
MINI REVIEW
published: 13 May 2016

doi: 10.3389/fncel.2016.00129

Central Role of Maladapted
Astrocytic Plasticity in Ischemic
Brain Edema Formation
Yu-Feng Wang 1* and Vladimir Parpura 2*

1 Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China, 2 Department
of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA

Edited by:
Qi Yuan,

Memorial University, Canada

Reviewed by:
James Donald Lechleiter,

University of Texas Health Science
Center, USA
Selva Baltan,

Cleveland Clinic, USA

*Correspondence:
Yu-Feng Wang

yufengwang@ems.hrbmu.edu.cn;
Vladimir Parpura
vlad@uab.edu

Received: 16 February 2016
Accepted: 29 April 2016
Published: 13 May 2016

Citation:
Wang Y-F and Parpura V (2016)

Central Role of Maladapted
Astrocytic Plasticity in Ischemic Brain

Edema Formation.
Front. Cell. Neurosci. 10:129.

doi: 10.3389/fncel.2016.00129

Brain edema formation and the ensuing brain damages are the major cause of high
mortality and long term disability following the occurrence of ischemic stroke. In this
process, oxygen and glucose deprivation and the resulting reperfusion injury play
primary roles. In response to the ischemic insult, the neurovascular unit experiences
both intracellular and extracellular edemas, associated with maladapted astrocytic
plasticity. The astrocytic plasticity includes both morphological and functional plasticity.
The former involves a reactive gliosis and the subsequent glial retraction. It relates to
the capacity of astrocytes to buffer changes in extracellular chemical levels, particularly
K+ and glutamate, as well as the integrity of the blood-brain barrier (BBB). The latter
involves the expression and activity of a series of ion and water transport proteins.
These molecules are grouped together around glial fibrillary acidic protein (GFAP)
and water channel protein aquaporin 4 (AQP4) to form functional networks, regulate
hydromineral balance across cell membranes and maintain the integrity of the BBB.
Intense ischemic challenges can disrupt these capacities of astrocytes and result in
their maladaptation. The maladapted astrocytic plasticity in ischemic stroke cannot only
disrupt the hydromineral homeostasis across astrocyte membrane and the BBB, but
also leads to disorders of the whole neurovascular unit. This review focuses on how
the maladapted astrocytic plasticity in ischemic stroke plays the central role in the brain
edema formation.

Keywords: aquaporin-4, astrocytes, brain edema formation, glial fibrillary acidic protein, functional plasticity,
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Ischemic stroke is a major cause of death and disability, largely because of brain edema formation
(Lackland et al., 2014). The brain edema formation mainly results from oxygen and glucose
deprivation and reperfusion injury as well as a series of secondary events (Rutkowsky et al.,
2011; O’Donnell et al., 2013). These events cause disturbance of hydromineral balance in the
neurovascular unit (Kempski, 2001). At the early stage of ischemic insults, injured neurons,
glial and endothelial cells experience cytotoxic cell swelling due to abnormal transport of ion
and water across cell membranes in the gray matter. Prolonged ischemia and reperfusion
injury result in vasogenic edema in the white matter because of increased permeability and
destruction of the blood-brain barrier (BBB) and hydromineral retention in extracellular
space (Castillo, 2000). The edema can lead to high intracranial pressure, cerebral herniation
and death (Khanna et al., 2014) and thus becomes a focus of studies on ischemic stroke.
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Accumulating evidence suggests that brain edema is a
continuous process modulated by the plastic changes in astrocyte
structures and functions that are associated with or can be
directly attributed to GFAP, water channel protein AQP4 and
their associated ion-transport proteins. This review focuses on
the causal relationship between maladapted astrocytic plasticity
and brain edema formation during ischemic stroke.

ASTROCYTIC MORPHOLOGICAL
PLASTICITY AND BRAIN EDEMA
FORMATION

Astrocytic endfeet cover more than 90% of brain capillaries
to participate in blood-brain barrier (BBB) formation and
wrap around neurons to modulate neuronal activity (Jukkola
and Gu, 2015). This spatial structural feature allows astrocytes
to mediate the communication and volume transmission
between brain parenchyma and the blood (Vargová and
Syková, 2014). Thus, when astrocyte processes expand or
retract from neurons and blood vessels, neural activity
and brain volume change dramatically (Nico and Ribatti,
2012), disorders of which constitute a basis of brain edema
formation.

Reactive Gliosis
In ischemic stroke, astrocytes undergo a dual morphological
plasticity with strong temporal and spatial features. Reactive
astrogliosis or elongation of astrocyte processes occurs under
hypoxia in primary culture of astrocytes and in ischemic rat
brains (Yang et al., 2011b). The reactive gliosis occurs at
the initial stage of ischemic stroke or in the penumbra of
infarction in severe infarction (Günther et al., 2005; Yang
et al., 2011a), and is the main component of cytotoxic
edema (Mori et al., 2002). On the one hand, gliosis can
buffer damaging effects of ischemia by increasing astrocyte
absorption of glutamate, K+ and inflammatory cytokines (Pekny
et al., 2014) and separate the necrotic and healthy brain
tissues clearly at the penumbra to prevent the expansion
of infarct zone (Claus et al., 2013). On the other hand,
uncontrolled gliosis can trigger maladaptation of astrocytic
plasticity.

Glial Retraction
As ischemia progresses, glial retraction occurs as indicated
by the fragmentation of glial fibrillary acidic protein (GFAP)
in the infarct zone in parallel with gliosis at the penumbra
area or following the initially adaptive gliosis (Abrahám et al.,
2003). This dual morphologic plasticity is in agreement with
the finding that cerebral cytotoxic edema in prolonged ischemia
becomes less severe than that at the initial stage of the
middle cerebral artery occlusion in rats (Lu et al., 2011).
This reaction can disrupt the structural integrity of the BBB
directly and worsen the ischemic stress (Frydenlund et al.,
2006; Steiner et al., 2012) by the following approaches: (1) In
the lesion core, the swollen astrocytes can release K+, Cl−,
and organic osmolytes including glutamate during a regulatory

volume decrease (RVD; Quesada et al., 1998; Cardin et al.,
1999; Ernest et al., 2005); (2) The RVD also reduces the
absorption of excess K+ and glutamate produced during
ischemia-evoked cortical spreading depolarization (Dreier, 2011;
Seidel et al., 2016); and (3) Moreover, the RVD can cause
cellular degeneration and metabolic silence (van der Zijden
et al., 2008) as well as disruption of BBB integrity and leakage
of blood components into the brain (Mdzinarishvili et al.,
2012). As a result, extracellular osmolality increases, more
water moves into the extracellular space from both blood and
intracellular space, and brain edema forms. Clearly, ischemic
challenge can elicit time- and space-dependent maladaptation
of astrocytic morphological plasticity and contributes to the
brain edema formation. Figure 1 is a diagrammatic drawing of
the spatiotemporal features of astrocytic plasticity in ischemic
stroke.

ASTROCYTIC FUNCTIONAL PLASTICITY
AND EDEMA FORMATION

Along with morphological plasticity, astrocytes also possess
functional plasticity in brain hydromineral homeostasis by
changing the expression of ion transport molecules. The
molecules that are involved in this astrocytic functional plasticity
in the edema formation include GFAP (Abrahám et al.,
2003), AQP4 (Wang and Hatton, 2009), Na+, K+, 2Cl− and
water cotransporter (NKCC)1 (Hertz et al., 2014), sulfonylurea
receptor 1-transient receptor potential melastatin4 channel
(Karschin et al., 1998), sodium pump (Illarionova et al., 2010),
glutamine synthetase (Wang et al., 2013b), glutamate-aspartate
transporter (Sullivan et al., 2007; Gottipati et al., 2015), and
glutamate transporter-1 (GLT-1) (Afadlal et al., 2014; Mogoanta
et al., 2014) in addition to those that are involved in GABA
(Wang et al., 2013a) and glutamate metabolism (Wang et al.,
2013b). Among these molecules, GFAP is the leading molecule
that influences the spatial localization of other molecules.

GFAP and Edema
GFAP has long been known as the major cytoskeletal element
of astrocytes, and assembling of its monomers or disassembling
its filaments can largely determine if astrocyte processes expand
or retract under environmental challenges (Barreto et al., 2012;
Hol and Pekny, 2015). A scaffolding role of GFAP in astrocytic
plasticity has been extensively explored in studying the effects
of dehydration and lactation on supraoptic astrocyte activity
as previously reviewed (Wang and Zhu, 2014). Consistently,
single-walled carbon nanotubes cause an increase in astrocyte
uptake of extracellular glutamate by increasing glutamate-
aspartate transporter on cell surface, which results from an
increase in GFAP filaments (Gottipati et al., 2015). Thus,
the expansion of GFAP filaments in astrocyte processes pulls
these associated molecules into the vicinity of neurons as shown
in the distribution of AQP4 and glutamine synthetase in rats
(Wang and Hatton, 2009). Consequently, astrocytes can more
efficiently buffer neurochemical changes in the extracellular
space around neurons.
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FIGURE 1 | Diagrammatic drawing of the spatiotemporal features of astrocytic plasticity in ischemic stroke (A–C). Spatiotemporal features of astrocytic
involvement in ischemic stroke in the early stage (0–24 h) of a mild stroke (A), middle stage (>24–72 h, B) and the late stage (C), respectively. The abbreviations are,
Glu, glutamate; RVD, regulatory volume decrease.

Under ischemic challenges, the expression pattern of
GFAP changes dramatically during reactive gliosis or
retraction. Accumulation of GFAP in reactive astrocytes
is a characteristic pathological feature of ischemic brain
injury (Kalaivani et al., 2014). Following global cerebral
ischemia, a tendency towards GFAP elevation was noticed
after 24 h and a significant increase was observed 7 days later
(Sulkowski et al., 2002). Moreover, the timing and magnitude of
GFAP expression have dramatic regional variations relative
to the infarct core (Abrahám et al., 2003). In contrast
to the strong expression of GFAP within the penumbral
tissues, GFAP staining in the lesion core area is significantly
lower (Shen et al., 2010; Bazan et al., 2012), suggesting glial
retraction. Correspondingly, the expression of other molecules
also exhibit similar time- and region-specific features as
exemplified in glutamate metabolism and ion transport
activity.

Glutamate Transport and Edema
Glutamate uptake by astrocytes prevents elevation of excitotoxic
glutamate in the brain’s extracellular space and is a critical

determinant of neuronal survival and cytotoxic edema in the
ischemic penumbra (Hansson et al., 2000; Uckermann et al.,
2004). In parallel with the change in GFAP expression,
glutamate transport proteins also exhibit dual expression in a
similar spatiotemporal order. For instance, the decreased GLT-1
experssion in the infarct zone during acute ischemic phase
(Rebel et al., 2005; Ketheeswaranathan et al., 2011) can partially
account for the increased glutamate levels (Yang et al., 2010)
and the metabolic silence in the lesion core (van der Zijden
et al., 2008), a result of glutamate excitotoxicity. In contrast,
3–7 days after the ligation of bilateral common carotid arteries
in rats, GLT-1 expression is increased significantly (Yatomi
et al., 2013). This change is coincident with astrocyte/GFAP
extension into the lesion core (Shen et al., 2010), which
meets the demand of removing excess extracellular glutamate,
but at the expense of glial scar formation (Yang et al.,
2010).

Ion Transport and the Edema
Cytotoxic astrocyte swelling largely depends on osmotic
gradients built by changes in ion transport activity, which
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involves NKCC1, inward rectifier K+ channel (Kir) 4.1
and sodium pump. Astrocyte NKCC1 is activated by
exposure to high levels of extracellular K+ and to the
regulatory volume increase in cells shrunken in response to
hypertonic challenge (Larsen et al., 2014), an extracellular
environment existing in the lesion core (van der Zijden
et al., 2008; Yang et al., 2010). Increases in extracellular
K+ levels, known to increase GFAP expression (Wang and
Hatton, 2009), also increase Ca2+ influx and intracellular
cAMP levels during stroke. The Ca2+ influx induces an
increase in intracellular Ca2+ levels and the activation
of NKCC1 and Kir4.1 (Song et al., 2015); increased
cAMP level causes AQP4 phosphorylation and increases
membrane water permeability (Song and Gunnarson, 2012).
Thus, synergistic changes in the activity of diverse ion
transport proteins with GFAP expression build the osmotic
gradients.

PIVOTAL ROLES OF AQP4 IN
ISCHEMIA-ELICITED ASTROCYTE
PLASTICITY

Among many GFAP-associated molecules, AQP4 is
distinguished not only by its water permeability but also by
its role of a ‘‘cotransporter’’ of osmolytes. AQP4 is colocalized
or assembled with the transient receptor potential vanilloid
channel 4 (Jo et al., 2015), gap junction protein Cx43 (Nicchia
et al., 2005), Kir4.1/Kir5.1 (Lichter-Konecki et al., 2008), GLT-1
(Mogoanta et al., 2014), metabotropic glutamate receptor 5, and
sodium pump (Illarionova et al., 2010). AQP4 and these ion
transport proteins are mainly colocalized to astrocytic endfeet
and exhibit strong functional correlation. For instance, deletion
of AQP4 interferes K+ (Strohschein et al., 2011) and glutamate
uptake (Nagelhus and Ottersen, 2013) while significantly
decreasing GFAP expression in perivascular processes of
astrocytes (Zhou et al., 2008). This molecular association likely
reflects the demands of maintaining intracellular osmotic
homeostasis via synergistically changing osmotic pressure and
water transport.

Temporal Features
Following the occurrence of stroke, AQP4 expression presents
two peaks despite the time variations among individual
observations. The first peak occurs at the initial stage of stroke;
the second peak appears days after reperfusion and during
recovery. As shown in mice (Ribeiro Mde et al., 2006) and rats
(Fang et al., 2016), there are two peaks of maximal hemispheric
swelling that respectively occur at 1 h and at 48 h after the onset
of ischemia and are accompanied with synergistic increases in
AQP4 expression (Ribeiro Mde et al., 2006). Moreover, AQP4
at the infarct zone is found to be lower at 24 h and higher
at 72 h than that at the non-occluded areas (Zeng et al.,
2012). This biphasic AQP4 expression is consistent with the
internalization and decomposition of AQP4 at 3 h after the
onset of ischemia (Huang et al., 2013). Clearly, AQP4 expression
is temporally synergistic with GFAP/astrocytic morphological
plasticity.

Spatial Features
In mice with 1 h transient focal brain ischemia, AQP4 expression
is significantly increased at astrocyte endfeet in the lesion core
initially and it increases in whole astrocytes at the border
of lesion at 48 h (Ribeiro Mde et al., 2006). Moreover, the
most affected part of the cortex loses perivascular AQP4
but shows a partial recovery toward 72 h of reperfusion;
however, the cortical border zone differs from the lesion
core by showing no loss of perivascular AQP4 at 24 h
but rather a slight increase (Frydenlund et al., 2006). These
region-specific changes indicate that AQP4 plays different
role, depending on the regions, consistent with the general
alteration in GFAP expression and astrocytic morphological
plasticity.

Further studies reveal that the spatial distribution rather
than the expression level of AQP4 is closely associated with
its functions. The loss of perivascular AQP4 is associated
with the disappearance of the perivascular astrocyte membrane
(Frydenlund et al., 2006), indicating that AQP4 is removed
from its functioning sites along with the disassembly of GFAP
filaments and glial retraction. Following cerebral ischemia,
cortical astrocytes exhibit reduced perivascular AQP4 and
unchanged AQP4 protein abundance (Stokum et al., 2015).
The loss of AQP4 polarization and the disruption of laminins
of the basement membrane disrupt water efflux from the
brain while increasing BBB permeability (Steiner et al.,
2012). Moreover, in mild focal brain ischemia, these changes
occur only in the area of lesion core but not in the
penumbra (Steiner et al., 2012). These facts allow us to
conclude that AQP4 expression and localization in stroke are
correlated with the extent and stage of brain edema formation,
which allows different groups of astrocytes to respond to
ischemic insults differentially. Figure 2 is a diagrammatic
drawing of the astrocytic functional plasticity in ischemic
stroke.

CENTRAL ROLE OF ASTROCYTIC
PLASTICITY IN BRAIN EDEMA
FORMATION

As stated above, astrocytes are not only the major cell type
exhibiting cytotoxic edema during ischemia and reperfusion
injury, but also a main factor that disrupts BBB integrity. Further
analysis reveals that the astrocytic plasticity plays a central role in
brain edema formation as detailed below.

Determining Factor of Ischemic Brain
Edema
Astrocytes can extensively modulate the activities of other
components of the neurovascular units (Theodosis et al.,
2008), and maladaptive alterations of astrocytic plasticity
are the major cause of brain edema formation in stroke.
Reactive gliosis protects the brain from excessive damage
caused by swelling by stabilizing hydromineral balance
through absorption of increased extracellular K+ (Strohschein
et al., 2011) and glutamate (Nagelhus and Ottersen, 2013;
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FIGURE 2 | Diagrammatic drawing of the astrocytic functional plasticity in ischemic stroke (A–C). The functional plasticity at different loci relative to the
infarct core: normally irrigated tissues (A), the penumbra (B) and the lesion core (C), respectively. The abbreviations are, AQP4, Aquaporin-4; GFAP, glial fibrillary
acidic protein; GLT-1, glutamate transporter-1; Kir4.1, inward rectifier K+ channel 4.1; NKCC1, Na+, K+, 2Cl− and water co-transporter. Others refer to Figure 1.

Seidel et al., 2016), reducing NH+4 toxicity and oxidative stress
by synthesizing glutamine, antagonizing glutamate toxicity
by releasing inhibitory adenosine, taurine and β-alanine
(Morán et al., 2001; Parpura et al., 2004), alleviating vasogenic
edema by repairing injured BBB, limiting the spreading of
inflammation from the infarct core into penumbra, and
releasing neuroprotectants (Kawano et al., 2012). In addition,
the increased AQP4 level can reduce the osmotic fragility
of astrocytes (Gu et al., 2003). However, during prolonged
ischemic challenge, astrocytes lose their powers of being
an energy provider (e.g., providing metabolic substrates to
neurons), a buffer of extracellular chemical and an inhibitor
of neuron activity (Marrif and Juurlink, 1999), leading to the
malfunction and damage of the entire neurovascular unit.
Importantly, inhibiting the activity of AQP4 (Bhattacharya
et al., 2013; Yao et al., 2015) and NKCC1 (Su et al., 2002;
Yan et al., 2003) significantly reduces ischemic brain edema
and the ensuing brain injury while inactivation of GLT-1
worsens damage to the brain (Namura et al., 2002). These facts
validate the central role of astrocytes in ischemic brain edema
formation.

Spatiotemporal Correlation
In ischemia, the extent of spatiotemporally differentiated reactive
gliosis and the associated RVD is highly correlated with
the severity of brain swelling, excitotoxicity, oxidative stress,
metabolic disorders, and disruption of the BBB. On the one
hand, reactive gliosis, indicated by increasing GFAP and AQP4
expression, is a sign of astrocyte swelling at the early stage of
mild stroke and in the penumbra of severe stroke. This gliosis
is likely an evolutionary wise selection. It allows the brain, in
a situation of a substantial energy deficit in ischemic stroke,
to rebalance extracellular K+ and glutamate levels through
siphoning K+ and glutamate uptake, to re-establish neuronal
membrane potential and minimize excitotoxic impact at the cost
of least energy. However, uncontrolled gliosis can be harmful
because it produces high levels of bioactive compounds that are
noxious for neuronal cell functions, such as the bioactive free
radical nitric oxide (Ghasemi and Fatemi, 2014). In addition,
excess gliosis also serves as a trigger of the RVD that could
bring additional injury to the neurovascular unit. Thus, despite
the protective capacity of gliosis, over-activated astrocytes can
worsen the brain edema.
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On the other hand, breakdown of this gliosis can lead to
degeneration of neural tissues in the lesion core. The reduced
volume during the RVD can avoid overload of osmolytes and
water in astrocytes, and thus preserve structural integrity of
astrocytes. However, the reduced absorption of ion, glutamate
and water, decreased volume transmission into the blood in
infarct areas as well as the destruction of BBB integrity can
seriously disrupt the homeostasis of the whole neurovascular
unit, leading to its apoptosis, autophagic cell death and necrosis
(Puyal et al., 2013).

Continuous Involvement
Following the onset of stroke, astrocytes keep changing their
structure and function as indicated by the expression of
GFAP and AQP4, which determine a conversion of the
intracellular edema into extracellular edema in the lesion
core while forming a shell of swollen astrocytes at the
penumbra. Moreover, overly increased astrocyte volume triggers
the RVD wherein the reduced AQP4 could disrupt the
adaptive plastic change and dispersion of intracellular volume
through the junctional coupling among astrocytes (Nicchia
et al., 2005; Mühlfeld and Richter, 2006), thereby leading to
the degeneration and even death of astrocytes in the lesion
core, promoting vasogenic edema. During the recovery phase,
expanded astrocyte processes and newly differentiated glial cells
invade the infarct areas to rebuild the neural tissue by cleaning
the necrotic tissue, filling in the space and releasing many
growth factors (Wasielewski et al., 2012). Thus, astrocytes are
continuously involved in the pathogenesis of ischemic brain
edema.

CONCLUSION

Together with the view presented previously (Verkhratsky et al.,
2015), we propose that astrocytes are not only involved in
the formation of cytotoxic edema and vasogenic edema but
also serve as the central player of the disturbed neurovascular
unit in the ischemic brain during edema formation. In this
process, astrocytic plasticity exhibits strong spatiotemporal
features and continuous involvement in brain swelling, in
which, GFAP and AQP4 are the keys to determining the
structural and functional plasticity. Further clarification of
astrocytic plasticity in ischemic brain edema formation will help
to define a therapeutic window of differentially modulating
astrocytic plasticity and achieve better prognosis of ischemic
brain injury.
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