in vitro bactericidal effect against P. aeruginosa [231]

SET-M33 a synthetic AMPs (similar with
colistin regarding the mechanism of action)

in vitro microbicidal activity against
P. aeruginosa and K. pneumoniae

anti-inflammatory and
immunomodulatory activities mice model [232]

Oritavancin, a synthetic selectively
targeted AMPs bactericidal effects against MRSA and VRSA anti-biofilm activity [233]

WLBU2—engineered cationic AMP and his
D-enantiomers (D8)

in vitro antimicrobial activity
against A. baumannii and P. aeruginosa anti-inflamatory activities mice model [234]

Oct-TriA2 (2,8-D-Orn, 7-Orn) and Oct-TriA1
based on the tridecaptins

antimicrobial activity
against A. baumannii, K. pneumoniae,

and E. cloacae
Oct-TriA1 lower haemolytic activity [235]
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5.2. Metal Nanoparticles

Metal nanoparticles (MNPs) represent an alternative to current antibiotics due to their activity
against ESKAPE pathogens [239] and include NPs containing Ag, Au, Zn, Cu, Ti, Mg, Ni, Ce, Se, Al,
Cd, Y, Pd, or superparamagnetic Fe [240]. MNPs can interfere in the metabolic activity of a bacterial
cell [241], penetrate the biofilms and inhibit the biofilm formation [242]. NPs can act at the level
of cellular wall causing changes in cell membrane permeability or across the bacterial membrane
and interact with intracellular targets, leading to macromolecular structures and functions alteration,
oxidative stress, or electrolyte balance disorders [243]. The advantages of the most known MNPs
against ESKAPE pathogens, and their mechanisms are shown in Table 3.

Table 3. MNPs against ESKAPE pathogens—antimicrobial activity, mechanism of action,
and advantages

MNPs Type and Mechanism
of Action (MOA) Agent Used Targeted Microorganisms

and Advantages References

Silver (Ag) NPs:
MOA—inhibition of
peptidoglycan synthesis,
structural modification in the
membrane permeability,
reactive oxygen species (ROS)
generation, lipid
peroxidation, interaction with
DNA affecting DNA’s
replication and finally the
cell death

AgNPs-microfibrillated
cellulose biocomposite

in vitro antimicrobial
activity against S. aureus
and P. aeruginosa

[244]

Phenolics-coated AgNPs
in vitro antimicrobial effects
against P. aeruginosa and
Enterobacter aerogenes

[245]

Ag nanoform complexed with
amorphous TiO2

in vitro antimicrobial
activity against S. aureus
and K. pneumoniae

[246]

Ag-containing Hydrofiber®

dressing and nanocrystalline
Ag-containing dressing

in vitro antimicrobial
activity against MRSA and
VRE

[247]

AgNPs immobilized on the
surface of nanoscale silicate
platelets (AgNP/NSPs)

in vitro antimicrobial
activity against MRSA [248]

AgNPs from Phyllanthus
amarus extract

in vitro antimicrobial
activity against MDR
P. aeruginosa

[249]

Fungal biosynthesis of AgNPs
antibacterial activity against
S. aureus; nontoxic, safe,
inorganic agent.

[250]

TiO2 nanotubes covered
with AgNPs

enhanced antimicrobial
activity of the bone/dental
implants against S. aureus;
>80% biocidal activity

[251]

Calligonum comosum and
Azadirachta indica leaf extracts
as stabilizing AgNPs

antibacterial ability against
P. aeruginosa and S. aureus,
by causing apoptosis

[252]

AgNPs synthetized using
Ajuga bracteosa extract

bactericidal activity against
K. pneumoniae, S. aureus,
and P. aeruginosa;
antioxidant potential effects;
pharmacological
importance

[253]

Cu/Ag NPs Graphene oxide/Cu/Ag NPs
in vitro bactericidal activity
against P. aeruginosa,
K. pneumoniae, and MRSA

[254]
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Table 3. Cont.

MNPs Type and Mechanism
of Action (MOA) Agent Used Targeted Microorganisms

and Advantages References

(Golden) AuNPs less toxic
than Ag

AuNPs functionalized with
ampicillin

in vitro bactericidal activity
against P. aeruginosa and
E. aerogenes

[255]

Pyrimidinethiol-modified
AuNPs

in vitro antimicrobial
activity against MDR
E. faecium, P. aeruginosa,
MRSA, K. pneumoniae,
A. baumannii

[256]

CGNPs (cinnamaldehyde
immobilized on AuNPs)

in vitro and in vivo
antibiofilm of MRSA and
P. aeruginosa

[257]

6-aminopenicillanic
acid-coated AuNPs doped into
electrospun fibers of
poly(ε-caprolactone)

in vitro and in vivo
antimicrobial activity
against MDR K. pneumoniae
infections

[258]

Metallopolymer-antibiotic
bioconjugates on AuNPS

antimicrobial activity
against K. pneumoniae and
S. aureus

[259]

AuNPs
in vitro and in vivo
bactericidal activity against
mastitis-causing S. aureus

[260]

Metal oxide NPs

ZnO NPs—ROS generation;
bactericidal effect, by
disrupting the cell membrane;
glycolysis and
transmembrane proton
translocation inhibition

ZnO

antimicrobial activity
against MRSA and
P. aeruginosa;
anti-biofilm formation and
production of
quorum-sensing- in
P. aeruginosa;
anti-biofilm formation
MRSA

[261,262]

Nitric oxide (NO)—
RNS generation

NO-releasing NP

in vitro antimicrobial
activity against MRSA,
A. baumannii, K. pneumoniae,
and P. aeruginosa

[263]

NO-releasing silica NPs

in vivo bactericidal activity
against intracellular
P. aeruginosa in L929 mouse
fibroblasts

[264]

Cobalt oxide NPs—oxidative
mechanisms< membrane
permeability changes;
inhibition of DNA replication

Co3O4
in vitro antimicrobial
activity against S. aureus [265]

Bis hexa decyl trimethyl
ammonium cobalt
tetrachloride

antimicrobial
activity against MDR
S. aureus

[266]

Fe2O3 NPs—affect the
functionality of porin pumps;
occupy the active sites
of MBLs

Functionalized Fe2O3 NPs
with antibiotics

inhibition growth of
P. aeruginosa; reducing
overcoming resistance and
acute toxicity; low cost;
synergistic effects with
antibiotics

[267]
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5.3. Bacteriophages

Shortly after their reporting by Twort in 1915 [268] and d’Herelle in 1917 [269], bacteriophages
began to be used to treat bacterial infections. Bacteriophages are able to infect bacteria by detecting
surface receptors, injecting their genetic material into the host, and replicating using the host cellular
machinery [200]. The isolation of lithic phages from the hospital sewage indicated their use as
therapeutic agents against MDR ESKAPE pathogens [270]. Bacteriophages used in the treatment of
bacterial infections have several advantages such as high specificity, preventing damage to normal
microbiota and eukaryotic cells, rapid proliferation in the bacterial host, low doses required for
treatment [271]. Also, unlike antibiotics, phages do not loose their activity following mutations
acquired inside the host [272].

The bacteriophages’ efficiency against ESKAPE pathogens has been demonstrated by in vitro and
in vivo studies in animal models or in treated patients, having been shown to reduce the mortality
rates and speeding the healing process. Promising results have been obtained for eye infections with
VRSA (vancomycin-resistant S. aureus) [273], pancreatitis [274], diabetic ulcers [275], or UTIs [276,277].
Several other clinical studies have been performed recently, the top results being summarized in the
Table 4. Starting from the promising studies performed both in vitro and in vivo, in animal models,
a series of commercial kits to prepare beech suspensions with action against ESKAPE species have
been developed. Examples of such commercial kits are “Pyophage”, “PhagoBioDerm”, “Sextaphage”,
and “Staphal”. Pyophage (Georgian Eliava Institute of Bacteriophage, Microbiology, and Virology)
contains bacteriophages that act against bacteria involved in pyoinflammatory and enteric diseases.
PhagoBioDerm is a bandage-type polymeric structure impregnated with a cocktail of phages, antibiotics,
and other active substances to treat ulcers and infections caused by S. aureus and P. aeruginosa [278].
Sextaphage (Microgen, ImBio Nizhny Novgorod, Russia) is a cocktail used against P. aeruginosa and
E. coli, and Staphal (Bohemia Pharmaceuticals, Slovakia) is an antistaphylococcal beech. These kits’
clinical potential was subsequently studied either in model animals or in the clinic to determine the
spectrum of activity against bacterial strains. However, phage therapy has several limitations. Its high
specificity is one of them. In order to surpass it, cocktails containing more phages, each acting on
a particular bacterial species is designed [279] to extend the spectrum of action [280]. Determining
the safety of phage therapy is another issue requiring careful genomic characterization. Phages used
in therapy should not contain resistance or virulence genes or elements involved in the transfer or
integration of these genes into the host bacterial genome, such as site-specific integrases or recombinases,
in order to prevent the HGT of virulence genes or antibiotic resistance genes [281]. Also, phages should
not elicit an immune or allergic response [282,283]. Another limitation refers to the phages’ stability
and their proper administration to have the expected effect at the site of infection. In therapy, phages
can be administered orally, nasally, topically, or powdered formulations [284,285]. Studies have also
shown improved efficacy of phages when administered in combination with liposomes [286].
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Table 4. Bacteriophages against ESKAPE pathogens

Phage Targeted
Bacteria Type of Study Model Application

In vivo Efficacy;
Advantages and
Survival of Host

Route of
Administration References

Phage ENB6 and C3
(A2 morphotype group) Ef in vivo Murine bacteremia

model

Immunocompatible;
100% survival with

multiple doses
Intraperitoneal (IP) [287]

Cocktail of E. coli phage
ECP311, K. pneumoniae

phage KPP235, and
Enterobacter phage

ELP140

K & E in vivo Galeria mellonella
infection model

100% reduction after
5 doses; 90% survival - [288]

Enterococcus phiEF24C,
phiEF17H,

and phiM1EF22 phages
E in vitro - Inhibition of growth Co-culture with

phages mixture [289]

phage
φEf11/φFL1C(∆36)PnisA E in vitro -

10–100-fold decrease in
viable cells (CFU/biofilm);

biofilm eradication

Inoculation with
phage [290]

anti E. faecium
EFDG1 phage Ef ex vivo Human root canal

model

5-log growth reduction in
stationary cultures;

reducing 2-week old
biofilm

- [291]

vB_SauM_LM12,
vB_EfaS_LM99 and

vB_EcoM_JB75
S ex vivo orthopaedic implant

infection model

Great antimicrobial
activity; growth

reduction
Paper strip [292]

Phage coated implant S in vivo Murine model of joint
infection

Normal locomotor
activity by 10 day;

decreasing bacterial
adherence

K-wire implant
delivery system [294]
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Table 4. Cont.

Phage Targeted
Bacteria Type of Study Model Application

In vivo Efficacy;
Advantages and
Survival of Host

Route of
Administration References

2003, 2002, 3A and K
phage cocktail S in vivo Ventilator-associated

pneumonia rat model

Reduced lung damage;
100% survival at 12 h

after infection; 58%
survival until the end of

the experiment

Intravenous (IV) [293]

SATA-8505 (ATCC
PTA-9476) S in vivo 65-year-old woman

with Corneal abscess

stabilization of ocular
signs; pathogen

eradication

Topical (eye drops
and nasal spray) and

intravenous (IV)
[273]

Staphylococcal phage
Sb-1 S in vivo

Case series (human
subjects with diabetic

foot ulcer)

Wound healing within
7 weeks Topical [275]

Myoviridae
bacteriophages

(AB-SA01)
S in vivo

Human single-arm
non-comparative trial

(13 patients)

8/13 patients showed
clinical improvement;

5 patients died within the
first 28 days

IV [295]

vB_KpnP_KL106-ULIP47;
vB_KpnP_KL106-ULIP54;

vB_KpnP_K1-ULIP33;
K in vivo

Galleria mellonella
larvae infection

model

Mortality rate reduced
with 20% upon treatment

with phage
Phage inoculation [296]

K. pneumoniae
isolated phage K in vivo

Case series
(48 patients with

nonhealing chronic
wounds)

significant decrease in the
mean depth of the

wound; improved score
of epithelialization;
39/48 patients had a

complete cure

Topical [297]
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Table 4. Cont.

Phage Targeted
Bacteria Type of Study Model Application

In vivo Efficacy;
Advantages and
Survival of Host

Route of
Administration References

Klebsiella myPSH1235 and
Enterobacter myPSH1140

phage
K & E in vitro -

Strong bactericidal
activity; bacterial density

reached to 0 with no
viable cells at 24 h

after infection

Incubation with
phage [298]

K. pneumoniae
bacteriophage K in vivo Swiss albino

mouse model

gradual reduction of
colony-forming unit;

complet eradication after
6 days of treatment

Oral [299]

KpJH46ø2 K in vivo

Case study
(62 year-old diabetic
man with prosthetic

knee infections)

The restraining of local
symptoms, signs of

infection, and recovery
of function

IV [300]

Lytic bacteriophage K in vivo
Case study (57-year

patient with
Crohn’ disease)

Bacterial eradication Oral
Intrarectal [301]

Phage PEV20 P in vivo Murine infection
model

5-log reduction of
bacterial cells

Intranasal;
Intratracheal [285]

US Navy library of
bacteriophages P in vivo

Case study
(2-year-old patient

with Di
George syndrome)

Bacterial eradication after
phage therapy IV [302]

12 natural lytic
anti-P. aeruginosa

bacteriophages (PP1131)
P in vivo

Randomised phase 1
2

trial (27 patients with
wound infections)

Reduced bacterial burden;
minor adverse effects Topical [303]
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Table 4. Cont.

Phage Targeted
Bacteria Type of Study Model Application

In vivo Efficacy;
Advantages and
Survival of Host

Route of
Administration References

PB AB08
PB AB25 A in vivo Mice infection model 35% survival rate Intranasal [304]

WCHABP1 A in vivo Galleria mellonella
infection model

75% survival rate after
phage administration [283]

PD-6A3 and phage
cocktail A in vivo Sepsis mouse model

60% and 50% survival
rate after phage therapy

and phage cocktail
IP [285]

Bφ-R2096 sewage phage

A in vivo Galleria mellonella
infection model

80% and 50% survival
rate at 96 and 48 h. Injection

[305]
A in vivo Mouse model acute

pneumonia
100%, 60% and 30%

survival rate at day 12 Intranasal

AB3P1, AB3P2, AB3P3,
AB3P4, AB3P5 A in vivo Mice infection model Bactericidal activity;

100% survival rate IP [306]

AB-PA01 lytic phages P in vivo
Case report (77-year

old patient with
adenocarcinoma)

Improved oxygenation;
sedation ceased;

bacterial eradication

IV
Nebulisation [307]

Ef, Enterococcus faecium; S, Staphylococcus aureus; K, Klebsiella pneumoniae; A, Acinetobacter baumannii; P, Pseudomonas aeruginosa; E, Enterobacter spp.
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5.4. CRISPR Cas—An Emergent Strategy in Controlling ESKAPE Pathogens

The use of CRISPR/Cas strategy for combating bacterial resistance is one of the most exciting
approaches to fight ESKAPE pathogens.

The CRISPR/Cas acts as a bacterial ‘immune’ system that can detect and degrade foreign nucleic
acids through the activation of caspases. CRISPR/Cas system has a high specificity, provided by short
repetitive sequences, located in CRISPR loci, and separated by sequences of 26–72 base pairs derived
from MGEs [308]. The action of the CRISPR system against foreign genetic material occurs in three
stages: (i) acquisition, in which single sequences (spacer) derived from MGEs and delimited from
each other by repetitive sequences are taken up in the repetitive loci from the host chromosome;
(ii) expression, in which the repetitive and spacer sequences are transcribed into a single RNA transcript
that will be afterward cleaved by caspases into small CRISPR RNA; and (iii) interference, in which
the complementarity between CRISPR RNAs and foreign nucleic acids allows the recognition and
degradation of foreign DNA by caspases [309,310]. The distinction between self and non-self is possible
due to protospacer sequences derived from foreign nucleic acids, which are flanked by protospacer
adjacent motifs (PAMs). The target recognition is achieved only by identifying these sequence motifs
not stored in CRISPR loci, thus eliminating the danger of degradation of the own nucleic acid [310].

It has been shown that CRISPR system is limiting the plasmid entrance into bacterial cells, a feature
that could be further exploited for the limitation of antimicrobial resistance transmission by HGT [311].
CRISPR system has been used for A. baumannii genome editing by introducing insertions, deletions,
and point mutations in the oxidative stress (OxyR) gene, for increasing the sensitivity of A. baumannii
strains to oxidative stress [312]. Also, CRISPR technology was used to to increase the susceptibility
of different Enterobacteriaceae by successfully decreasing the number of plasmid carrying the blaTEM-1

gene [313].
In K. pneumoniae, Sun et al. designed the pCasKP-pSGKP editing system to obtain the deletion

of the tetA and ramR genes associated with tigecycline resistance and of the mgrB gene associated
with colistin resistance [314]. Similarly, Wang et al. built a two-plasmid system, pCasKP-pSGKP,
to achieve the deletion of the dhaF, pyrF, fepB, ramA, fosA, pyrF, fepB, and ramA genes in two clinical
K. pneumoniae isolates [315].

More recently, Hao et al. built a CRISPR system (pCasCure) that was electrotransferred to various
CRE isolates—including K. pneumoniae, E. coli, and E. hormaechei—in order to perform the deletion of
KPC, NDM, and OXA-48 carbapenemases. The authors obtained the deletion of the specific genes with
an efficiency percentage of over 94%. It has also been observed that the pCasCure system can be used
to eliminate endemic plasmid types that confer resistance to carbapenems, such as blaKPC-harboring
IncFIIK-pKpQIL and 35 IncN pKp58_N, blaOXA-48-harboring pOXA-48-like and blaNDM-harboring
IncX3 plasmids [316].

In S. aureus, one of the primary pathogens from the ESKAPE group, numerous studies have
demonstrated the effectiveness of the CRISPR system in deleting ARGs and eliminating plasmids
carrying ARGs. Bikard et al. designed a CRISPR technology by inserting the CRISPR array in a
staphylococcal vector to obtain pDB114, programmed to target kanamycin and methicillin-resistant
genes. The authors obtained sequence-specific killing of kanamycin and methicillin-resistant
staphylococci, loss of pUSA02 plasmid, and staphylococci immunization against pUSA02 transfer [308].
Liu et al. constructed a pLQ-Pxyl/tet-cas9-Pspac-sgRNA system to target the tgt gene and
f pLQ-KO-tgt-50 bp plasmid. These experiments revealed the efficiency of CRISPR technology
in acquiring successful gene editing in S. aureus [317,318].

As with the other species from the ESKAPE group, several studies have sought to program the
CRISPR system to study antibiotic resistance mechanisms and remove resistance genes or plasmids by
genomic editing in P. aeruginosa (Figure 4), a major human pathogen responsible for severe infections in
immunocompromised patients or with various conditions such as cystic fibrosis, burns, and cancer [319].
Deletion or mutation experiments on the resistance genes mexB, mexF, mexT, and gyrA, encoding for
efflux pumps or for DNA gyrases in P. aeruginosa has been achieved with the CRISPR system [318,320].
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Figure 4. CRISPR Cas9 system targeting MGEs as a powerful tool for genomic editing. The Cas9-sgRNA
complex recognizes complementary genetic sites with the 5′ end of the sgRNA. The target gene contains
a protospacer, immediately followed by an Protospacer Adjacent Motif (PAM), which is mandatory
for the recruitment of the CRISPR Cas9 complex. Cas9 is a dual RNA-guided DNA endonuclease
that cleaves each of the two strands three nucleotides upstream of the PAM. Subsequently, several
DNA repair mechanisms are employed, such as Non-Homologous End Joining (NHEJ) or Homology
Directed Repair (HDR), leading to mutations or gene changes, respectively. CRISPR cas9 system can
remove some of the key determinants of antibiotic resistance in bacteria, which is why its use has
grown spectacularly in recent years. Figure created with https://biorender.com/.

5.5. Vaccination

One of the most important pillars in the fight against antimicrobial resistance is vaccination,
contributing to reducing antibiotics consumption, the insurgence of resistant serotypes, infection rate
with resistant strains and to herd immunity [321]. Multiple trials are currently being conducted both
in vitro and in vivo in animal models or in clinical trials to discover feasible vaccines against pathogens,
especially those from the ESKAPE group.

Among the research directions for vaccines are inactivated whole cells (IWC) [322], outer membrane
vesicles (OMVs) [323], outer membrane complex (WTO) [324], and several outer membrane proteins
including OmpA [325]. Some of the most used components in studies on vaccines’ development
against resistant pathogens are OMVs. These components are highly immunogenic spherical structures
that contain membrane proteins obtained from the supernatant following centrifugation and/or
ultracentrifugation of the cell culture [326] or using detergents to increase the production of
OMVs [327,328].

Several studies have recently analyzed in vivo the potential of these components as a vaccine
against infection with A. baumannii and P. aeruginosa strains. Following the intramuscular and intranasal
administration of OMV-based vaccine, a decrease of bacterial load and the induction of specific IgG
and sIgA responses were observed [329]. After subcutaneous administration of the OprF antigen in
Swiss albino mice, active immunization with the production of specific IgG1 and IgG2 antibodies was
obtained. Immunization with recombinant protein from P. aeruginosa has also been observed to show
cross-reactivity against OprF-producing A. baumannii isolates. Using serum from mice immunized
with this protein, intense bactericidal activity was observed against A. baumannii strains [330]. Vaccines

https://biorender.com/
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built on recombinant proteins have also been developed against S. aureus using extracellular bacterial
vesicles coating mesoporous silica nanoparticles [329,331,332]. In K. pneumoniae, the in vivo studies
in mice model infection and non-human primate model of severe lower respiratory tract infection
revealed the unique immunogenic properties of T cell-specific epitopes [333], recombinant protein
vaccine [334], and polysaccharide capsule type 2 vaccine [335].

There are a limited number of clinical trials aimed at evaluating vaccines against ESKAPE
pathogens. The phase I/II randomized trial study used a capsular polysaccharide vaccine serotypes 5 and
8 conjugated to the nontoxic mutant form of diphtheria toxin (CRM197), a recombinant mutant clumping
factor A (ClfA), and a recombinant manganese transporter C (MntC), named SA4Ag to achieve immunity
against S. aureus. This vaccine’s administration in adults aged 65–80 years was well tolerated, inducing
antibody synthesis and supporting immune responses 12 months after vaccination [336]. In a recent
study by the same research group, this vaccine was administered in a trial with 440 participants.
The persistence of immune responses was observed at 36 months after vaccination [337]. The in vivo
effectiveness of vaccines have recently been revealed in carbapenem-resistant K. pneumoniae [338], using
a semi-synthetic glycoconjugate, P. aeruginosa, using outer membrane proteins [339], and A. baumannii,
using a live attenuated A. baumannii strain deficient in thioredoxin [340].

The majority of currently available bacterial vaccines protect by inducing pathogen-specific
antibodies. Therefore, harnessing the antibody component of a potent human humoral response to
disseminated infection is valuable for identifying novel protective antigens. This new approach, termed
reverse vaccinology 2.0 (RV 2.0), relies on the isolation and recombinant expression of the variable
regions of heavy (VH) and light (VL = κ or λ) chain genes of immunoglobulin (focus has centered
on IgG) using a variety of molecular tools [341]. Enriched by the development of high-throughput
technologies, the screening of large numbers of antibody-secreting cells (ASCs) is also advancing
knowledge of host–pathogen interactive biology and auto-immunity. Although this approach has been
exploited for viral pathogens, it is expected that the same technologies may also be applied to bacterial
pathogens. Growing knowledge in this field could lead to the rational design of new antigens more
stable and elicit a high level of functional antibodies.

6. Conclusions

BLAs remain at present one of the most potent antibiotic classes against MDR pathogens. Third
generation penicillins (aminopenicillins, carboxypenicillins), the fifth generation of cephalosporins,
and newly added cefiderococol are the most effective BLAs e against MDR Gram-negative species.
Together with the discovery of novel antibiotics from this class, counteracting antimicrobial resistance
through BLIs is a promising strategy that could amplify these antibiotics’ action against ESKAPE
pathogens. Clinical trials have revealed that some of the most potent formulations in the fight against
MDR carbapenemase producing Enterobacteriaceae are CAZ-AVI, IMI-REL, and MEM-VAB. However,
further studies in establishing new potent inhibitor formulations and their validation in clinical trials
are required. Some alternatives against ESKAPE pathogens may be represented by AMPs, phage
therapy, nanoparticles, CRISPR/Cas technology, and vaccination. However, their application to date
is predominantly at research level and at best at the preclinical setting, with limited number of
clinical trials aiming to evaluate these strategies. In this protracted fight against ESKAPE pathogens,
the scientific community should assume the role of the defender and design hybrid strategies by
combining materials design, nanotechnology, immunity research, and other disciplines, aiming at
keeping problematic bacteria under its control.
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