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ABSTRACT
Background: Silicon (Si) is a beneficial element that has been proven to influence
plant responses including growth, development and metabolism in a hormetic
manner.
Methods: In the present study, we evaluated the effect of Si on the growth
and concentrations of chlorophylls, total amino acids, and total sugars of
pepper plants (Capsicum annuum L.) during the early developmental stage in
a hydroponic system under conventional (unstressed) conditions. We tested
four Si concentrations (applied as calcium silicate): 0, 60, 125 and 250 mg L−1,
and growth variables were measured 7, 14, 21 and 28 days after treatment
(dat), while biochemical variables were recorded at the end of the experiment,
28 dat.
Results: The application of 125 mg L−1 Si improved leaf area, fresh and dry biomass
weight in leaves and stems, total soluble sugars, and concentrations of chlorophylls a
and b in both leaves and stems. The amino acids concentration in leaves and roots,
as well as the stem diameter were the highest in plants treated with 60 mg L−1 Si.
Nevertheless, Si applications reduced root length, stem diameter and total free amino
acids in leaves and stems, especially when applied at the highest concentration
(i.e., 250 mg L−1 Si).
Conclusion: The application of Si has positive effects on pepper plants during the
early developmental stage, including stimulation of growth, as well as increased
concentrations of chlorophylls, total free amino acids and total soluble sugars.
In general, most benefits from Si applications were observed in the range of
60–125 mg L−1 Si, while some negative effects were observed at the highest
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concentration applied (i.e., 250 mg L−1 Si). Therefore, pepper is a good candidate
crop to benefit from Si application during the early developmental stage under
unstressed conditions.

Subjects Agricultural Science, Biochemistry, Plant Science, Soil Science
Keywords Solanaceae, Capsicum annuum, Beneficial elements, Orthosilicic acid, Hormesis,
Seedlings

INTRODUCTION
Silicon (Si), only after oxygen (O), is the second most abundant element in the Earth’s
crust, covering up to 32% of the lithosphere (Savant et al., 1999;Manivannan et al., 2016).
In nature, Si is found as silicates and Si minerals, combined with O or elements like
aluminum (Al), manganese (Mg), calcium (Ca), sodium (Na), iron (Fe) and potassium (K),
mainly, in over 95% of earthly rocks, meteorites, water and the atmosphere (Artyszak,
2018). In plants, Si can only be absorbed as monosilicic acid (Si(OH)4), and it is
transported and mainly deposited in the cell apoplast. Generally, Si concentrations in
plants fluctuate between 0.1% and 10% of the total dry matter (Epstein, 1994), which
primarily depends on the plant genotypes and secondly on soil properties as a source of
Si (Coskun et al., 2019). It is worth mentioning that seven out of the 10 most produced
crops in the world (ranked by quantity) are Si accumulators (Guntzer, Keller &
Meunier, 2012) and most of them positively respond to Si applications (Gómez-Merino &
Trejo-Téllez, 2018). These crops include rice (Oryza sativa L.), wheat (Triticum aestivum
L.), barley (Hordeum vulgare L.), sugarcane (Saccharum spp. L.), soybean [Glycine
max (L.) Merr.] and sugarbeet (Beta vulgaris L. subsp. vulgaris) (Guntzer, Keller &
Meunier, 2012; Elsokkary, 2018; Artyszak, Gozdowski & Kuci�nska, 2019).

In Si accumulator species, Si absorption can cause beneficial effects (Guntzer, Keller &
Meunier, 2012). When plants are grown under conventional environments (i.e., not subject
to stress), Si probably makes plants more efficient in responding to environmental
cues by activating different metabolic processes (Luyckx et al., 2017a) with crucial
cascading effects on plant structure and function (Guntzer, Keller & Meunier, 2012;
Coskun et al., 2019). Si has biostimulant effects on plants (Epstein, 2009; Gómez-Merino &
Trejo-Téllez, 2018) by modifying physiological processes in a way that provides benefits to
growth, development or stress responses (Savvas & Ntatsi, 2015). Monocotyledons and
especially species belonging to the family Poaceae such as rice and sugarcane respond
positively to Si supply (Epstein, 1999; Ma et al., 2007), but many other dicotyledons
including species of the families Fabaceae and Cucurbitaceae respond to Si applications
too, especially when plants are exposed to biotic or abiotic stress (Ma, 2004; Fauteux et al.,
2005). Therefore, Si has been regarded as a “quasi-essential” element for higher plants,
in the sense that Si fertilization can enhance plant growth and yield, while Si starvation
may hamper normal metabolisms and cause physical disorders (Rafi, Epstein & Falk, 1997;
Ma & Yamaji, 2008).
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Importantly, Si may differentially affect plant growth and metabolism depending on the
source and concentration applied, which may be attributed to chemically induced
hormesis. In nature, widespread and frequent hormetic-like biphasic dose–responses occur
across the broad spectrum of life including plants (Calabrese et al., 2019; Agathokleous &
Calabrese, 2020). Hormesis is a biphasic dose–response relationship with low doses
inducing stimulatory effects by activating adaptive mechanisms that enhance resilience,
while higher doses may induce inhibitory responses that at even higher doses often become
toxic (Agathokleous & Calabrese, 2019a, 2019b; Agathokleous & Calabrese, 2020).
In banana (Musa spp. L.), the application of 200 mg Si per week resulted in a stimulatory
effect leading to the beneficial growth attributes, whereas treatments with 500 and
1,000 mg Si per week triggered inhibitory responses, resulting in detrimental effects
evidenced by stunting and discoloration of the leaf edges (Mburu et al., 2016). Negative
effects such as stunting, deformed flowers and delay in flowering were also observed in
sunflowers at high concentrations of Si, thus suggesting Si application can vary from
beneficial to detrimental depending on the source and concentration used (Kamenidou,
Cavins & Marek, 2008; Kamenidou, Cavins & Marek, 2010). Hence, we hypothesized that
Si can trigger beneficial effects on growth and metabolism of pepper seedlings under
conventional conditions (i.e., unstressed), and that this effect would depend on the
concentrations of Si tested in a hormetic manner. Concomitantly, herewith we aimed at
evaluating the effect of increasing levels of Si applied through the nutrient solution in a
hydroponic system on the performance of pepper seedlings, in order to gain a better
insight into the potential hormetic role of this element on plants grown under
conventional environments (i.e., not subject to stress) during the early developmental
stage. We evaluated different parameters related to growth, biomass accumulation, and
concentrations of chlorophylls, sugars and amino acids in plant tissues (i.e., roots,
stems and leaves) in response to the application of four levels of Si (i.e., 0, 60, 125 and
250 mg L−1 Si) supplied as calcium silicate (CaSiO3) in the nutrient solution.

MATERIALS AND METHODS
Plant material and growing conditions
The experiment was carried out in a greenhouse at the College of Postgraduates Campus
Montecillo, Mexico (98� 91′W, 19� 45′ N, 2,224 masl). Pepper (Capsicum annuum L.) cv.
Mysterio seeds (Harris-Moran Seeds, Querétaro, Querétaro, Mexico) as previosly
described (García-Jiménez et al., 2018). Thirty-d-old seedlings were transplanted into 35 L
plastic containers supplied with the Steiner nutrient solution (Steiner, 1984) (at 20% or the
original strength) supplemented with micronutrients.

Seven days after transplanting, the nutrient solution was completely renewed and
the treatments to be tested (different Si concentrations) were added. The treatments
consisted of 60, 125 and 250 mg L−1 Si, and the control consisted of the Steiner nutrient
solution without Si. Si was supplied as CaSiO3 (purum grade, with ≥87% SiO2 basis,
12–22% Ca (as CaO) basis) (Sigma–Aldrich, St. Louis, MO, USA). The Steiner nutrient
solution supplied at 20% of the original strength, is sufficient, but not excessive, to grow
pepper seedlings at this developmental stage (García-Jiménez et al., 2017). In order to

Trejo-Téllez et al. (2020), PeerJ, DOI 10.7717/peerj.9224 3/28

http://dx.doi.org/10.7717/peerj.9224
https://peerj.com/


guarantee the availability of all essential elements, the nutrient solution was completely
replaced every seven days. Furthermore, the nutrient solution was aerated every 2 h for
15 min with an air pump (Hagen, Elite 802; Manfield, MA, USA), adjusting the pH to 5.5
with concentrated 1 N NaOH or H2SO4 (Sigma–Aldrich, St. Louis, MO, USA).

The experimental unit was represented by a single pepper plant, and each treatment had
12 replicates, which were distributed in a completely randomized experimental design.
The experiment was conducted under greenhouse conditions as described elsewhere
(García-Jiménez et al., 2018). The greenhouse was illuminated with natural sunlight. It is
worth mentioning that the light requirements of plants are 100–300 mmol m−2 s−1 of
photosynthetic photon flux density (PPFD) for leafy vegetables, 200–600 mmol m−2 s−1 for
fruiting vegetables, and 50–200 mmol m−2 s−1 for ornamental plants (Wada, Fukuda &
Ogura, 2019). Since our plants were in the seedling stage, we used 300 mmol m−2 s−1 PPFD.

Physiological and biochemical measurements
Evaluation of plant growth and development
Seven, 14, 21 and 28 days after treatment application (dat) we measured the variables
plant height and root length using a 30 cm stainless steel ruller as previously described
(García-Jiménez et al., 2018). The number of leaves and flower buds, stem diameter,
root volume, leaf area, weight of fresh and dry root, stem, leaf and flower biomass were
evaluated 28 dat as described elsweher (García-Jiménez et al., 2017, 2018).

Concentrations of chlorophylls a, b and total chlorophylls in leaves and

stems
Chlorophyll concentrations were determined following the Harborne method
(Harborne, 1973). Accordingly, after a triple ethanol extraction, samples obtained were
incubated in a water bath, centrifuged and read in a 6715 UV/Vis spectrophotometer
(Jenway, Staffordshire, UK) at 645 and 665 nm. From the readings we could calculate the
concentrations of chlorophylls a and b. Total chlorophyl concentration was the sum of
chlorophyl a and b, and we also determined the corresponding ratios of chlorophylls a/b.

Concentrations of total free amino acids in leaves, stems and roots
The ninhydrin method (Moore & Stein, 1954; modified by Sun et al. (2006)) was used to
determine the concentrations of total free amino acids in plant tissues. Accordingly, 500 mL
of the triple ethanol extraction was taken and mixed with 500 mL of the Na citrate
(16 mM)-ascorbic acid (34 mM) buffer solution at 0.2% (w/v), pH of 5.2 and 1,000 mL
ninhydrin (1%; w/v) in 70% ethanol (v/v) were also added. After incubation 95 �C (20 min)
and having left them to cooled down at room temperature, samples were read in the
6,715 UV/Vis spectrophotometer at 570 nm, using leucine to obtain the calibration curve.
For each treatment, four replicates were prepared, with two technical replicates each.

Concentrations of total soluble sugars in leaves, stems and roots
The concentration of total soluble sugars was estimated with the anthrone method
(Brummer & Cui, 2005; based on Southgate, 1976). After extraction with 80% ethanol at
125 �C, samples were filtered and measured to a volume of 20 mL, from which 500 mL were
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taken and mixed with 500 mL of 80% ethanol. Subsequently, five mL of cooled anthrone
(Meyer, Querétaro, Querétaro, Mexico) dissolved in concentrated sulfuric acid (Merck
KGaA, Darmstadt, Germany) were added to the samples and placed on ice. Samples
were then transferred to a water bath at 95 �C for 15 min, and then placed back on ice
to cool down. A standard curve was done with glucose (Sigma–Aldrich, St. Louis, MO,
USA) and the samples were read at 620 nm in the 6,715 UV/Vis spectrophotometer.
For each treatment, four replicates were prepared, with two technical replicates each.

Statistical analysis
The assumptions of normality and homogeneity of variances of our experimental data
were verified through the Shapiro–Wilk and Bartlett tests (P ≤ 0.05), respectively. When
either of these assumptions was not fulfilled, a logarithmic transformation was done,
although the data are shown without transforming. Subsequently, a one-way analysis of
variance was carried out. When there were statistical differences, mean separation was
done through the Duncan method with a = 0.05. The SAS 9.0 software (SAS Institute,
Cary, NC, USA) was used for all analyses.

RESULTS
Plant growth and development
Treatments (0, 60, 125 and 250 mg L−1 Si) were applied to 37-d-old plants in hydroponics,
and variables were measured weekly during 4 weeks. Seven days after the application of the
treatments (dat), plant height was significantly greater with the application of 60 and
250 mg L−1 Si in comparison to the control, while at 14 days there were no significant
differences among treatments. At 21 d, plant height increased significantly in the
treatments with higher Si concentrations (125 and 250 mg L−1), while there were no
significant differences between the control and the treatment with 60 mg L−1 Si. In the
last evaluation, the plants treated with 125 mg L−1 Si had the greatest height, with no
significant differences in comparison to the other two treatments with Si (Fig. 1A).
Although the control recorded the lowest height, this mean was not statistically different to
those observed in plants treated with 60 and 250 mg L−1 Si. In contrast to plant height,
root length in control plants was greater than all the other treatments at 7, 14 and
21 dat. At 28 d, plants treated with 125 and 250 mg L−1 Si had longer roots than those
treated with 60 mg L−1 Si, but this mean was not statistically different as compared to the
control (Fig. 1B). Figure 2 displays how plants were phenotypically affected by Si
treatments.

Silicon also stimulated reproductive responses. Indeed, the development of flowering in
plants treated with 125 mg L−1 Si was faster in comparison to the rest of the treatments
28 dat. Though there were no flowers yet in plants treated with 60 and 250 mg L−1 Si,
in those two treatments flower buds were larger than those of the control (Figs. 2I, 2J, 2K
and 2L).

Stem diameter reached its highest value in plants treated with 60 mg L−1, though
this value was statistically similar to those observed in plants exposed to 125 mg L−1 and
the control (Fig. 3A). Importantly, the lowest stem diameter was observed in plants
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exposed to 250 mg L−1 Si. The number of leaves per plant showed no significant effect due
to the treatments tested (Fig. 3B). However, the treatment with 125 mg L−1 had 9% more
leaves than the control.

There were no significant differences between the treatments with Si and the control
with regard to root volume, number of flower buds per plant, and the weight of fresh and
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Figure 1 Plant height (A) and root length (B) of pepper plants (Capsicum annuum L.) grown in
nutrient solutions containing different concentrations of Si under unstressed conditions. Error
bars indicate standard deviation. Columns with different letters are statistically different (P ≤ 0.05).

Full-size DOI: 10.7717/peerj.9224/fig-1
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dry biomass of flowers (Table 1). With the application of 125 mg L−1 Si, plants developed
larger leaves than with the other treatments, including the control (Figs. 2E, 2F, 2G and
2H), which consequently resulted in plants treated with this Si concentration having a
larger leaf area. Control plants and those exposed to 60 mg L−1 Si displayed similar leaf
area, which was lower than the means observed in plants treated with 125 mg L−1 Si
(Table 1).

Fresh and dry biomass weights of leaves and roots were not significantly different
among treatments. Interestingly, plants treated with 125 mg L−1 Si had the greatest weight
of fresh and dry stem biomass, which was statistically different from the control (Figs. 4A
and 4B).

Chlorophylls concentration in leaves and stem
The highest concentration of chlorophyl a found in leaves and stems was recorded in
plants treated with 125 mg L−1 Si, while the application of 250 mg L−1 Si reduced the

Figure 2 Development of pepper plants (Capsicum anunum L.) grown in nutrient solutions
containing different concentrations of Si under unstressed conditions 28 dat. Control: (A), (E) and
(I); 60 mg L−1 Si: (B), (F) and (J); 125 mg L−1 Si: (C), (G) and (K); 250 mg L−1 Si: (D), (H) and (L).

Full-size DOI: 10.7717/peerj.9224/fig-2
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Figure 3 Stem diameter (A) and number of leaves (B) in pepper plants (Capsicum annuum L.) grown
in nutrient solutions containing different concentrations of Si under unstressed conditions. Error
bars indicate standard deviation. Columns with different letters are statistically different (P ≤ 0.05).

Full-size DOI: 10.7717/peerj.9224/fig-3

Table 1 Root volume, leaf area, number of flower buds per plant, and weight of fresh and dry flower
biomass in pepper (Capsicim annuum L.) grown in nutrient solutions containing different
concentrations of Si under unstressed conditions, at 28 dat.

Si treatment
(mg L−1)

Root
volume (mL)

Leaf
area (cm2)

Flower
buds

Weight of fresh
flower biomass (mg)

Weight of dry
flower biomass (mg)

Control 2.20 ± 0.06 a 50.85 ± 1.19 b 3.50 ± 0.11 a 131.25 ± 8.41 a 17.73 ± 1.67 a

60 1.80 ± 0.10 a 50.80 ± 1.32 b 4.80 ± 0.34 a 210.25 ± 23.39 a 36.90 ± 5.65 a

125 2.00 ± 0.06 a 66.03 ± 3.61 a 4.50 ± 0.25 a 183.25 ± 5.31 a 32.43 ± 3.51 a

250 1.75 ± 0.06 a 54.73 ± 1.99 ab 4.10 ± 0.22 a 173.25 ± 8.38 a 32.65 ± 2.90 a

P 0.1792 0.1046 0.2991 0.2645 0.3305

Note:
Values are means ± standard deviation (SD) from at least five individual plants. Different letters in each column indicate
significant differences among treatments for each variable analyzed (Duncan, P ≤ 0.05).
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concentration of this molecule in both tissues analyzed to levels similar to the control
(Table 2). The concentration of chlorophyl b in leaves was not significantly different
among 60, 125 mg L−1 Si, and the control, while with the application of 250 mg L−1 Si the
lowest chlorophyl b concentration was observed. In stems, the highest concentration of
chlorophyl b was observed in plants treated with 125 mg L−1 Si, while the application
of 250 mg L−1 Si decreased the value of this variable to an even lower level than the control.
Total chlorophyl in leaves was the highest in plants receiving 125 mg L−1 Si, while the

Figure 4 Weight of fresh (A) and dry (B) biomass of leaves, stems, and roots of pepper plants
(Capsicum annuum L.) grown in nutrient solutions containing different concentrations of Si
under unstressed conditions 28 dat. Error bars indicate standard deviation. Columns with different
letters are statistically different (P ≤ 0.05). Full-size DOI: 10.7717/peerj.9224/fig-4
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lowest concentration was obtained with 250 mg L−1 Si. Similarly, plants treated with
125 mg L−1 Si displayed the highest means for total chlorophylls in stems, while the lowest
values were observed in plants exposed to 60 and 125 mg L−1 Si; plants receiving
250 mg L−1 and the control showed intermediate concentrations of total chlorophylls,
which were statistically similar to each other. In both leaves and stems, the chlorophyl a/b
ratio was the highest in plants treated with 250 mg L−1; it was observed that as the Si
concentration decreased, so did the chlorophyl a/b ratio.

Concentration of total free amino acids and total soluble sugars
The concentration of amino acids in leaves was 42.9% greater with 60 mg L−1 Si than in the
control. Moreover, as the Si concentration increased, the amino acids concentration
was decreased in this tissue, since the lowest values were recorded with 250 mg L−1 Si.
In stems, the concentration of amino acids decreased drastically with the application
of 250 mg L−1 Si, while plants treated with 60 and 125 mg L−1 Si were statistically similar to
the control. In roots, control plants had the lowest concentration of amino acids, while
Si stimulated the concentrations of these biomolecule in this tissue in all levels evaluated
(Fig. 5A). Comparing amino acids concentrations among plant tissues, the highest values
were observed in roots.

The concentration of total soluble sugars in leaves of plants treated with 125 mg L−1 Si
was 33.1% higher than in those of the control, while the 250 mg L−1 Si treatment and
the control were not statistically different from each other. Likewise, in stems, the
concentration of sugars in plants treated with 125 mg L−1 Si was 19.5% higher than the
control, while 60 and 250 mg L−1 Si were not significantly different from the control.
In roots, plants treated with 125 mg L−1 Si recorded the highest sugar concentration, which
was similar to the control (Fig. 5B).

DISCUSSION
Si stimulates growth of pepper plants in a hormetic manner
In horticulture, the seedling stage is important within the crop cycle because it affects growth
and development, earliness, total yield and fruit number per plant (Demir et al., 2010).

Table 2 Chlorophyll concentration (mg g−1 FBW) in leaves and stems of pepper (Capsicum annuum L.) grown in nutrient solutions
containing different concentrations of Si under unstressed conditions, at 28 dat.

Si treatment (mg L−1) Chlorophyll concentrations (mg g−1 FBW)

Chlorophyll a Chlorophyll b Total Chlorophylls Chlorophyll a/b ratio

Leaf Stem Leaf Stem Leaf Stem Leaf Stem

Control 1,513.73 ± 8.5c 348.95 ± 5.2b 291.82 ± 6.2a 112.65 ± 1.7b 1,805.55 ± 12.9c 461.60 ± 4.3b 5.21 ± 0.09c 3.10 ± 0.05b

60 1,611.05 ± 3.2b 318.29 ± 5.8c 284.21 ± 5.5a 100.09 ± 3.9bc 1,895.25 ± 8.2b 418.38 ± 4.0c 5.69 ± 0.2bc 3.24 ± 0.13b

125 1,691.16 ± 10.4a 429.15 ± 4.7a 284.05 ± 7.7a 144.20 ± 1.3a 1,975.21 ± 12.4a 573.36 ± 7.5a 6.0 ± 0.1b 2.97 ± 0.02b

250 1,478.39 ± 7.7c 371.84 ± 4.2b 171.79 ± 2.6b 85.09 ± 2.1c 1,650.17 ± 10.1d 456.93 ± 2.3b 8.62 ± 0.1a 4.40 ± 0.11a

P value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 0.0004

Note:
Values are means ± standard deviation (SD) from at least five individual plants. Different letters in each row indicate significant differences among treatments for each
variable analyzed (Duncan, P ≤ 0.05). FBW, fresh biomass weight.
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Seedling quality can be assessed bymeasuring morphological, physiological and biochemical
traits (Aragão et al., 2015; Ritchie, 1984). Among the morphological attributes to be
considered are height, stem diameter, root biomass, and stem biomass, to cite some, while
biochemical traits involve soluble sugars, amino acids and polyamines, among others
(Aragão et al., 2015; Haase, 2008; Larson et al., 2015; Pessoa et al., 2019; De Souza
Vidigal et al., 2011). High quality seedlings have a higher survival rate and faster growth
in the field than poor quality ones, which has both agronomic and economic benefits.
Particularly, the initial growth phase of sweet pepper seedling represents a decisive stage for
the commercial production of both seedlings and fruits. The rate of seedling emergence,
their uniformity and initial growth determine seedling quality, affecting the overall
economic efficiency of the production system (De Grazia, Tittonell & Chiesa, 2004) and

Figure 5 Concentration of total free amino acids (A) and total soluble sugars (B) in leaves, stems,
and roots of pepper plants (Capsicum annuum L.) grown in nutrient solutions containing
different concentrations of Si under unstressed conditions 28 dat. Error bars indicate standard
deviation. Columns with different letters are statistically different (P ≤ 0.05). FBW, fresh biomass
weight. Full-size DOI: 10.7717/peerj.9224/fig-5
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beneficial elements such as Si may boost its performance. Herein we aimed to evaluate the
effect of adding different concentrations of Si in the nutrient solution on quality attributes of
pepper seedlings.

In previous studies, we have reported the effect of a number of Si concentrations on
growth, development, and nutrient concentration of heliconia (Heliconia psittacorum
L.f. × H. spathocircinata Aristeguieta cv. Golden Torch Adrian) (Cuacua-Temiz et al.,
2017) and sugarcane (Saccharum spp. L.) (Sentíes-Herrera et al., 2018). Moreover, we
performed an in-depth analysis of the literature on Si dosage resulting in beneficial effects
to diverse plant species, which we published as a part of a book chapter (Gómez-Merino &
Trejo-Téllez, 2018). As a chemical element causing hormetic responses in plants, Si can
not only benefit the plant, but it can also result in negative effects. Indeed, excess levels of
Si can potentially compete with uptake of other nutrients and affect plant metabolism.
In sunflower (Helianthus annuus L. cv. “Ring of Fire”), growth abnormalities were
observed when concentrations of 100 and 200 mg L−1 Si were supplied as KSiO3 substrate
drenches (Kamenidou, Cavins & Marek, 2008). In these treatments, plants appeared
stunted with deformed flowers and were delayed in flowering. In gerbera (Gerbera sp. L.
hybrid “Acapella”), foliar sprays of 150 mg Si L−1 supplemented as NaSiO3 resulted in
stem shortening and deformation of flowers (Kamenidou, Cavins & Marek, 2010).
In general, plants that are considered “non-accumulators” of Si are more sensitive to
excess Si compared to those that are “accumulators” (Bloodnick, 2018). Considering these
reports and our experimental data, we decided to perform further analyses by comparing
the effect of applying 0 (control), 60, 125 and 250 mg L−1 Si (supplied as CaSiO3) on
growth, concentrations of some vital biomolecules crucial for seedling development and
nutrients in pepper plants at the early stage of development under unstressed conditions.

Our experimental results show a number of beneficial effects of Si on pepper plant
growth and metabolism under conventional environmental conditions (i.e., in the
absence of stress) when applied at low to medium levels, whereas high levels resulted in
detrimental effects to the plants. Plant height, stem diameter, leaf area, fresh and dry
biomass weight, as well as the concentraions of chlorophylls, total amino acids and total
soluble sugars were enhanced in pepper plants treated with Si, especially when the
concentrations in the nutrient solution of this elemen were between 60 and 125 mg L−1.
Summing up, according to our results, 10 of the measured traits were not affected by
the treatments tested. Instead, 17 traits were enhanced, and only six were reduced,
especially when the Si was tested at its highest level (250 mg L−1 Si). Therefore, most of the
traits were positively affected by Si under our experimental conditions.

Silicon enters plant cells as an under-saturated solution of Si(OH)4 and yet it is found as
amorphous hydrated silica within a plant. Biogenic silica cannot be formed spontaneously
unless the concentration of Si(OH)4 in a plant exceeds solubility limits (Exley, 2015).
Our treatments contributed with 60, 125 and 250 mg L−1 Si (in the form of CaSiO3) to
the nutrient solution, respectively, which could result in differential accumulation rates
within the plant cells, and thus triggered differential effects in a hormetic manner
(either neutral, positive or negative) to the plant. Exogenous Si supply to nightshade
plants including tomato (Solanum lycopersicum L.) (Gowda et al., 2015), eggplant
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(Solanum melongena L.) (Dasgan, Akhoundnejad & Çaglayangil, 2016) and pepper
(Manivannan et al., 2016) has resulted in increased growth and productivity, both when
crops are cultivated in the soil as well as in some soilless-cultivated greenhouse plants
(Savvas & Ntatsi, 2015). In particular, chili pepper has exhibited an 8.4% yield increase in
response to Si, as compared to the control (Liu et al., 2011).

In plants, Si has been proven to increase rigidity by strengthening cell walls and
provide mechanical support to the canopy (Guerriero, Hausman & Legay, 2016; Yang
et al., 2018). It has been also proven that the matrix polysaccharide (1;3,1;4)-β-D-glucan is
involved in Si-dependent strengthening of cell walls (Kido et al., 2015). Silica deposition
in the form of phytoliths (i.e., solid particles of polymerized SiO2) in cell walls may
alter the anatomy of the plant tissues. Such changes in turn trigger some beneficial
effects (Raven, 2001; Piperno et al., 2002; Ma, 2004; Savvas et al., 2007), while direct or
indirect involvement of Si in plant metabolism may also occur (Epstein, 1999; Liang et al.,
2003; Zhu et al., 2004). Indeed, in some plant species the absence of Si may cause
structural weakening, a smaller size, lower development and viability, and greater
susceptibility to environmental stressors. Conversely, the presence of Si avoids water loss
through cuticular transpiration and increases the elasticity of the cell wall during
plant growth by interacting with pectins and polyphenols, and gives greater general
mechanical resistance (Wang et al., 2017). In the present study, plant height was greater
with doses of 60 and 125 mg L−1 Si 7 dat, while after 21 days plant height increased in
the treatments with the highest Si concentrations tested (i.e., 125 and 250 mg L−1).
These results coincide with the greater height observed in rice plants receiving high
doses of SiO2 (Cuong et al., 2017). However, in coffee (Coffea arabica L.), control plants
showed greater height than seedlings supplied with 2 mmol L−1 Si (Cunha et al., 2012).
This confirms that Si application may actually have different effects on different plant
genotypes. Indeed, Si concentration in plants will be influenced primarily by the
phylogenetic position of the plant rather than by the environmental conditions in
which plants are established, such as soil parent materials and factors affecting Si
adsorption-disorption processes (i.e., pH of the soil solution, water availability,
temperature, and accompanied ions, among others) (Hodson et al., 2005; Yan et al., 2018;
Artyszak, Gozdowski & Kuci�nska, 2019). Unlike other elements, Si is abundant in
nearly all soils, so environmental criteria do not significantly impact Si accumulation in
plants but rather their intrinsic mechanisms to absorb and transport Si (Ma & Takahashi,
2002), which is mediated by Si channels or transporters. Even though Si accumulation
is a phylogenetic feature, the availability of Si in the soil may influence, at least partially,
the amount of Si absorbed by plants (Guntzer, Keller & Meunier, 2012). Under our
experimental conditions, with the addition of Si, root length decreased significantly at 7,
14 and 21 dat, while at 28 days the application of 125 and 250 mg L−1 Si resulted in
root length means similar to the control. In carnation (Dianthus caryophyllus L.), the
greatest values in stem length and root length with and without saline stress were obtained
with the application of 50 mg L−1 Si; when doubling the dose, the effect was similar to
the control (Soundararajan et al., 2015). In chili pepper, increasing Si levels (0, 50,
75 and 100 mg L−1) had no significant effects on stem and root length
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(Jayawardana, Weerahewa & Saparamadu, 2015). The root system displays considerable
plasticity in its morphology and physiology in response to variability within its
environment (Ortíz-Castro et al., 2009). Decreased root length can be beneficial for
plants because they can target their energy and metabolism to increase the shoot system
instead of the root system. A less developed root system may indicate that water and
nutrients are available nearby. In some cases, especially in nutrient deficient environments,
plants have to explore more extensive areas and thus develop a more expanded root
system to reach water and nutrients, to the detriment of the shoot system. Hence, our
results can be interpreted as beneficial.

Under our experimental conditions, number of leaves, root volume, number of
flower buds per plant, as well as fresh and dry biomass weight of flowers, leaves and roots
were statistically similar among treatments tested. Interestingly, flower buds were bigger in
the treatments with Si. Despite the absence of significant effects of Si on the number of
leaves, leaves developed more area in the treatment with 125 mg L−1 Si. Similarly, the
application of increasing doses of Si (1 and 2 mM Si) in cherry tomato did not affect root
volume and stem diameter (Haghighi & Pessarakli, 2013). Nevertheless, in sugar beet
(Beta vulgaris L. subsp. vulgaris) foliar applications of Si increased root yield by 7.5–25.1%,
biological sugar yield by 7.1–23.2%, and commercial yield of sugar by 4.8–22.2%,
compared to the control treatment (without Si application) (Artyszak, 2018). Coincidently,
pepper plants treated with 1.5 mM Si (supplied as K2SiO3) for 15 days increased shoot
length, shoot diameter, root length, number of roots and fresh biomass weight in
comparison to control plants (Manivannan et al., 2016). Nonetheless, in coffee seedlings,
the number of leaves and internodes showed no statistical difference among treatments
(Cunha et al., 2012). Thus, the application of Si can differentially affect plant growth
and development, depending on the internal mechanisms that the genotype has to
metabolize this element (Ouellette et al., 2017). Biological responses of plants to Si can
be a consequence of the apoplastic obstruction caused by excesive Si deposition in the cell
wall (Coskun et al., 2019), which can trigger hormetic effects (Mburu et al., 2016;
Agathokleous & Calabrese, 2020). In plants, Si is deposited as the solid, hydrated oxide
SiO2·nH2O, known as silica gel, following polymerization of orthosilicic acid (Si(OH)4 or
H4SiO4; the only form of Si available to plants) (Gropper & Smith, 2018). Polymerization of
orthosilicic acid into silica gel can result in stimulation or inhibition of plant responses,
depending on the severity it reaches (Ma, Miyake & Takahashi, 2001; Exley, 2015;
Montpetit et al., 2012).

Fresh and dry biomass weights of leaves and roots were not affected by Si treatments
under our experimental conditions. Conversely, in stems these variables were enhanced
by Si (Figs. 4A and 4B). Similarly, the application of Si in wheat increased the dry
biomass of stems by 19.6%, 23.8%, 36.5% and 32.6% with 24, 50, 100 and 200 mg L−1 Si
respectively, compared to the control (0 mg L−1 Si), while applying 400 and 800 mg L−1 Si
reduced this variable to a lower level than the control (Mali & Aery, 2008).

In two maize (Zea mays L.) cultivars grown under normal conditions (i.e., no stress
applied), the application of Si resulted in slight fresh biomass increases, possibly due to the
improvement of the photosynthetic apparatus and increasing water use efficiency, though
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no differences were observed compared to the control (Khan et al., 2017). In wheat,
the application of 1–10 g Si per plant increased the aerial biomass, but as the dose
increased, the biomass decreased (Neu, Schaller & Dudel, 2017). In cotton (Gossypium
hirsutum L.), wheat, and canola (Brassica napus L.), the application of 1.5 mmol L−1 Si
increased dry weight by 8%, 30% and 30% and fresh weight by 10%, 33% and 16%,
respectively (Mehrabanjoubani et al., 2015). Moreover, the pre-treatment of maize kernels
with 1.5 mM Si significantly increased dry and fresh weight and leaf area of plants
(Abdel Latef & Tran, 2016). In two cucumber (Cucumis sativus L.) cultivars established
in conventional and saline soils, Si applications increased the dry biomass of the
aerial part and roots, which was related to a higher activity of antioxidant enzymes
(Khoshgoftarmanesh, Khodarahmi & Haghighi, 2014). In aloe [Aloe vera (L.) Burm. f.]
plants grown under normal and saline conditions, the fresh weight of the leaves increased
with the addition of Si, though significant differences with respect to the control were only
evident when plants were exposed to salt stress, which was associated with a higher
concentration of K+ in leaves, stems, and roots, and a lower concentration of Na+, due to
the stabilization of the activity of a proton pump (Xu, Ma & Liu, 2015). Moreover, the
application of K2SiO3 caused a higher Si concentration in better developed tissues of
carnation plants in vitro, compared against the application of CaSiO3 (Manivannan et al.,
2017), which proves that the Si source used also influences the response observed in
the plant. Si may affect plant growth by regulating the levels of endogenous phytohormone
and conferring resistance to the turgor pressure ocuring during cell elongation
(Luyckx et al., 2017b). Indeed, in Si-treated rice third leaves, the epidermal cell length
increased, especially in the basal regions, without any effect on the number of cells,
showing that Si promoted cell elongation but not cell division. Si also increased the
cell wall extensibility significantly in the basal regions of rice third leaves, which
indicates that Si stimulates growth of plant leaves by increasing cell wall extensibility
(Hossain et al., 2002).

The role of chlorophylls in photosynthesis is vital, and Si has been demonstrated to
enhance both chlorophyl biosynthesis and photosynthetic activity in various plant
species. Important deposition of Si has been found in leaves, which results in greater tissue
rigidity and more erect leaf blades. These conditions favor light interception, stimulate
greater CO2 absorption, and decrease excessive transpiration, which consequently
results in higher photosynthetic rates and increased yields (Detmann et al., 2012; Savvas &
Ntatsi, 2015).

In carnation, the application of Si increased the activity of PsaA and PsbA enzymes,
which stimulated the efficiency of the photosystem II and the electron transference speed
(Manivannan et al., 2017). In rice, Si stimulated photosynthetic indicators and the
expression of genes related to photosynthesis, like PsbY, cffv, PetC and PetH (Song et al.,
2014). In the Japanese honeysuckle (Lonicera japonica Thunb.), the application of Si
helped to maintain the ultrastructure of the chloroplast (Gengmao et al., 2015). In our
research, the highest a, b, and total chlorophyl values in leaves and stems were observed
with the application of 125 mg L−1 Si, though 250 mg L−1 Si and 60 mg L−1 Si did not
increase the concentrations of these molecules. In cacao (Theobroma cacao L.),
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the addition of 1.5 mg mL−1 SiO2 increased the photosynthetic rate and mitigated
oxidative stress (Zanetti et al., 2016). In wheat, applications of 150 mg L−1 Si to the soil
significantly increased the concentration of chlorophylls, while the application of 50
and 100 mg L−1 Si had no significant effect, compared to the control (Saleh, Najafi &
Oustan, 2017). Low Si doses (one mM) increased the concentration of chlorophylls a and b
in hydroponically grown wheat, compared to the control, but when the Si level increased
to four mM, the chlorophyl concentration decreased (Hajiboland, Cherghvareh &
Dashtebani, 2017). Also, the application of 150 mg L−1 Si in maize established in an alluvial
soil increased the concentration of total chlorophylls and the photosynthetic rate,
compared to the control (Xie et al., 2014). A more specific study on maize determined that
applying two mM Si stimulated the concentration of chlorophylls a, b, and total by
22%, 43% and 26%, respectively, as compared to the control (Barbosa et al., 2015). This has
also been observed in wheat exposed to drought stress (Maghsoudi, Emam & Ashraf,
2015). A significant increase in the concentrations of chlorophylls a and b in pepper cv.
Giant Vermelho and a concomitant stimulation of the activity of the photosynthetic
apparatus combined with the architecture of the plant were promoted by the application
of Si (Pereira et al., 2015). The addition of 0.25, 1.00 and 1.75 µmol Si to tomato cv.
Super Marmante and Santa Cruz exposed to water deficit increased the levels of
chlorophylls a, b, and total, which were related to a more efficient protection of the
photosynthetic apparatus (Silva et al., 2012). In maize grown on alkaline soils, the
application of 1.5 mM Si significantly increased the concentration of photosynthetic
pigments and decreased the negative impact of stress (Abdel Latef & Tran, 2016). Also,
the application of three mM Si from SiO2 to rice plants significantly increased the
chlorophyl a/b ratio (Ramírez-Olvera et al., 2019). In our study, the chlorophyl a/b ratios
in leaves and stems were higher with the 250 mg L−1 Si treatment, while the lowest
chlorophyl b in stem was similar to that of the control, with no significant differences
among the rest of the treatments. Importantly, under drought stress, Si decreased the
decomposition of chlorophylls (Ma et al., 2004), while a Si-related increase of the
photosynthetic capacity in bent-grass (Agrostis palustris Huds.) was associated with
enhanced chlorophyl content (Schmidt, Zhang & Chalmers, 1999). Furthermore, supplying
Si to salt-stressed wheat plants can restore the chlorophyl level to that of non-stressed
plants (Tuna et al., 2008). In potato (Solanum tuberosum L.), a significant increase of
net photosynthetic rates after both soil and foliar application of Si to non-stressed plants
was observed, which was associated with a significant increase in the concentrations of
chlorophyl a and carotenoids (Pilon, Soratto & Moreno, 2013).

The highest concentration of free amino acids in leaves was found in pepper plants
treated with 60 mg L−1 Si. Applying 125 mg L−1 Si resulted in amino acid concentrations
similar to the control, while in plants treated with 250 mg L−1 Si the concentration of
amino acids decreased significantly. In stems, plants treated with 60 and 125 mg L−1

displayed similar free amino acid concentrations to the control, while at 250 mg
125 mg L−1 stems exhibited lower concentrations of these molecules as compared to the
other three treatments. In roots, all Si treatments tested exhibited higher concentrations of
amino acids as compared to the control. The application of 0.25, 1.00 and 1.75 µM Si
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in the pepper cultivars Ikeda and Giant Vermelho exposed to water stress increased the
concentrations of soluble amino acids, although significant differences with respect to the
control were only observed in the Ikeda cultivar treated with 0.25 µM Si (Pereira et al.,
2013). At the biochemical level, Si has been shown to improve antioxidant capacity and
photosynthetic activity (Manivannan et al., 2016), and also contributes to the osmotic
adjustment by increasing the synthesis of amino acids such as proline (Rezende et al., 2017)
and other essential amino acids (Johnson et al., 2017). In maize seedlings under normal
conditions, Si did not affect the content of free amino acids, but when the plants were
exposed to alkaline stress, the amino acids significantly increased, and this increase was
greater with the addition of Si (Abdel Latef & Tran, 2016). Strawberry plants treated with
Si did not increase their concentration of amino acids in leaves and roots, but protein
concentration did increase, which proves that this element stimulates protein synthesis
and therefore plant development (Ouellette et al., 2017). In the rice cultivars Shengdao
14 and Huaidao 11, Si applications increased the concentrations of Asp, Glu, Ser, Ala,
Tyr, Arg and Pro by 12%, 3.55%, 9.15%, 5.06%, 28.77%, 13.24% and 10.83%, respectively,
and Thr, Ile, and Leu by 11.50%, 8.82% and 4.75%, respectively, compared to the control.
Grain yield and protein concentration also increased as compared to the control
(Liu, Zhou & Sun, 2017). Likewise, in maize plants exposed to alkaline stress, the highest
content of free amino acids was observed in plants treated with 25 mM Na2CO3 and
1.5 mM Si (Abdel Latef & Tran, 2016). Therefore, Si has an impact on amino acid
concentrations in different plant species.

The concentration of total soluble sugars was higher in treatments with 125 mg L−1 Si in
leaves, stems and roots. Similarly, Si-treated tomato plants had higher concentrations of
sugars and improved yields (Jarosz, 2014). Moreover, the application of 1.5 mM Si
mitigated the effects caused by alkaline stress, increasing the accumulation of soluble
sugars (Abdel Latef & Tran, 2016). In the present study, the increase of total soluble sugars
observed in plants treated with 125 mg L−1 Si was associated with the increase in
chlorophyl a and total chlorophyl observed in plants under the same treatment (Table 2).
The chlorophyl increase triggered by Si favors light absorption through the leaves,
thus increasing the photosynthetic activity and the content of soluble sugars (Savvas &
Ntatsi, 2015; Sakurai et al., 2017). However, there can be different responses between
genotypes, as observed in the Giant Vermelho pepper variety, where Si increased the
concentrations of soluble sugars while in the Ikeda variety the concentration of sugars
decreased (Pereira et al., 2015). Similarly, the application of Si decreased the levels of
total soluble sugars in tomato exposed to water deficit (Silva et al., 2012). Sugars are
important components of plant cell walls. It is plausible that the complexation of Si
with cell wall macromolecules takes place via the stabilization of sugars, in a manner
analogous to the borate-mediated formose reaction (He et al., 2013;Guerriero, Hausman &
Legay, 2016).

Our results are in full agreement with those reported by Manivannan et al. (2016),
who found increased growth in unstressed pepper plants treated with 1.5 mM Si (supplied
as K2SiO3) for 15 days in comparison to untreated plants (control). Under control
conditions (i.e., in the absence of stress conditions), Si probably activates the metabolic
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status of the plant by making it more efficient in response to external stimuli (Luyckx et al.,
2017a). For instance, in rice plants under unstressed conditions, Si causes alteration of
the C/N balance in the source-sink relationship during grain development, thus increasing
grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates
via enhanced mesophyll conductance and alters primary metabolism (Detmann et al.,
2012; Detmann et al., 2013).

Apart from improving plant performance under unstressed conditions, Si has been
shown to play an important role in alleviating damage caused by both biotic and abiotic
stresses (Manivannan & Ahn, 2017). For instance, improved plant defense against
arthropods under Si supplementation has been associated with a mechanical form of
protection (Reynolds, Keeping & Meyer, 2009; Reynolds et al., 2016). Si acts as a physical
defense, increasing the abrasiveness of the leaves and leading to the increased wear of
mandibles chewing herbivores (Kvedaras & Keeping, 2007), thus reducing palatability
and digestibility of plants for herbivores (Massey & Hartley, 2009). Importantly,
abrasiveness of plant tissues is more influenced by phytolith morphology than by Si
concentration applied (Hartley et al., 2015). Moreover, physical strength of the leaf
resulting from Si accumulation may induce mechanical protection and thus lower the rate
of infection of some pathogens (Zhang et al., 2013; Schurt et al., 2014; Ning et al., 2014).
Priming of plant defense responses, alterations in phytohormone homeostasis, and
networking by defense signaling components are all potential mechanisms involved in
Si-triggered resistance responses (Wang et al., 2017).

As sessile organisms, plants have evolved unique mechanisms enabling them to face the
complexity of environmental changes, developing vital strategies to reach optimal growth,
development and reproduction. These mechanisms include signal perception and
transduction processes, so that plants may construct a response to an environmental
signal. Indeed, even under unstressed conditions, Si might act as a signal to promote
amino acid remobilization to support the increased N demand during grain development
in rice (Detmann et al., 2012; Detmann et al., 2013), suggesting that Si may in fact
have signaling roles in plants. Since Si interacts with key components of plant signaling
systems, including its binding to the hydroxyl groups of proteins involved in cell signaling
and its interaction with cationic co-factors of enzymes influencing stress responses,
it can act as a signaling modulator in a manner similar to a second messenger (Fauteux
et al., 2005; Luyckx et al., 2017a). Therefore, future recommendations to agronomists
will include Si applications to fields that are deficient in the element (Liang et al., 2015;
Coskun et al., 2019), in particular with a view to the rapid pace of global climate change and
the increased incidence of inclement and extreme weather events (Lobell, Schlenker &
Costa-Roberts, 2011; Cai et al., 2014; Myers et al., 2014) negatively affecting crop
productivity (Cottrell et al., 2019; Raza et al., 2019). Such environmental alterations lead
to new challenges for agriculture and food production. Si may thus be of paramount
importance for triggering adaptive responses of plants in harsher environments, but the
precise molecular cues involved in these processes still need to be clearly identified.

The application of Si has resulted in the enhancement of quantitative and qualitative
traits in different crop species not only under unstressed but also under stressed
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environments (Manivannan & Ahn, 2017). It has been proved that Si may regulate several
physiological, biochemical, and antioxidant responses in plants to combat abiotic and
biotic stresses. For instance, Si and Fe differently alleviate Cu toxicity in cucumber.
In particular, Si-mediated alleviation of Cu toxicity was directed toward Cu tolerance while
Fe-alleviative effect was due to a dramatic decrease in Cu accumulation (Bosnić et al.,
2019). Goethite-modified biochar can combine the beneficial effects of biochar and Fe for
remediation of Cd- contaminated soil, while improving key physiological and biochemical
attributes of rice plants (Kashif-Irshad et al., 2020). Furthermore, P application helps
decrease Cd concentrations in wheat shoots and increase gas exchange attributes and
antioxidant enzymes (Arshad et al., 2016), which can be implemented in a general scheme
aimed at controlling Cd concentrations in other plant species. Interestingly, foliar
application of ascorbic acid also alleviated the detrimental effects of drought stress in
maize plants by improving their antioxidative defense system (Noman et al., 2015).
Since Si can also attenuate the toxic effects of heavy metals such as Cd (Lu et al., 2018;
Wu et al., 2018) as well as drought and salt stress (Rizwan et al., 2015) in plants, these
approaches using biochar, P and ascorbic acid could also be employed to mitigate the
detrimental effects of these and other stresses in plants in combination with Si.

CONCLUSIONS
Silicon supplementation to pepper plants during the early developmental stage resulted
in hormetic-like biphasic dose–responses, with stimulatory effects at low–doses and
inhibitory responses at high–doses. Beneficial effects were evident in numerous variables
such as leaf area, plant height, fresh and dry biomass weight of stems, total free amino
acids in leaves and roots, total soluble sugars in leaves and stems, and chlorophyl
concentrations, especially in plants treated with 60 and 125 mg L−1 Si. However, some
negative effects were observed at the highest concentration applied (i.e., 250 mg L−1 Si),
especially on root length, chlorophylls concentrations, stem diameter, and total free
aminoacids in leaves and stems. Therefore, pepper is a good candidate crop to benefit from
Si, though further research is required to define the optimal doses and stages to apply it
among different pepper genotypes.
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