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Abstract
Background: Many cystic fibrosis (CF) patients display airway hyperresponsiveness and have
symptoms of asthma such as cough, wheezing and reversible airway obstruction. Chronic airway
bacterial colonization, associated with neutrophilic inflammation and high levels of interleukin-8 (IL-
8) is also a common occurrence in these patients. The aim of this work was to determine the
responsiveness of airway smooth muscle to IL-8 in CF patients compared to non-CF individuals.

Methods: Experiments were conducted on cultured ASM cells harvested from subjects with and
without CF (control subjects). Cells from the 2nd to 5th passage were studied. Expression of the IL-
8 receptors CXCR1 and CXCR2 was assessed by flow cytometry. The cell response to IL-8 was
determined by measuring intracellular calcium concentration ([Ca2+]i), cell contraction, migration
and proliferation.

Results: The IL-8 receptors CXCR1 and CXCR2 were expressed in both non-CF and CF ASM
cells to a comparable extent. IL-8 (100 nM) induced a peak Ca2+ release that was higher in control
than in CF cells: 228 ± 7 versus 198 ± 10 nM (p < 0.05). IL-8 induced contraction was greater in
CF cells compared to control. Furthermore, IL-8 exposure resulted in greater phosphorylation of
myosin light chain (MLC20) in CF than in control cells. In addition, MLC20 expression was also
increased in CF cells. Exposure to IL-8 induced migration and proliferation of both groups of ASM
cells but was not different between CF and non-CF cells.

Conclusion: ASM cells of CF patients are more contractile to IL-8 than non-CF ASM cells. This
enhanced contractility may be due to an increase in the amount of contractile protein MLC20.
Higher expression of MLC20 by CF cells could contribute to airway hyperresponsiveness to IL-8 in
CF patients.
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Background
Cystic fibrosis (CF) is a genetic disease caused by defec-
tive Cl- secretion and enhanced Na+ absorption across
the airway epithelium [1]. The airways become infected
with P. aeruginosa [2], S. aureus, H. influenzae, and respi-
ratory syncytial virus [3-5]. Chronic bacterial infections
and inflammation of the lung are the main causes of
morbidity and mortality in CF patients [6]. With increas-
ing age, CF patients develop airway obstruction and
many of these patients also suffer from airway hyperre-
sponsiveness and asthma-like symptoms [7,8]. Further-
more, Tiddens et al [9] have shown that airway
remodeling similar to that of asthma affects CF airways,
including changes in airway smooth muscle. In addition,
in vivo studies with inhalation of bronchodilators
improve the symptoms associated with bronchial
responsiveness in CF patients indicating the presence of
an asthma-like syndrome [10-12]. These findings suggest
that the bronchial responsiveness observed in CF may be
related to an increase in airway smooth muscle (ASM)
contraction.

Many inflammatory cytokines are produced in the air-
ways in CF patients [13]. Several studies have docu-
mented increased levels of interleukin-8 (IL-8; CXCL8)
in bronchoalveolar lavage fluid and sputum and
increased expression of IL-8 by bronchial glands of
patients with CF [14-16]. In CF affected lungs, IL-8 is
produced by neutrophils, airway epithelial cells, macro-
phages, and monocytes [17]. IL-8 binds to the G-protein
coupled receptors CXCR1 and CXCR2 [18]. It acts as a
chemotactic agent for neutrophils, T lymphocytes [19],
basophils [20], NK cells and melanocytes [21]. It has also
been shown that IL-8 stimulates the proliferation and
migration of rat vascular smooth muscle [22,23]. IL-8
inhalation provokes bronchoconstriction in guinea pigs
in vivo [24]. As IL-8 is increased in the airways of CF
patients and its action is not restricted to immune effec-
tor cells, it is possible that IL-8 may be involved in the
airway hyperresponsiveness of CF by increasing smooth
muscle contraction. Consistent with this hypothesis, we
have demonstrated that ASM from healthy individuals
expresses CXCR1 and CXCR2 and that IL-8 increases
intracellular [Ca2+] and triggers contraction [25]. There-
fore, we hypothesized that, given the prolonged expo-
sure of CF ASM to IL-8 in vivo, IL-8 may evoke different
contractile responses of ASM cells in CF. Thus we inves-
tigated the effects of IL-8 on the release of intracellular
Ca2+ by ASM and on the contraction of ASM from CF-
affected subjects and compared our findings to those of
cells from CF non-affected subjects. We also examined
the expression of CXCRs and the effects of IL-8 on cellu-
lar migration and on ASM cell proliferation in both con-
trol and CF-affected subjects.

Materials and methods
Cell cultures
Fragments of lobar bronchi were obtained from donors
and recipients from lung transplants. The tissue was cut
into small pieces of about 5 mm x 5 mm and digested for
90 min at 37°C in Hanks balanced salt solution (HBSS)
containing in mM: KCl 5, KH2PO4 0.3, NaCl 138, NaHCO3
4, Na2HPO4 5.6 to which collagenase type IV (0.4 mg/ml),
soybean trypsin inhibitor (1 mg/ml) and elastase type IV
(0.38 mg/ml) had been added. The dissociated cells were
collected by filtration through 125 μm Nytex mesh and the
resulting suspension collected by centrifugation. The pellet
was then reconstituted in growth medium (DMEM-Ham's
F12 medium supplemented with 10% fetal bovine serum,
penicillin 10000 unit/ml, streptomycin 10 mg/ml, and
amphotericin 25 μg/ml) and plated in 25-cm2 flasks. ASM
cells from CF subjects were isolated and cultured using a
modification of the technique described by Randell et al
[26] to avoid contamination. Briefly, small pieces of tissue
were incubated for 20 minutes in cold Hanks buffer con-
taining 0.5 mg/ml dithiothreitol and 10 μl/ml of Dnase
type I, then placed in a cell dissociation medium HBSS con-
taining: 0.4 mg/ml collagenase type IV, 1 mg/ml soybean
trypsin inhibitor and 0.38 mg/ml elastase (type IV), penicil-
lin (100 U/ml), streptomycin (100 μg/ml), ceftazidime
(100 μl/ml), ciprofloxacin (20 μl/ml), colistin (5 μg/ml),
tobramycin (80 μg/ml) and gentamycin: (50 μg/ml. The tis-
sue was digested for 90 minutes at 37°C and the resulting
cell suspension filtered and plated as described above. The
same antibiotics were added to the culture medium for 48–
72 hours. ASM cells in primary cultures were identified by
immunostaining for smooth muscle cell specific α-actin,
and Western blotting for myosin light chain kinase and cal-
ponin.

Confluent cells were detached with 0.025% trypsin solu-
tion containing 0.02% ethylenediaminetetraacetic acid
(EDTA) and grown on 25 mm diameter glass coverslips
for single cell imaging of Ca2+ transients, contraction stud-
ies and on 6 well culture dishes for flow cytometry, pro-
tein extraction, and chemotaxis assays.

Contraction studies
ASM cells from CF and non CF individuals were grown for
4 days, in parallel, on glass slides covered with homolo-
gous cell substrate as previously described [27]. The glass
slides were placed in a Leiden chamber where the temper-
ature was maintained at 37 ± 0.5°C using a temperature
controller (model TC-102; Medical System Corp). The
cells were visualized using an inverted microscope with
20× magnification using Nomarski optics. A CCD camera
(Hamamatsu C2400) was used to acquire and record
images (Photon Technology International Inc, Princeton,
NJ). Images were taken before and 10 minutes after the
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addition of IL-8 or phosphate buffered saline (PBS) as a
vehicle for IL-8. Images were digitized and analyzed with
the Scion software (National Institutes of Health,
Bethesda, MD). The length of the cell was measured along
its long axis by an observer blinded to the treatment. Con-
traction was expressed as the percentage decrease in cell
length from the initial value.

Flow Cytometry
ASM cells were incubated with fluorescent labeled anti-
bodies to CXCR1 and CXR2. The cells were fixed and ana-
lyzed by flow cytometry (FACScalibur) with commercial
software to determine the levels of surface expression of
CXCR1 and CXCR2.

Measurement of intracellular Ca2+

Cytosolic Ca2+ was measured using Fura-2 and dual wave-
length microfluorimetry. in single cells by imaging a
group of 10–15 cells with a CCD camera (Photon Tech-
nology Inc, Princeton, NJ) at a single emission wavelength
(510 nm) with double excitatory wavelengths (345 and
380 nm) as previously described [28].

Protein extraction and immunoblotting
Expression and phosphorylation of the regulatory myosin
light chain (MLC20) were quantified by immunoblotting.
Proteins were extracted from IL-8 or vehicle stimulated
cells. Blots were developed by chemiluminescence and the
signals were acquired with an image analyser. Signals were
analyzed by densitometry using commercial software and
Imager (Fluorochem™, Flowgen Bioscience Limited, Not-
tingham, U.K).

Chemotaxis assay
Chemotaxis assays were performed using a modified
Boyden chamber (Neuroprobe, Cabin John, MD). The
number of migrated cells following treatments was
expressed as a multiple of the value obtained with vehicle
treated cells studied on the same day.

Cell proliferation assay
ASM cells from CF and control subjects were seeded onto
six well plates at a density of 3 × 104 cells per well in
DMEM/10% FBS. When the cultures reached 70% conflu-
ence, the cells were growth arrested for 48 hours with
0.5% FBS. The agonists, IL-8 (100 nM) and PDGF (10 ng/
ml), were then added to the cultures. Forty-eight hours
later, the cells were detached and counted on a haemacy-
tometer.

Data analysis
Data are represented as mean ± SEM unless otherwise
indicated. Comparison of means was performed with Stu-
dent-t tests. One-way ANOVA followed by Student's t-test
was used for the chemotaxis assay. The empirical fre-

quency distributions of the contractions of cells in
response to IL-8 were compared using a Kolmogorov-
Smirnoff test. A difference was considered to be statisti-
cally significant when the P value was less than 0.05.

Results
Effects of IL-8 on contraction of ASM from CF individuals
The length of the cells was measured before (Figure 1,
panels A and C) and at 10 minutes after the addition of IL-
8 (Figure 1, panels B and D) to CF and control cells respec-
tively. Resting length was not significantly different
between the two groups: CF: 2.84 ± 0.25 vs control: 2.26
± 0.29 arbitrary units (p = 0.137). The effects of IL-8 and
PBS on the lengths of CF and non-CF cells are illustrated
as cumulative frequency distributions (Figure 1E). IL-8
(100 nM) significantly decreased the length of the CF cells
by 19 ± 3% compared to 8 ± 2% in control cells (p <0.05)
whereas the changes in length of control and CF cells
treated with vehicle (1.5 ± 1% and 3.7 ± 3%, respectively)
did not differ significantly.

Flow cytometric quantification of CXCR1 and CXCR2
The surface expression of CXCR1 and CXCR2 protein on
ASM cells from both control and CF subjects was studied
by flow cytometry. The results are presented as overlaid
histograms and the percentages of positive cells were cal-
culated by subtraction of isotype controls from antibody
marked cells. Figure 2 shows illustrative results of flow
cytometry for CF (panel A) and control cells (panel B) for
CXCR1, and CF (panel C) and control cells (panel D) for
CXCR2. Panel E shows summary data expressed as the %
of cells stained for CXCR1 and CXCR2 in CF (37 ± 2% and
16 ± 0.8%, respectively) and control groups (34 ± 2% and
22 ± 2%, respectively). There are no significant differences
in the expression of either CXCR1 or CXCR2 by control
and CF ASM cells.

Effects of IL-8 on [Ca2+]i
IL-8-induced Ca2+ transients were measured in cells from
control and CF-affected individuals. Figure 3a shows that
IL-8 (100 nM) induced a rapid increase in the [Ca2+]i,
which subsequently returned towards resting values. IL-8
increased the [Ca2+]i to 228 ± 7 nM in control cells, signif-
icantly greater than the value of 198 ± 10 nM in CF cells
(p < 0.05; Figure 3b). The resting [Ca2+]i was 87 ± 2 nM in
control cells and lower in CF cells (72 ± 2 nM; p < 0.05).

IL-8 induced phosphorylation of myosin light chain20 
(MLC20)
Western analysis was used to study the effects of IL-8 on
the phosphorylation of MLC20 in CF and control cells. Fig-
ure 4 shows the extent of MLC20 phosphorylation in CF
and control cells (panel A) under control conditions and
after stimulation by IL-8 for 1 and 5 minutes. In panel B,
the densitometry results (mean ± SEM) are expressed as
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Contraction of CF and control ASM cells treated with IL-8Figure 1
Contraction of CF and control ASM cells treated with IL-8. Panels A and B show the images recorded before and 10 
minutes after the addition of IL-8 (100 nM) in CF cells. The cells that are clearly visualized are live cells and the indistinct cells 
are the background of alcohol-fixed cells that serve as a substratum. Arrows indicate the contracted cells. Panel C and D show 
the images of control cells before and after the addition of IL-8. Panel E represents the % decrease in the CF and non-CF cell 
lengths (C) following IL-8 or PBS treatments. Cumulative frequency distributions are shown and the distributions were com-
pared statistically using the Kolmogorov-Smirnoff test. The IL-8 treated CF cells shortened to a significantly greater degree 
than the non-CF cells (P < 0.05). 40 CF cells and 36 control cells from four different individuals per group were measured. The 
values are expressed in % decrease in the length of the cell following IL-8 stimulation.
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Flow cytometric analysis of the surface expression of CXCR-1 and CXCR-2 on ASM cells from CF and control patientsFigure 2
Flow cytometric analysis of the surface expression of CXCR-1 and CXCR-2 on ASM cells from CF and control 
patients. Representative examples of the expression of CXCR1 and CXCR2 from CF and control patients are shown in pan-
els 2A, 2B, 2C and 2D respectively. The histogram outlined by the darkest lines represents the distribution of isotype control 
cells, the lightest shade represents the cells stained with specific antibody and the intermediate shade represents the difference 
between positively stained cells and isotype controls. Panel E shows the percentage of cells stained for CXCR1 and CXCR2 
from 4 different cell preparations of CF and control patients.
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Effects of IL-8 on [Ca2+]i in CF and control cellsFigure 3
Effects of IL-8 on [Ca2+]i in CF and control cells. Cultured ASM cells from CF and control subjects were stimulated with 
IL-8 (100 nM). Illustrative examples of responses of a control cell and a cell from a CF-affected subject are shown in panel 1. 
The left hand arrow indicates the addition of IL-8 to the medium and the right hand arrow represents the addition of histamine 
(1 μM) to serve as a positive control. The resting [Ca2+]i (R) and the peak [Ca2+]i induced by IL-8 (IL-8) from the control (open 
bars) and the CF group (hatched bars) are shown. (n = 48 cells recorded on 6 different slides from 4 individuals in each group).
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IL-8 induced phosphorylation of MLC20 from CF and control cellsFigure 4
IL-8 induced phosphorylation of MLC20 from CF and control cells. Panel A shows representative blots of myosin light 
chain (MLC20) phosphorylation from CF and control cells. Bands correspond to baseline and IL-8 stimulation at 1 and 5 min-
utes. Thiophosphorylated myosin from chicken gizzard was used as a positive control (+ve con). Panel B shows the average 
increase in MLC20 phosphorylation (expressed as fold difference from baseline) in CF and control cells. The MLC20 phosphor-
ylation from CF cells was significantly different from control cells at 1 minute after treatment with IL-8.
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the fold difference compared to baseline, the phosphor-
ylation of MLC20 was increased at 1 minute after treatment
with IL-8 consistent with activation of contractile signal-
ing pathways and was significantly greater in CF cells (1.5
fold) than in control cells (1.2 fold). At 5 minutes, there
was a further slight increase in phosphorylation, but the
differences were not quite statistically significant between
CF and control cells.

Expression of myosin light chain20
Proteins were extracted from unstimulated CF and control
cells and the expression of total MLC20 was determined by
immunoblotting. Figure 5A shows the Western blot anal-
ysis for the expression of MLC20 protein in CF and control
cells. Quantitative assessment with densitometry shows
that the content of MLC20 was higher (Figure 5B, p < 0.05)
in CF (15.7 arbitrary units) than in control cells (5.7 arbi-
trary units).

Effects of IL-8 on migration of cells
A chemotaxis assay to IL-8 was performed and the results
are shown in Figure 6 for the migration of CF and control
cells in response to two concentrations of IL-8 (10 and
100 nM). The results are expressed as fold difference com-
pared to vehicle treated cells. IL-8 stimulated the migra-
tion of both control and CF cells at concentrations of 10
nM and 100 nM compared to vehicle-treated cells. How-
ever, there was no difference in the migration rates of the
two groups of cells.

Effects of Il-8 on cellular proliferation
Exposure to IL-8 evoked a modest proliferation of CF and
control cells that was comparable in both groups: 132.0 ±
9.5% for CF cells (n = 4 independent experiments) and
123.2 ± 14.5% (n = 5 independent experiments) for con-
trol cells. PDGF was used as a positive control. It induced
a robust proliferation (figure 7); the increase in cell prolif-
eration following stimulation with PDGF was 190.8 ±
9.8% for CF and 198.6 ± 22.4% for control cells.

Discussion
The results of this study demonstrate that IL-8 induces a
greater contraction of ASM cells from CF patients com-
pared to those of control individuals. The augmentation
of ASM contraction is associated with a greater degree of
phosphorylation of MLC20 with IL-8 and higher expres-
sion of MLC20 in CF cells. There was no difference in the
expression of CXCRs between CF and control cells. Peak
Ca2+ release induced by IL-8 was decreased in CF ASM
cells compared to control cells, an observation that was
largely explained by a lower resting [Ca2+]i. A similar dif-
ference in Ca2+ regulation in response to histamine has
been observed in tracheal gland cells and in nasal epithe-
lial cells of CF patients but the reason for this abnormality
was reported as unknown [29,30]. Despite these altera-

tions, neither migration nor proliferation was signifi-
cantly different between the two groups. These results
indicate that CF cells are hypercontractile to IL-8, an effect
that is not observed in the proliferative and migratory
responses.

Chronic infection and inflammation leads to loss of more
than one third of the epithelium from both central and
peripheral airways of CF patients [9]. As a result, the ASM
cells are exposed to various inflammatory mediators such
as TNF-α, IL-1β and IL-8. Cytokines such as TNF-α, IL-1β,
IL-5 and IL-13 may modulate the contraction of ASM by
indirect mechanisms through effects on cellular pheno-
type [31-33]. However chemokines such as IL-8 derived
from inflammatory cells such as neutrophils [34], and
perhaps from residual epithelial cells, may have direct
effects on ASM as bronchonconstrictors because they act
through G-protein coupled receptors linked to phosphol-
ipase C. Indeed IL-8 is a significant contractile agonist for
human ASM cells [25]. In the current study we focused on
IL-8 because of its importance for airway neutrophilic
inflammation, which is a prominent feature of CF and is
present also in some asthmatic subjects. The finding of the
hypercontractile response to IL-8 may therefore have sig-
nificance for the regulation of airway tone in CF affected
subjects.

We tested the possibility that altered signaling mecha-
nisms could account for the enhancement of the contrac-
tion in response to IL-8 by measuring the expression of
CXCRs and the effects of IL-8 on [Ca2+]i. Flow cytometry
confirmed our previous report of CXCR 1 and 2 expres-
sion in control cells [25], albeit at a lower level than in
neutrophils. Our current results demonstrated compara-
ble levels of expression of CXCR1 and CXCR2 between CF
and control cells. This finding is not unexpected, given
that the increase in responsiveness of CF cells to IL-8 was
confined to its effect on the contraction whereas there
were no differences in responsiveness as measured by
migration and proliferation. We explored next the possi-
bility that the enhanced ASM contraction in CF might be
related to exaggerated increases in [Ca2+]i. Rather than the
expected enhanced Ca2+ transients in CF cells, fluores-
cence imaging of intracellular Ca2+ showed that IL-8
evoked lower Ca2+ transients compared to control cells.
Next, we explored other mechanisms for the increased
contraction of CF ASM cells, namely MLC20 phosphoryla-
tion. Our data showed that there was a greater increase in
MLC20 phosphorylation in the CF cells compared to con-
trols. However the increase in MLC20 phosphorylation
was modest and less than the magnitude of the increased
expression of MLC20 measured in the CF cells. In addition
to its role in contraction, IL-8 can also trigger ASM to
respond by proliferation or migration [25]. However the
increased response of CF cells to IL-8 was not reproduced
Page 8 of 11
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Expression of MLC20 in CF and control cellsFigure 5
Expression of MLC20 in CF and control cells. Panel A is a representative blot for the expression of MLC20 in CF and con-
trol cells. Panel B. Mean densitometric values of MLC20 expression (corrected to β-actin) in CF cells is higher than control cells 
(n = 4 experiments).
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in relationship to other cellular functions such as chemo-
taxis and proliferation. The mechanistic link between the
CFTR channel and the contractile properties of airway
smooth muscle has not been established. However, Rob-
ert et al have reported that CFTR channels are present in
rat vascular smooth muscle cells and that stimulation of
the channels by specific CFTR agonists produces relaxa-
tion of pre-contracted vascular tissue [36]. Data from our
laboratory show that CFTR channels are present and have
functional effects on calcium signaling in ASM cells [37].

In conclusion, our findings show that the ASM cells of
cystic fibrosis patients are more contractile than those of
control subjects to stimulation by IL-8. This enhanced
contractility appears to be attributable to phenotypic dif-
ferences and could be responsible, at least in part, for the
airway hyperresponsiveness and asthmatic diathesis
observed in many of these patients.
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