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Abstract Chorioamnionitis is an important problem in
perinatology today, leading to brain injury and neurological
handicaps. However, there are almost no data available
regarding chorioamnionitis and a specific damage of the
cerebellum. Therefore, this study aimed at determining if
chorioamnionitis causes cerebellar morphological altera-
tions. Chorioamnionitis was induced in sheep by the intra-

amniotic injection of lipopolysaccharide (LPS) at a gesta-
tional age (GA) of 110 days. At a GA of 140 days, we
assessed the mean total and layer-specific volume and the
mean total granule cell (GCs) and Purkinje cell (PC) number
in the cerebelli of LPS-exposed and control animals using
high-precision design-based stereology. Astrogliosis was
assessed in the gray and white matter (WM) using a glial
fibrillary acidic protein staining combined with gray value
image analysis. The present study showed an unchanged
volume of the total cerebellum as well as the molecular layer,
outer and inner granular cell layers (OGL and IGL, respec-
tively), and WM. Interestingly, compared with controls, the
LPS-exposed brains showed a statistically significant increase
(+20.4%) in the mean total number of GCs, whereas the
number of PCs did not show any difference between the two
groups. In addition, LPS-exposed animals showed signs of
astrogliosis specifically affecting the IGL. Intra-amniotic
injection of LPS causes morphological changes in the
cerebellum of fetal sheep still detectable at full-term birth. In
this study, changes were restricted to the inner granule layer.
These cerebellar changes might correspond to some of the
motor or non-motor deficits seen in neonates from compro-
mised pregnancies.
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GFAP Glial fibrillary acidic protein
IGL Inner granular layer
IL Interleukin
IFN Interferon
LPS Lipopolysaccharide
ML Molecular layer
NF-κB Nuclear factor kappa B
OGL Outer granular layer
PC Purkinje cells
TLR Toll-like receptor
TNF-α Tumor necrosis factor-alpha
WM White matter

Introduction

Chorioamnionitis is an important problem in obstetrics
today, affecting 20% of all term pregnancies and up to 60%
of the preterm deliveries [1]. Chorioamnionitis is associated
with premature rupture of membranes and premature labor
as well as delivery [2–4]. It is an important risk factor for
an adverse outcome, such as permanent brain injury and
neurological handicaps. Recent clinical data underlines that
chorioamnionitis is mainly related to cerebral white matter
(WM) damage, including disseminated and focal necrosis
and cystic lesions, clinically often presenting as cerebral
palsy [5–9].

The mechanisms by which intrauterine inflammation
might cause fetal brain injury are not yet fully under-
stood. In human neonates, high concentrations of
cytokines in the cord blood and the amniotic fluid, such
as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-
6, and IL1β, increased the risk for periventricular
leukomalacia [10]. Higher levels of pro-inflammatory
cytokines were also expressed in the damaged areas of
the brain [11, 12]. Animal studies also provide evidence
that the antenatal administration of endotoxins like
lipopolysaccharide (LPS) causes a higher level of systemic
cytokine expression leading to cerebral apoptotic cell
death and gliosis in different animal species [13–19].
Therefore, it is thought that pro-inflammatory cytokines
induce a multi-organ fetal inflammatory response syn-
drome leading to reactive astrogliosis and the loss of
mainly immature oligodendrocytes [20, 21].

Despite the growing evidence linking intrauterine inflam-
mation with an adverse neurological outcome, the exact
consequences on the central nervous system remain unclear.
Especially, cerebellar injury is often overlooked. Research
evaluating the role of the cerebellum, especially its non-motor
function, is still at a very early stage, but there is increasing
evidence that the cerebellum is also involved in cognitive and
affective disorders [22–27]. It seems likely that a disturbed

development of the cerebellum during pregnancy and
neonatal period may play a role in long-lasting motor,
cognitive, and other behavioral changes [28]. The cerebellar
cortex forms an important structure in the coordinative role
of the cerebellum. Granule cells form a filter between mossy
fiber inputs and the Purkinje cells, causing a strict selection
of information [29]. An increase of granule cells may also
influence the functionality of the cerebellar cortex. Any
change in this structure may have implications for its
function and could lead to motor, behavioral, or cognitive
abnormalities.

It is important to know that almost half of the preterm
infants with cerebral palsy show abnormalities in the
cerebellum [30, 31]. The cerebellum is particularly vulner-
able during late gestation, since this is the period of active
proliferation and migration of cerebellar granule cells,
mainly in the outer granular layer [28, 32]. Later, granule
cells migrate radially inward along the Bergmann glia from
the outer granular layer, which will gradually disappear
after birth, to the inner granular layer, which lies deep to the
Purkinje cell layer [33, 34]. There, they have to make initial
contacts critical to establish the cerebellar circuitry [28]. It
is becoming increasingly clear that injury and impaired
development of the cerebellum may be associated with
chorioamnionitis especially in ex-preterm infants [22, 25,
35, 36]. Harmful events like chorioamnionitis during this
period might interfere with the normal development of
cerebellar granule cells. Other cerebellar cell populations,
such as Purkinje cells, may be influenced by an altered granule
cell development [37]. The fact that these mechanisms are
that poorly understood underlines the importance of further
research using this clinically relevant animal model to better
understand pathological pathways in fetal cerebellar inflam-
mation. In this present study, we wanted to prove the
hypothesis that chorioamnionitis causes changes in the
granule cell number and/or Purkinje cell number, associated
with astrocytic changes, in the near-term fetal cerebellum.

In this present study, we used an intra-amniotic injection
of LPS in an ovine model for chorioamnionitis. LPS is a
component of a Gram-negative bacterial cell wall, which is
responsible for most inflammatory responses in common
bacterial infections. This model was chosen for several
reasons. First, the injection of LPS, especially if adminis-
tered intravenously, is often associated with circulatory
changes in the fetus, causing a secondary hypoxia–ischemia
which might contribute to brain damage [38, 39]. However,
it is shown that intra-amniotic LPS can cause brain damage
in the absence of a superimposed hypoxic–ischemic effect
[19, 40, 41]. Second, fetal systemic inflammation has
already previously been characterized and well described
in this model. An intra-amniotic LPS injection caused an
increase in interferon (IFN)γ, IL-6, and IL-8 in the cord
plasma as well as an increase in TNF-α in the spleen [42].
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Third, sheep have a long gestation, with several develop-
mental anatomical and functional aspects of the fetal brain
comparable to the humans. In this study, LPS was injected
at 110 days of ovine gestation which is more or less similar
to 28 weeks of gestation in the human fetus.

The purpose of this study was to determine if chorioam-
nionitis, induced by an intra-amniotic LPS injection, caused
changes in cerebellar volumes and the number of neurons.
To achieve this, 10 mg of LPS was injected intra-
amniotically at 110 days of gestation (term≈147 days). At
140 days, cerebellar volume and the number of granule
cells and Purkinje cells were assessed using design-based
stereology. Astrogliosis was determined using a semi-
quantitative image analysis method.

Materials and Methods

Animals

All experimental procedures were approved by the
Animal Ethics Board of the University of Maastricht
according to Dutch governmental regulations. Time-
mated pregnant Texel ewes with singleton pregnancies
were randomly assigned to the different groups. LPS was
administered through ultrasound-guided injections as
described previously [43]. Each ewe received a single
dose of 10 mg LPS (Escherichia coli 055:B5; Sigma-
Aldrich, St. Louis, MO, USA) at gestational day (GD) 110
(n=7). A dose of 10 mg was chosen, since it has been
demonstrated before to yield a robust and reproducible
inflammation of the membranes [40, 42]. Before admin-
istration, the endotoxin was solubilized in 2 ml saline and
filtered through a 0.45-μm filter. Control animals were
treated identically (n=7), but were injected with a single
dose of saline into the amniotic fluid. Preterm lambs were
delivered at GD 140 (term is ≈ GD147) by Cesarean
section, and euthanized by decapitation. To prove the
presence of a histological chorioamnionitis, the influx of
inflammatory cells into the membranes was assessed. The
numbers of inflammatory cells were ranked from few
inflammatory cells (score=1), moderate cell infiltration
(score=2), to extensive influx of cells (score=3). The
results of this validation are given in Fig. 1.

Tissue Processing

After opening the skull, brains were removed rapidly and
halved in the mediosaggital line. The left cerebellum was
immersion-fixed in 4% formalin for 3 months, cryopro-
tected (10%, 20%, and finally 30% sucrose in 0.1 M Tris–
HCl buffer 24 h per solution at 4°C), embedded in Tissue-
tek® (Sakura Finetek), quickly frozen, and stored at −80°C

until further processing. Complete series of 50-μm-thick
coronal sections were cut on a cryostat (Leica CM 3050;
Leica, Nussloch, Germany). These sections were used for
immunohistochemistry (glial fibrillary acidic protein
(GFAP)).

The right cerebellum was frozen on a metal block in
melting liquid nitrogen and stored at −80°C until further
processing. The cerebellum was entirely cut into complete
series of 100-μm-thick coronal sections on a cryostat (Leica
CM 3050; Leica, Nussloch, Germany). These series of
sections were then divided into sub-series of every second
section, yielding two series of 11 to 14 sections containing
the cerebellum per animal. These sections were used for
stereological analyses (Hoechst and Nissl staining).

Immunohistochemistry

Another series of every 12th section of the left cerebellum
was collected for immunohistochemical detection of GFAP.
Briefly, GFAP labeling was conducted by incubating the
sections 24 h with primary antibody (rabbit anti-GFAP;
1:800; DAKO, Glostrup, Denmark) at room temperature
after rinsing with 0.05 M Tris-buffered saline (TBS) and
0.01 M Tris-buffered saline with 0.2% Triton X-100 (TBS-
T) and blocking endogenous peroxidise activity with 0.3%
H2O2. Following incubation and rinsing with 0.05 M TBS
and TBS-T, the sections were incubated in biotinylated
secondary IgG antibodies (biotinylated donkey anti-rabbit
IgG, 1:200; Jackson, West Grove, PA, USA) for 2 h at room
temperature (RT), followed by ABC kit (2 h at RT;
Vectastain, Burlingame, CA, USA). The sections were then
simultaneously incubated with 3,3′-diaminobenzidine (Sigma,
UIthoorn, The Netherlands) containing 30% H2O2 in Tris–
HCl for 7 min at RT. Sections were rinsed with TBS. After
dehydration, the sections were coverslipped using DePeX
(Serva, Heidelberg, Germany).

Fig. 1 Inflammatory score of the fetal membranes. Membranes were
scored for the influx of inflammatory cells. The numbers of inflammatory
cells were ranked from few inflammatory cells (score=1), moderate cell
infiltration (score=2), to extensive influx of cells (score=3). An intra-
amniotic injection of 10 mg of LPS significantly increased the
inflammation scores compared to control animals (C)
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Stereological Analysis

One series of every 12th section of the right cerebellum
was collected, mounted on glass slides (Superfrost Plus,
Menzel, Braunschweig, Germany), dried, defatted with
Triton X-100 (0.025%; 20 min; Merck), and stained with
cresyl violet (0.01%, 5 min). Slides were mounted and
coverslipped using DePex (Serva, Heidelberg, Germany).
These sections were used for volume measurements of
the whole cerebellum and its layers, and for the
assessment of the total number of granule cells in the
inner granular cell layer (IGL). See Fig. 2a, b for
examples of Nissl-stained sections.

Another series of every 12th section of the right
cerebellum was collected, mounted on glass slides
(Superfrost Plus, Menzel, Braunschweig, Germany),
dried, and 15 min post-fixed using Somogyi fixation
(0.2 M phosphate buffer, 20% paraformaldehyde, picric
acid, and 25% glutaraldehyde (pH 7.4)). After rinsing,
sections were stained 30 min with Hoechst (1:500, Sigma
Chemical Co., St. Louis, MO, USA) and mounted with
80% glycerol in TBS. These sections were used for

investigation of the total number of Purkinje cells (PCs).
See Fig. 1b for an example of a Purkinje cell and see
Fig. 2c, d for an example of the Hoechst staining.

All stereologic analyses were performed with a
computerized stereology workstation, consisting of a
modified light microscope (Olympus BX50 with Pla-
nApo objective 1.25× [numerical aperture (N.A.)=0.04]
and UPlanApo objective 20× [oil; N.A.=0.8]; Olympus,
Tokyo, Japan), motorized specimen stage for automatic
sampling (Ludl Electronics; Hawthorne, NY, USA), CCD
color video camera (HV-C20AMP; Hitachi, Tokyo,
Japan), and stereology software (StereoInvestigator;
MBF Bioscience, Williston, VT, USA). Using Nissl-
stained sections of the right cerebellum, delineations for
volume measurements of different regions within the
cerebellum, i.e., the inner and outer granular cell layer
(IGL and OGL respectively), molecular layer (ML), and
WM were analyzed using the Cavalieri’s principle [44,
45] and point counting [45, 46] using a 1.25× objective.
The delineation is shown in Fig. 1a. The total number of
granule cells in the IGL (using Nissl-stained sections) and
PCs (using sections stained with Hoechst) were estimated

Fig. 2 Delineation method. a
An example of the delineation
of the different layers of the
cerebellum in a Hoechst-stained
section. b An example of a
Purkinje cell in a Hoechst-
stained section (the asterisk cor-
responds to the nucleus)
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with the Optical Fractionator [45, 47]. All neurons whose
nucleus top came into focus within unbiased virtual
counting spaces distributed in a systematic random
fashion throughout the delineated regions were counted
[45, 46]. Then, the total number of neurons was calculated
from the numbers of counted neurons and the
corresponding sampling probability. All details of the
stereological analysis are summarized in Table 1.

Glial Fibrillary Acidic Protein Image Analysis

GFAP immunohistochemistry in the IGL, the ML, and
the WM was measured by a semi-quantitative method.
Three photographs were taken from each stained section
within the different layers with the Olympus AX70
microscope connected to a digital camera (F-view,
Olympus, Tokyo, Japan). To correct for a potential
variability due to different lighting conditions, all images
were collected under identical conditions. Photographs
were analyzed using corresponding average gray values
(ranging from 0 (black) to 255 (white)) and the percent
area positive for GFAP staining, obtained with the NIH
ImageJ software (http://rsb.info.nih.gov/ij/). Using a trial
and error method, a threshold value was established and
kept for all measurements. Blood vessels, tissue out of
focus, or artifacts were excluded.

Photography

Photomicrographs as shown in Figs. 2, 3 and 4 were
produced by digital photography using a MBF Bioscience
Stereo Investigator Confocal Spinning Disk system (MBF
Bioscience; Williston, VT), consisting of a modified
Olympus BX51 fluorescence microscope (Olympus, Tokyo,
Japan) with UPlanSApo objectives (4× (N.A.=0.16), 10×

(N.A.=0.40), 40× (N.A.=0.90), and 60× (N.A=1.35);
Olympus), customized spinning disk unit (Olympus),
computer-controlled excitation and emission filter wheels
(Olympus), three-axis high-accuracy computer-controlled
stepping motor specimen stage (4×4 Grid Encoded Stage;
Ludl Electronic Products, Hawthorne, NY), linear z-axis
position encoder (Ludl), ultra-high sensitivity monochrome
electron multiplier CCD camera (1,000×1,000 pixels,
C9100-02; Hamamatsu Photonics, Hamamatsu City, Japan),
and controlling software (MBF Bioscience).

Figures 2a and 3a are image montages composed of an
average of 130 images for each figure, captured at a
magnification of 4× (N.A.=0.16; Olympus) with use of the
Virtual Slice module in the StereoInvestigator software
(MBF Bioscience).

The final figure was created using Corel Draw v.11
(Corel, Ottawa, Canada). Only minor adjustments of
contrast and brightness were made, without altering the
appearance of the original materials.

Statistical Analysis

Mean and standard error of the mean were calculated for all
investigated parameters for both LPS-injected and control
animals. For each parameter, normality was tested using a
Kolmogorov–Smirnov test. All results were normally distrib-
uted. Comparisons between LPS-injected and control animals
were performed using generalized linear model multivariate
analysis (MANOVA), with diagnosis (saline versus LPS) as a
fixed factor and the sex and animal weight (ewe and fetus) as
covariates. Statistical significance was established at p<0.05.
Calculations were performed using Statistical Package for
the Social Sciences (SPSS; Version 15.0 for Windows;
SPSS, Chicago, IL, USA) and GraphPad Prism (Version 4.0
for Windows, GraphPad software, San Diego, CA, USA).

Table 1 Details of the stereologic analysis procedures

∑P

Obj. 1 sla-x, sla-y [μm] OGL ML IGL WM Total

Volumes 1.25× 500 9.681 13.839 25.152 9.100 57.772

Obj. 2 sln-x, sln-y [μm] a [μm2] h [μm] d [μm] ∑OD ∑N t [μm] CEpred.[n]

GCs 20× 1,700 10 10 4 224 699 8.8 0.038

PCs 20× 500 60 60 4 394 466 12.9 0.046

OGL outer granular cell layer, ML molecular layer, IGL inner granular cell layer, WM white matter, Obj. 1 objective used for delineating the
regions of interest and point counting, sla-x and sla-y, distance between the points used for volume estimates in mutually orthogonal directions x
and y, ∑P average number of points counted, GCs granule cells, PCs Purkinje cells, Obj. 2 objective used for counting neurons, sln-x and sln-y
distance between the unbiased virtual counting spaces used for counting neurons in mutually orthogonal directions x and y; a and h base and
height of the unbiased virtual counting spaces, d depth within the section at which the unbiased virtual counting spaces were placed, ∑OD average
number of unbiased virtual counting spaces used, ∑N average number of neurons counted, t measured actual average section thickness of the
sections after histological processing, CEpred.[n] average predicted coefficient of error of the estimated total neuron numbers using the prediction
method described by [44]
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Results

Inflammation Score of the Membranes

Inflammatory scores of the fetal membranes are given in
Fig. 1. The scores from LPS animals ranged from 2 to 3,
while the scores from control animals ranged between 0 and
0.5. Therefore, LPS animals scored significantly higher that
control animals.

Volume Measurements

The total cerebellum including the outer granular layer
(OGL), the inner granular layer (IGL), the molecular layer
(ML), and the WM of the LPS-exposed and control animals
were identified on all analyzed sections (Fig. 2). Figure 5
depicts the mean volumes of the total cerebellum (Fig. 5a)
as well as the OGL (Fig. 5b), the IGL (Fig. 5c), the ML

(Fig. 5d), and the WM (Fig. 5e). No significant differences
were found between the LPS-exposed and control animals
for any of the areas.

Total Number of Granule and Purkinje Cells

Figure 6 shows the mean number and density of granule
cells (GCs; Fig. 6a, b) and Purkinje cells (PC; Fig. 6c). The
LPS-exposed animals showed a significantly increased
mean total number of GCs in the IGL (+20.4%; F1=11.3,
p=0.015), while there was no significant difference in the
mean total PC number between the two groups. In addition,
no significant difference was found between the two groups
regarding the mean density of the GCs and the ratio
between GCs and PCs (Fig. 6d). Sex did not have any
significant influence on the variables investigated (data not
shown).

GFAP Immunoreactivity

Astrocytes showed a strong GFAP immunoreactivity in
both cell bodies as well as the processes in both groups
in brains from LPS-injected animals as well as controls.
This effect was found in all layers of the cerebellum, i.e.
OGL, ML, IGL, and WM (Fig. 4). Figure 7 shows the
results of GFAP immunoreactivity analysis. LPS-exposed
animals were found to have a significantly lower gray
value (0 (black) and 255 (white)), meaning a darker
staining, than control animals (p=0.0268; Fig. 7a) in the
inner granular layer. Furthermore, LPS-exposed animals
had a higher surface area (percent area) of GFAP-positive
astrocytes (p=0.0436; Fig. 7d) in that layer.

Discussion

This study is the first detailed investigation of the effects of
chorioamnionitis on the total number of neurons in the fetal
ovine cerebellum using design-based stereology. Chorioam-
nionitis, induced by an intra-amniotic LPS injection at
110 days of gestation, resulted in several morphological
alterations in the term cerebellum. Chorioamnionitis caused
a massive increase (+20.4%) in the number of cerebellar
granule cells in the inner granular layer, while no changes
were found in the number of Purkinje cells or the estimated
volumes of the different cerebellar layers. In addition, the
GFAP immunoreactivity—in terms of gray value and
percent area of positive staining—was increased specifically
in the inner granular layer.

Experimental data on the pathological effects of fetal
inflammation or infection on the developing cerebellum
are extremely scarce and limited to the use of either
uteroplacental or fetal LPS administration in sheep [43,

Fig. 3 Photomicrographs of Nissl- and Hoechst-stained sections. a
An example of a virtual slice of a Nissl-stained section of the
cerebellum. b A 40× magnification example of a Nissl-stained section
used to count granular cells. c–d An example of a Hoechst-stained
section at a low (10×; c) magnification showing the different
cerebellar layers and high (60×; d) magnification used to count
Purkinje cells
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44]. An injection of LPS in the uterine artery during late
gestation resulted in lipid peroxidation in all cerebellar
layers as well as a compromised cerebellar blood–brain
barrier [48]. These fetuses showed a dose-dependent
increase in the number of GFAP-positive astrocytes in
the cerebellar WM and the granular layer together with
higher numbers of caspase 3-positive cells in the WM and
molecular layer [48]. In contrast, an intravenous injection
of LPS at 93–96 days of gestation only caused confined
WM injury in the absence of obvious gray matter damage
[49]. Cerebellar WM injury was demonstrated by the loss
of oligodendrocytes, activated microglia, and an increased
number of apoptotic cells [49]. However, surprisingly,
Duncan and colleagues could not find clear cerebellar WM
injury in the same model [50]. The discrepancies between the
injury patterns found in our study and in the studies
described above might be explained by differences in the
experimental setup. Different timing of the insult with
respect to brain maturity or variations in the route and the
dose of LPS administration might explain the contradicting
findings. Maybe, different regions within the central nervous
system might be vulnerable during different periods of
development.

As many studies clearly demonstrated that fetal inflam-
mation, in particular pro-inflammatory cytokines, induced
neuronal cell loss, we expected chorioamnionitis to trigger
cell death leading to the loss of cerebellar neurons [43, 48,
49, 51]. However, we observed an increase in the number
of granule cells in the IGL of the cerebellum. More
cerebellar granule cells were also found by Schmitz et al.
following a different type of insult, i.e., prenatal low-dose
X-radiation [52]. They ascribed the increase to the
developmental stage of the brain. Moreover, a similar result
was previously found in the hippocampus. Golan et al.
reported an increase in hippocampal pyramidal and granular
cells in mice offspring after maternal inflammation [53]. It
is however important to keep in mind that the reported
increase might be region-specific and restricted solely to the
hippocampus. They interpreted this increase in hippocam-
pal cells as part of a “regeneration program” to repair the
injured tissue regulated by BDNF. Furthermore, the
inconsistency of our study with the current literature might
be explained by the different experimental time lines. Most
studies investigated the acute effects of inflammation
shortly after the administration of the toxic agent [43, 48,
49, 51]. However, in our study, the analyses were done

Fig. 4 Photomicrographs GFAP.
a An example of a virtual slice
of GFAP-stained section of the
cerebellum. b An example of a
10× magnification photograph
of the GFAP staining showing
the different layers of the cere-
bellum. c–e High magnification
photographs (40×) of the
molecular layer with the radial
glial fibers (Bergmann glia) (c),
the granular layer (d), and the
white matter (e)
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30 days after the LPS injection creating a time frame for the
execution of possible recovery processes. Therefore, these
rather unexpected findings might reflect the activation of a
regenerative process or the disturbance of proper develop-

ment. The increase in cerebellar granule cells might be
caused by enhanced proliferation, enhanced cell survival, a
reduced level of developmental apoptosis, or an accelerated
migration of the granule cells from the outer to the inner

Fig. 5 Cerebellar and layer-
specific volume measurements
The volume of the entire cere-
bellum (a), outer granular cell
layer (b), inner granular cell
layer (c), molecular layer (d),
and white matter (b) of control
(closed bars) and LPS-exposed
animals (open bars). No
significant difference was found
between the LPS-exposed and
the control animals for any of
the areas. Abbreviations: OGL
outer granular layer; IGL inner
granular layer; ML molecular
layer, WM white matter

Fig. 6 The total number of
granule and Purkinje cells. The
mean total number (a) and den-
sity (b) of granule cells, the
mean total number of Purkinje
cells (c), and the ratio granule
cells/Purkinje cells (d) of control
(closed bars) and LPS-exposed
animals (open bars). LPS-
injected animals had signifi-
cantly more granule cells than
control animals. *p<0.05;
MANOVA. GC granule cells,
PC Purkinje cells
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GL. However, which of these explanations might hold true
awaits further research. The use of markers such as caspase 3
and Ki67, for apoptosis and proliferation, respectively, might
be able to provide further evidence of whether this balance is
altered. Hutton et al. already demonstrated an increased
number of Ki67 proliferative cells in the sheep brain following
an uteroplacental infection [54]. Particularly, during the third
trimester, a period of rapid cerebellar growth takes place
[35]. This phase of rapid growth might render the cerebellum
particularly vulnerable. Late gestation is also characterized
by a prominent proliferation and migration of cerebellar
granule cells [55]. Considering this context, the conclusion
that an infectious stimulus might significantly impair the
development of certain brain cell populations by altering the
proliferation–apoptosis balance or modulating the migration
process does not appear farfetched.

No changes were found in the mean number of Purkinje
cells, which is inconsistent with the current literature. It is
now generally accepted that Purkinje cells are especially
vulnerable in the developing brain. Purkinje cell damage
and death have often been reported after asphyxia/hypoxia

in experimental animal models and human post-mortem
examinations, as well as after an infectious challenge [48,
56–59]. The absence of changes in the Purkinje cell layer in
the present study might be explained by the fact that, in
sheep, Purkinje cells are already present as a single layer by
approximately 100 days of gestation and chorioamnionitis
was only induced 10 days later (110GA) [32]. Formation of
the inner granule layer, however, takes place exactly within
this time frame with the layer being completed by day 120
of gestation [32].

Although in our model the mechanisms causing fetal
cerebellar changes in the fetus remain unidentified, it is
generally known that LPS, a pyrogenic component of
Gram-negative bacteria, induces a downstream cascade of
inflammatory responses via the toll-like receptor 4 (TLR4)
and NF-κB activation stimulating macrophages to produce
large amounts of cytokines [60–63]. Work by Kallapur and
Kramer already demonstrated that an intra-amniotic LPS
injection causes chorioamnionitis, which was quantified by
an increased number of granulocytes in the amniotic fluid
and the accumulation of inflammatory cells in the chorion/

Fig. 7 GFAP immunoreactivity.
GFAP immunoreactivity was
measured by gray values (0
(black); 255 (white)) (a–c) and
percent area of positive staining
(d–f) in the inner granular layer,
molecular layer, and white
matter. LPS-exposed animals
had a significantly lower gray
value (i.e., darker staining) (a)
and a significantly higher per-
cent area (d) of GFAP-positive
astrocytes in comparison with
control animals. *p<0.05;
MANOVA
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amnion [42, 64]. These results were confirmed in the
present study, where we showed an increased inflammatory
score in the membranes. This histological chorioamnionitis
is known to be associated with an enhanced cytokine
expression in the chorion/amnion (i.e., TNF-α, IL-1, IL-6,
and IL-8) [64]. Kramer et al. also showed systemic
inflammation by an increased level of IFN-γ, IL-6, and
IL-8 in the cord plasma as well as an increase of TNF-α in
the spleen [42]. In the same model, we recently demon-
strated that an intra-amniotic injection of 10 mg LPS causes
a significant increase in IL-1β, IL-8, and TLR4 expression
in the cerebellar cortex [unpublished data]. These data
confirm an inflammatory response in the cerebellum.

In the brain, the transfer of maternal, placental, amniotic,
and/or fetal cytokines might take place across an either
intact or disrupted blood–brain barrier. Native cytokines
might be produced by stimulated astrocytes and microglia
[65–67]. It is commonly known that the main function of
these pro-inflammatory cytokines is a contribution to the
immune response. However, recently, it was demonstrated
that cytokines may also play an important role in neuron
development and function. TNF-α is involved in the
regulation of the hippocampal development and neuron
growth and survival, while IL-1 has shown to affect
synaptic plasticity [68–72]. IL-6 has been shown to
enhance survival of cultured neurons [73, 74]. Furthermore,
pro-inflammatory cytokines, like IL-6, enhance the calcium
response due to increased calcium release in the cell [75].
This may lead to increased proliferation of immature
cerebellar granule cells as was shown in in vitro experi-
ments [76, 77]. Furthermore, IL-6 shares a common
intracellular subunit with neuronal growth factors, such as
CNTF and LIF, suggesting that also IL-6 might affect
neuronal development in the same way [78, 79].

Of note, it is often suggested that an intrauterine
infection can affect the immature brain, not only by the
production of pro-inflammatory cytokines but also by
inducing cerebral hypoperfusion, leading to hypoxic–
ischemic brain damage [38, 39, 80, 81]. However, previous
studies already demonstrated that the intra-amniotic LPS
application used in the present study can prevent the
superimposed hypoxia–ischemia. Fetal arterial pH, arterial
carbon dioxide tension, fetal oxygen tension, and oxygen
saturation were not altered [19, 40, 41]. For that reason, it
seems unlikely that the cerebellar changes observed in this
study could be partly attributed to the secondary cardio-
vascular effects of hypoxia.

Besides neuronal changes, this study also showed an
increase in GFAP immunoreactivity in the inner granule cell
layer. Such a response of astrocytes to harmful stimuli has
been well established. Uteroplacental inflammation in sheep
also resulted in an increase in the number of GFAP-positive
cell bodies in the granule layer [48]. In different fetal animal

models, enhanced cerebellar GFAP immunoreactivity was
also reported as a reaction to hypoxia or chronic
placental insufficiency [58, 82]. The precise role of
astrogliosis still remains unclear. Recent evidence suggests
that the process of astrogliosis has rather negative effects
by interfering with the normal function of neuronal
circuits and causing electrical instability [83]. Astrogliosis
is also suggested to be beneficial because it might
reestablish a protective barrier and support injured neurons
by stabilizing the surrounding environment [83, 84].
Generally, neurons are highly dependent on functioning
astrocytes for nutrition and maintenance of oxygen supply
[85], which underlines the importance of an increase in
reactive astrocytes during recovery.

Direct translation of these in vivo results into clinical
practice is very complex. It is not clear yet if these
cerebellar changes are associated with an adverse neuro-
developmental outcome. Although cerebellar injury has
often been ignored, it is now becoming increasingly
recognized that cerebellar pathology is linked to a wide
range of deficits, such as motor, social, and cognitive
disorders [23, 24, 86, 87]. Therefore, one might speculate
that the cerebellar changes seen in this study potentially
account for some of the motor and/or non-motor deficits
seen in neonates from pregnancies compromised by
intrauterine infection and inflammation.

In summary, the current data clearly show that cho-
rioamnionitis in the fetal sheep results in significant but
paradoxical morphological cortical alterations in the inner
granule layer of the cerebellum.
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