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Abstract: The present study utilized a metal inert gas welding (MIG) to make a dissimilar weld
of stainless steel AISI 304, 314, 316L, 420 grades and a standard structural steel S355MC. It refers
to a weld joining two materials from different alloy systems commonly used in heat exchangers,
pressure vessels, and power plant systems. Obviously, maintaining the integrity of such welds is of
paramount importance to the safety issues. Therefore, detailed microscopic and experimental studies
were performed to evaluate the reliability of these welds. The microscopic analysis did not reveal
any presence of weld defects such as porosity or cracks, which ensured that MIG process parameters
were properly selected. The performance of dissimilar welds was assessed by hardness and tensile
tests. The hardness profiles revealed differences between austenitic and martensitic steel welds that
later showed extremely high values in the heat-affected zone (HAZ), which caused fractures in this
zone during tensile test. The welds of all austenitic steel grades withstood the tensile test, showing
an average tensile strength of 472 MPa with fractures observed in the base metal zone. It made
clear that the use of a filler rod 308LSI is suitable only for the austenitic stainless and structural steel
dissimilar welds and not appropriate for martensitic-structural steel welds. The achieved results
revealed that the higher hardness of the martensitic phase in the HAZ of AISI 420 is closely related
with the formation of untempered coarse martensitic structure and higher carbon content.

Keywords: stainless steel; metal inert gas welding; dissimilar welds; microstructure; mechanical
properties

1. Introduction

Generation of hybrid structures of materials provides huge opportunities for con-
structors in creating and developing new products with the required properties and high
reliability. Requirements related to the welding procedure of dissimilar steel welds cover
the production of boilers, tanks, heat exchangers, and pressure vessels used in various
industries. Such a specific application requires different materials to be joined with high
reliability and joint quality. However, due to the different complexity of materials, dissimi-
lar welds may lead to unanticipated failures. The problems most commonly encountered
in dissimilar weld joints are related to the formation of brittle phases and undesirable
residual stress distributions across different zones of welds, which initiates formation of
cracks or failures of the joint before the expected service life [1,2]. The majority of these
negative consequences can be solved in principle by adjusting the microstructure while
welding. In order to get a higher quality weld and to avoid defects in dissimilar welds,
proper selection of welding metals, filler material (if used), and welding parameters are
needed. The usage of filler ensures better control of the corrosion resistance and mechanical
properties of weld [3]. Important factors influencing the strength of dissimilar metal weld
are melting temperatures, thermal conductivity, coefficient of thermal expansion, dilution
of metals in the weld area, and carbon migration from the steel having the higher carbon
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content toward lower carbon content steel [4]. In the welded joints with a similar base
metal, the crack formation may be prevented by a subsequent post-weld heat treatment
(PWHT) [5]. Unfortunately, the heat-affected zone (HAZ) of austenitic stainless steels
remains unaffected even after PWHT, meanwhile the PWHT has a huge impact on the
mechanical properties, the formation of the HAZ microstructure and a fusion zone (FZ)
of carbon, and on martensitic alloyed steels [6]. The correlation of the fatigue strength,
tensile properties, hardness, and microstructure of austenitic stainless and medium carbon
steel dissimilar welds was reported [7] showing 40% lower fatigue strength of dissimilar
welds compared to austenitic steel welds and 30% lower fatigue strength when compared
to medium carbon steel welds. Dimensions of the fatigue process zone and the peculiarities
of its formation were determined [8] by the method of laser interferometry and the optical
method, and a three-dimensional finite element sub-model of the near-crack tip region for
stress–strain state analysis of metal alloys at normal tension was developed [9].

Due to the fact that steels of the dissimilar welds possess different chemical compo-
sition, the major problem of microstructure heterogeneity arises [10]. This difference in
the microstructure is a consequence of the formation of cracks not far from the fusion line,
which is an undesirable factor and which increases the inner stress concentration in the
adjacent HAZ. Free carbon movement in the dissimilar welds of 304 stainless and carbon
steel [11] also influences crack formation. It was observed that because of small cracks, the
weakest area between welds of dissimilar metals forms close to the fusion line or along
the martensitic transition adjacent to the fusion line [12]. This phenomenon is caused by
hydrogen absorbed during welding. The strength properties of dissimilar welded stainless
and low-alloyed carbon steel are influenced by the diffusion of the base and weld metals,
those having different coefficients of thermal expansion, which results in the different
residual stresses across the various zones of weldments [13].

Martensitic stainless steels grades are used instead of austenitic ones when high
strength and hardness are more easily achievable by heat treatment rather than by the cold
working and when mechanical properties are more important than corrosion resistance.
The welding of martensitic stainless steels may cause problems with increased hardness in
the HAZ and the formation of martensitic structure with retained delta ferrite in it [1,14].
As it has been reported [14], the hardness of HAZ depends on the tempering temperature
and is influenced by the production of more martensite to ferrite and carbide Me23C6
transformation, which decreases. The precipitation of Me23C6 carbide has a negative
impact on both the mechanical properties and corrosion resistance of stainless steel AISI
420 weld. It was reported [15] that the increase in corrosion potential is greatly associated
with a higher Cr content.

There are numerous studies on the mechanical properties’ investigation in similar
welds of steels; however, there is limited information about the relation between mechanical
properties and microstructure and on comparisons of dissimilar austenitic-structural and
martensitic-structural steels welds.

This research was accomplished to evaluate the influence of the peculiarities of the
microstructure on the tensile behavior and hardness of MIG welded dissimilar joints.
The comparative evaluation was done in terms of the microstructure, hardness tests, and
tensile test behavior. The chosen 3xx series of austenitic stainless steels and structural
steel dissimilar welds present excellent cost and properties ratios, particularly in critical
applications including oil and gas, the chemical industry, the pulp and paper industry,
water systems, desalination plants, pollution control equipment, and chemical tankers.
This series is often used when only certain parts of the welded structure require corrosion or
heat resistance. Meanwhile martensitic stainless steel is generally selected for applications
where a combination of high strength and corrosion resistance at ambient temperature is
required. The absence of nickel and the lower content of other alloying elements in the
latter steel makes them less costly than other stainless types. The main aim of this study
was to understand the extent to which martensitic and structural steel joints can replace
austenitic stainless steel and structural steel dissimilar welds using the same welding
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parameters and test conditions. Moreover, some of the achieved results were given as a
guide to the welding practice of 3xx and 4xxx series and structural high-strength low-alloy
steels’ dissimilar welds.

2. Experimental Procedure

The materials to be welded were 4-mm thick sheets of austenitic stainless steel grades
AISI 304, 314, 316L, martensitic stainless steel AISI 420, and structural high-strength low-
alloy steel S355MC. The martensitic stainless steel AISI 420 has relatively high hardness and
high carbon content, whereas austenitic steels have a lower carbon but a higher chromium
(up to 28%) content, and consequently a higher corrosion resistance. The details on the
chemical composition and standardized mechanical properties of the steels under research
are presented in Tables 1 and 2, respectively.

Table 1. Chemical composition of welded sheets.

Grade
Chemical Composition (%)

C Mn Si P S Cr Ni Cu N Mo

AISI 304 0.027 1.780 0.320 0.030 0.0010 18.05 8.05 - 0.660 -

AISI 314 0.056 1.520 1.810 0.022 0.0010 24.19 19.06 0.180 0.051 -

AISI 316L 0.020 1.210 0.570 0.031 0.0010 16.80 10.10 - - 2.10

AISI 420 0.441 0.280 0.360 0.027 0.0013 13.68 - - 0.040 -

S355MC 0.049 0.789 0.012 0.015 0.0080 - - - - -

ER 308LSi * 0.017 1.890 0.740 0.017 0.0110 19.67 10.20 0.120 0.074 0.16

Fe–balance

* Filler road.

Table 2. Mechanical properties of steels.

Grade

Mechanical Properties

Yield Point
Rp (0.2) (MPa)

Yield Point
Rp (1) (MPa)

Tensile Strength
Rm (MPa)

Elongation
(%)

Young’s
Modulus (GPa) Hardness (HV)

AISI 304 288 333 609 59.3 190–203 167

AISI 314 309 360 609 56 200 176

AISI 316L 286 290 608 57.5 190–205 163

AISI 420 345 345 636 26 200 180

S355MC 392 392 452 41 190–210 155–195

ER 308LSi * ≥320 ≥510 ≥25 160

* Filler road.

The welded sheets were prepared according to the recommendations specified in EN
ISO 9692-1:2013 for the single-V butt weld, and the sheet edges with an angle of 60◦ were
milled by a milling machine. The sheet edge geometry is presented in Figure 1. A 2-mm
gap between the edges of the sheets was maintained. Before welding, all prepared samples
(Figure 2) were polished and degreased with ethanol in order to remove any surface dirt,
oxides, or dust.

The compact inverter welding machine Phoenix 355 Puls with an integrated wire feed
mechanism was utilized to compose welded joints. The samples were arranged precisely
in the welding machine. Welding was carefully accomplished in one pass along the groove
using super-pulse and impulse welding techniques. The most suitable welding parameters
were chosen according to the weld seem quality and are presented in Table 3.
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Impulse 74 19.5 7.2 – 230.88 
Travel speed 5.0 mm/s 

Factor of thermal efficiency (MIG) 0.8 

A filler rod ER308LSi suitable for stainless steel MIG welding with a diameter of 0.8 
mm was used (Table 1). This type of wire was chosen because of the minimum amount of 
carbon (the carbon content was held to a maximum of 0.02%) in the composition that al-
lows reducing the possibility of inter-granular carbide precipitation and ensuring good 
resistance to general corrosion. The composition of filler rods usually follows the base 
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Figure 2. Grooved sheets of different steels’ grades prepared for welding; inlet after welding.

Table 3. The main parameters of welding procedure.

Welding Mode MIG Current (A) MIG Voltage (V) Wire Feed
Speed (m/s)

Pulse Duration
during Welding (s) Heat Input (J/mm)

SuperPuls (max) 74 19.5 7.2 0.15 (74A) 230.88

SuperPuls (min) 40 16.2 4.0 0.20 (40A) 103.68

Impulse 74 19.5 7.2 - 230.88

Travel speed 5.0 mm/s
Factor of thermal efficiency (MIG) 0.8
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A filler rod ER308LSi suitable for stainless steel MIG welding with a diameter of
0.8 mm was used (Table 1). This type of wire was chosen because of the minimum amount
of carbon (the carbon content was held to a maximum of 0.02%) in the composition that
allows reducing the possibility of inter-granular carbide precipitation and ensuring good
resistance to general corrosion. The composition of filler rods usually follows the base
metal composition; however, this is difficult to accomplish by welding different metals. Ni
and Mn in the composition allow improving the toughness and strength of the weld, but
these elements also lower the temperature of martensitic transformation, which in turn
increases the risk of retained austenite formation.

In order to prevent the liquid metal pool from the impact of the environment, pure
argon (99.9%) was used as a shielding gas (flow rate 20 L/min), which ensures a wide and
shallow penetration of the weld bead and enables alteration of the length of the metal arc,
not changing the heat of the arc. When welding was completed, all the weld samples were
cleaned and cut at a direction perpendicular to the weld into the test pieces for subsequent
transverse tensile and hardness tests followed by the observation of microstructure. The
cutting of the samples for tensile tests was done using 4 kW CNC laser-cutting machine
Bystronic BySprint Fiber 3015 (Figure 3).
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Figure 3. Laser cutting of the tensile samples: (a) cutting process with CNC laser-cutting machine:
1—workpiece; 2—nozzle; 3—laser cutting head; 4—workpiece supports; (b) dissimilar weld samples
after laser cutting.

The hardness test across the weld was executed using a Mitutoyo Hardness Testing
Machine HM-200 (Mitutoyo Corporation, Kanagawa, Japan) using a diamond indenter
under a load of 0.98 N [16], with a 10-s dwell time at 0.25-mm intervals 2 mm from
the weld’s top surface, while the original hardness of the base metal (BM) was reached
(Figure 4).
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The transverse samples for optical analysis were prepared as required according to
the basic procedures: grinding, polishing to near a mirror finish, following 30-s etching in
Gliceregia etchant (15 mL HCl, 10 mL glycerol, and 5 mL HNO3). In order to distinguish
the different zones of the dissimilar welds as well as to gain data on grain distribution
and size, the examination of optical micrographs was done using an optical microscope
Carl ZeisAxio Scope A1 with the set of the objectives ranging in linear magnification from
0.5× to 250×. The hardness tests were performed at the ambient temperature of 20 ± 2 ◦C
under the relative humidity of 50 ± 5%.

The tensile test pieces were subjected to a transverse tensile test to evaluate the strength
of the dissimilar weld and its exploitation properties [16]. The samples with a gauge length
of 60 mm were prepared according to the ISO 4136:2012 standard as presented in Figure 5.
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b1—width; (b) laser-cut samples prepared for testing.

A 50-kN “Amsler” versatile electromechanical testing machine equipped with a HBM
testing device was used to accomplish the tensile tests at a crosshead speed of 2 mm/min
in the laboratory under the same conditions as the hardness tests.

3. Results and Discussion
3.1. The Analysis of Welds’ Microstructure

The microstructure of different zones in dissimilar weld joints was studied, i.e., in the
filler metal-depleted zone (FZ); the partially melted zone (PMZ) (being observed close to
the FZ, also known as dissolution zone); the HAZ, which is usually found as the weakest
part in the weldment; and the BM as the area with no changes in the microstructure.

The optical micrographs of the weld cross-section of dissimilar joint of AISI 304, 314,
316L, and 420 and structural steel S355MC are presented in Figures 6 and 7. During the
welding process due to the usage of a filler metal with a higher content of Cr, which
has a great affinity to carbon, some of the interstitial mobile carbon atoms migrate from
the PMZ [17]. This relatively narrow carbon depleted zone is called the decarburized
region [18,19] or the carbon-depleted zone [20–22] (Figure 6a). It has been observed that at
relatively high levels of chromium (24.19% in AISI 314), even a small carbon content can
cause the formation of chromium carbides Me23C6 at the grain boundaries of austenitic
grains, especially on slow cooling (Figure 7d). Each single fine Me23C6 carbide starts to
grow, having a direct orientation to a matrix. Eventually, Me23C6 precipitates, forming a
film-like coarse constituent, covering one adjacent grain side, and forming a low-Cr zone
on the other adjacent grain side of the austenite grain boundary [23]. The presence of
coarse Me23C6 carbides in a weldment has a negative effect on the mechanical properties.
Therefore, during welding, apart from the appearance of carbide at the boundaries of
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austenitic grains, a local decrease in the content of chromium usually occurs because of
short-term heating and slow cooling, which can cause steel affinity to an inter-granular
corrosion. The increase in carbon content in the steel leads to a higher possibility of the
chromium carbides precipitating at the grain boundaries.
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The austenite phase in BM of stainless steels AISI 304 (Figure 6b), 314 (Figure 7d),
and 316L is embedded in the ferrite matrix with an almost equal content of ferrite, while
the microstructure of S355 MC steel consists of a mixture of perlite and acicular ferrite
(Figure 6c) with a typical fine-grained and interlocking structure [24]. The low carbon
content (0.049%) allows much more allotriomorphic ferrite to be formed with the grains
that acquire an equiaxed form due to the effect of hard impingement [25]. Allotriomorphic
means that the form of the ferrite does not reflect its internal crystalline symmetry. This
can be explained by the fact that it grows faster along the surface of austenitic grains. As a
result of this process, its contours adjust the γ grain boundaries. In the BM, the amount of
pearlite slightly reduces due to the lower carbon content in the steel.
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Figure 7. Optical images of dissimilar welds: (a) AISI 314/S355MC; (b) AISI 316L/S355MC; (c) AISI 420/S355MC; and
(d) austenite grains in AISI 314.

The FZ can be described as a mixture of fully molten BM and filler metal with a high
degree of homogeneity where the mixing in the molten weld pool is primarily assured
due to convection. As shown in Figure 6d, the austenite-based dendrites prevailed in
the FZ. Additionally, optical micrographs of FZ (Figure 6d) showed the formed delta
ferrite resulting from the ferrite-austenite solidification process. The highest delta ferrite
content in the structure indicates that the weld is strong enough [26]. The increase in delta
ferrite compared to the BM of AISI 304 was associated with relatively high temperature
maintenance during the solidification process.

As an experimental study showed, the formation of dendritic carbides did not induce
any brittleness in the FZ and did not impair the strength properties of the weld seam.

The optical micrographs of dissimilar weld AISI 420/S355MC and the microstructures
across the HAZ from the FZ to AISI 420 BM are presented in Figures 7c and 8, respectively.

These elongated fine crystals and relatively large inter-crystalline zones are the evi-
dence of the typical dendritic structure (Figure 8b). Compared with the BM, the increase in
austenite content in the weld area can be explained by the usage of filler road containing a
relatively high content of nickel (10.2%). Examination of micrographs of dissimilar joints
did not show the presence of weld defects such as porosity or cracks.
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3.2. Mechanical Tests

The hardness and tensile tests were accomplished to evaluate the mechanical proper-
ties of the dissimilar welds.

The hardness profile across the weld joints interface is presented in Figure 9. The
hardness of the stainless steels is indicated on the left side and the hardness of steel
S355MC on the right side. Apart from the peaks noticeable in the PMZ of the steel S355MC
(~300 HV/0.1), no significant change in hardness was recorded in the stainless steels AISI
304, 314, and 316L except for the joint AISI 420 with S355MC (~500 HV/0.1) (Figure 9).

The PMZ and HAZ areas of S355MC steel, affected by the temperature of austeniti-
zation during the welding process, were completely re-austenitized and then may sub-
sequently transform to sorbite-troostite when slowly cooled until room temperature. A
slower diffusion at lower temperatures resulted in the formation of a finer, harder, and
stronger structure. In the PMZ area with a temperature of approximately 550 ◦C, the
thickness of ferrite-cementite plates was just approximately 0.1 µm, and a structure known
as troostite with a hardness of about 300 HV/0.1 was formed. Decreasing temperature
influences the average reduction in austenite grain size with the accompanying decrease
in hardenability. Thus, it can be stated that the hardness profile across the PMZ basically
shows a peak of hardness at the FZ boundary with a gradual decrease across the coarse-
grained HAZ. The peaks of the hardness with the width up to 50 µm were observed in the
PMZ of steel S355MC to the FZ boundary and in the islands (Figure 6a,c and Figure 7a,b).
Figure 10 presents the image of the weld with the hardness test indentations whose size
clearly indicates the hardness. Shallow indentation on the island and PMZ indicates a
higher hardness of these areas compared to the hardness of the FZ and HAZ of the base
metal (299 HV/0.1 via 168 HV/0.1).

The significant increase in hardness of the stainless steel AISI 420 HAZ area (Figure 9)
can be explained by the presence of fine untempered martensite that had a structure of small
cementite particles in a fine-grained ferritic matrix that negatively affected the ductility [27].
Figure 8 shows the micrographs of the weld metal and HAZ resulting after the welding
process: HAZ contained coarse untempered martensite, which was hard (~500 HV/0.1)
and relatively brittle compared with the base metal, where hardness values dropped to
~190 HV/0.1, because the tempered martensite at first caused a decrease in hardness. The
difference in hardness of HAZ and unaffected BM was ~62%.
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The map of hardness showing the distribution of hardness values throughout the
surface of the dissimilar weld AISI 420/S355MC is presented in Figure 11. This map allows
to quantify the material properties along the length of microstructurally significant weld
zones [28]. The employed hardness mapping enabled accurate identification of the different
welding zones of dissimilar welds and presentation of clear results in all boundary zones.
Colors indicate the zones with similar hardness values of the weld joint. The increase
in hardness in the whole HAZ of AISI 420 was caused by the grain size reduction of
martensite. Within a relatively short distance from the HAZ, the weld hardness rapidly
passed to the base metal hardness level.
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Figure 11. The map of hardness indentations of AISI 420/S355MC dissimilar weld.

The martensite was formed when the HAZ close to the FZ was heated above the
transformation temperature during welding. Usually, unwanted martensite is consid-
ered negative, and its formation indicates inadequate welding procedures. The coarse
untempered martensite was observed in the HAZ (Figure 12), while the formation of fine
martensitic microstructure was revealed in the BM as it is presented in Figure 8a. Moreover,
as the temperature decreased at a distance from HAZ, the carbon diffusion decreased as
well as the coarsening of precipitation.
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Figure 12. Optical image of untempered martensite in the HAZ of AISI 420.

Saturation of the martensitic base with a certain amount of carbon and nitrogen can
also cause the increase in hardness in this area: the hardness values ranged from 200 to
505 HV/0.1. It has been reported that a martensitic structure of high hardness generally has
a low fracture toughness and is considered as highly susceptible to hydrogen-induced cold
cracking compared with structures of lower hardness and higher fracture toughness [29].
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The lower hardness level of the BM, compared with that found in the HAZ, is associated
and can be explained by the large grain size in the BM.

To assess the suitability of different grades of stainless steels for a particular application
area and to evaluate the strength of dissimilar welds, the tensile tests were carried out. The
tensile stress–strain behavior of samples S355MC/AISI 304, 314, 316L, and 420 is presented
in Figure 13.
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Figure 13. Stress–strain diagrams of dissimilar welds.

The tensile tests revealed the values of the tensile strength of the dissimilar welds,
and, as can be seen in Figure 13, the values of AISI 304 and AISI 316L were very closely
distributed (477.7 ± 2.5 and 478.0 ± 2.5, respectively), while the tensile strengths of AISI
314 and AISI 420 were slightly lower (461.4 ± 2.5 and 459.8 ± 2.5 MPa, respectively).
Tensile tests of all austenitic stainless steels and the structural steel S355MC dissimilar
weld confirmed the acceptable joint strength. The lower strength of AISI 420/S355MC
led to the fracture at a significantly lower relative elongation compared to the other three
weldments. Figure 13 clearly shows that the sample AISI 420/S355MC failed the tensile
test. This behavior is explained by the mechanical properties of HAZ of AISI 420 weld
side, in particular, ultimate tensile strength and yield strength, as well as by hardness tests’
results. Since the hardness of the HAZ area of AISI 420 was higher than the hardness of
HAZ area of S355MC and of both base metals (Figure 9), the ductility parameters of the
HAZ area of AISI 420 were significantly lower than those of the HAZ area of S355MC and
both BMs’ due to increased hardness, brittleness, and a higher carbon content.

It can be clearly seen in Figure 14a that all cases of the dissimilar austenitic stainless
steels AISI 304, 314, and 316L and the structural steel S355MC weld fracture occurred in
the base metal S355MC that met the safety requirements for the dissimilar welds; however,
when welding martensitic stainless steel AISI 420 and S355MC, a fracture occurred through
the weld seam. All the samples of AISI 420 and S355MC dissimilar welds failed at the
weld area without any significant necking (Figure 14b). The fracture in AISI 420 occurred
between the PMZ and the BM weld zone from the AISI 420 part. The tensile tests showed
lower tensile strength of these samples compared with AISI 304, 314, 316L, and S355
dissimilar welds.
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Figure 14. The fracture positions on tensile samples: (a) austenitic stainless steels/S355MC; (b) martensitic stainless
steel/S355MC.

None of the tested samples of AISI 420 possessed fractures in the BM and in the FZ.
The location of the fracture can also be explained by the fact that the higher strength was
associated with the higher strength of untempered martensite, and this area was closer to
the FZ (Figure 8). According to classification of crackings in weldments [30], there was a
possible defect (No. 4) (Figure 15), which formed at the outer edge of the fine-grained HAZ
close to the BM in the over-tempered region.
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Figure 15. The classification of cracking in the weldments.

This type of cracking forms because of HAZ and weld differences in the carbon activity,
which is concerned with different concentrations of Cr [30]. The mechanism of cracking for
No. 4 is typical for welded steels with a chromium content of 9 to 14 percent [31], in case of
AISI 420—13.68% (Table 1).

Moreover, the grain size in the weld area was different from that of the base metal. This
difference in grain sizes leads to the different yield stresses such that strength decreased
(the Hall–Petch relationship [32]). The creep-like mechanism manages the fracture in this
zone. Obviously, the formation of this mechanism, which is limited specifically to the
fined-grained regions have to be avoided.
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4. Conclusions

Summarizing the results of the performed detailed research, it can be stated that MIG
welding using the filler rod 308LSi is suitable to produce dissimilar 3xx and 4xx series steel
to structural steel welds. However, the results of the studies showed that the combination
of martensitic steel and structural steel lags behind the stainless steel in the tensile test. This
is explained by the formation of untempered martensite in the HAZ (~500 HV/0.1) due to
the high carbon content (0.441%) in the alloy. Since PWHT was not used in order to study
dissimilar welds under the same conditions, a lower tensile strength of 459.8 ± 2.5 MPa
for the martensitic-structural steel weld was achieved because of the disparity in grain
sizes, which greatly affects the reduction in strength. The fracture in the weld seam
zone occurred from the martensitic stainless-steel part in the HAZ. The predominantly
untempered martensitic structure resulted in low ductility and a hard and brittle HAZ
area that fractured before necking with a negligible elongation. More promising results
were obtained from the study of austenitic stainless-structural steel welds. The fracture in
all 3xx series and structural steel welds occurred in the structural steel zone far from the
fusion zone, where a very similar tendency with a slightly higher hardness of the stainless
steel base ~185 HV/0.1 than of the structural steel base ~167 HV/0.1 was achieved. Similar
results were achieved while executing tensile tests of 3xx series and structural steel welds:
the same tendency of stress–strain curves had a 472 MPa tensile strength on average. It is
concluded that martensitic and structural steel welds without PWHT are characterized by
brittle fractures, and therefore this type of joint cannot be used in critical applications safely.
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