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Abstract

The high concentration of arsenic (As) in rice grains, in a large proportion of the rice growing

areas, is a critical issue. This study explores the feasibility of conventional (QTL-based)

marker-assisted selection and genomic selection to improve the ability of rice to prevent As

uptake and accumulation in the edible grains. A japonica diversity panel (RP) of 228 acces-

sions phenotyped for As concentration in the flag leaf (FL-As) and in the dehulled grain (CG-

As), and genotyped at 22,370 SNP loci, was used to map QTLs by association analysis

(GWAS) and to train genomic prediction models. Similar phenotypic and genotypic data

from 95 advanced breeding lines (VP) with japonica genetic backgrounds, was used to vali-

date related QTLs mapped in the RP through GWAS and to evaluate the predictive ability of

across populations (RP-VP) genomic estimate of breeding value (GEBV) for As exclusion.

Several QTLs for FL-As and CG-As with a low-medium individual effect were detected in the

RP, of which some colocalized with known QTLs and candidate genes. However, less than

10% of those QTLs could be validated in the VP without loosening colocalization parame-

ters. Conversely, the average predictive ability of across populations GEBV was rather high,

0.43 for FL-As and 0.48 for CG-As, ensuring genetic gains per time unit close to phenotypic

selection. The implications of the limited robustness of the GWAS results and the rather

high predictive ability of genomic prediction are discussed for breeding rice for significantly

low arsenic uptake and accumulation in the edible grains.

Introduction

Presence of high concentration of arsenic (As) in the paddy fields or in the irrigation water

(>20 mg Kg-1 and 0.10 mg Kg-1, respectively) has been reported in more than 70 countries in

Asia, America and Europe [1–3]. The problem, often of geological origin, affects several hun-

dred million peoples living in the area, especially in Asia [1, 3, 4] as it translates into rice grain.

Local and regional surveys have revealed tight correlation between As concentration in the
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cultivated soil, or in the irrigation water, and in the rice plant [2, 5]. As accumulation in the

rice plant is the highest in the roots, followed by the straw, the whole (cargo) grain and the pol-

ished (white) grain [2, 5, 6]. Presence of As in the paddy field also affects crop growth and

development and, consequently, crop yield [6].

Alternate wetting and drying of the paddy field during the cropping season is the most

effective way to achieve agronomic mitigation. In aerobic soils, the oxidative immobilization

of As reduces its phyto-availability and uptake in rice [7]. Application of silicon fertilizer can

also reduce the concentration of As in the rice plant [8]. A second category of mitigation

options relies on rice genetic improvement to reduce As uptake and/or its translocation from

the vegetative organs to the edible grains. A third category of mitigation relies on rice cooking

methods. Washing and/or cooking in excess water reduce rice grains’ As content [9, 10].

Mechanisms of rice plant response to soil As excess have been reported to be similar to

those observed for other types of soil chemical toxicity such as iron and salt [11]. However, the

exact mechanisms related to the phytotoxic effects of As, and the rice defense response against

As remain poorly understood. In aerobic cultivation, the predominant form of soil As is arse-

nate, As(OH)5 or As(V), and its uptake by plants involves phosphate transporters [12]. Overex-

posure to arsenate triggers reduced expression of genes coding for arsenate/phosphate

transporters such as PHT1 [13]. At the same time, the arsenate taken up undergoes chemical

reduction to a more highly toxic species, arsenite [As(III)] [14, 15]. The arsenite is then either

excreted into the rhizosphere [16, 17], or transported to aboveground organs [18], and/or

detoxified by complexation as phyto-chelatines and compartmentalized in the cell vacuoles

[19]. Within the anaerobic conditions of paddy fields, the predominant form of As is arsenite

[20]. Arsenite enters root cells through aquaporin type membrane ports [21]. Transporters

involved in this process include silicon transporters Lsi1 (influx) and Lsi2 (efflux) [21, 22] and

several silicon-independent pathways [23, 24].

Significant genetic diversity for As accumulation has been reported in rice, under overexpo-

sure to As in hydroponic cultivation and in field experiments [25–28]. Analysis of grain As
content in 421 rice accessions grown in six sites distributed in Bangladesh, China and USA

revealed from 3 to 34 fold variation in each site [29]. It also revealed that accessions belonging

to the Aus genetic group, originated from the Indian subcontinent, had the highest As
contents.

Using recombinant inbred lines (RIL) from bi-parental crosses, several QTLs involved in

As accumulation have been mapped [25, 30, 31]. Likewise, GWAS with the phenotypic data

produced in the above described multilocation trial, detected several significant associations

for grain As content [29, 32]. However, none of the significant associations mapped in the

vicinity (distance of less than 200 kb) of the Os02g51110 and Os03g01700 loci coding for Lsi1

and Lsi2 proteins [21, 22], that can play a central role in rice response to As overexposure.

Likewise, very few significant associations detected by GWAS, colocalized with QTLs mapped

in RIL populations [32]. Analysis of As-induced genome-wide modulation of transcriptomes

of rice seedling roots revealed up-regulation of several hundred genes, confirming the com-

plexity of the gene network involved in response to As overexposure [33–36]. Gene families

with differential gene expression in As tolerant and As-susceptible genotypes include glutathi-

one S-transferases, cytochrome P450s, heat shock proteins, metal-binding proteins, and a large

number of transporters and transcriptions factors such as MYBs [37]. More recently, using a

reverse genetics approach, [38] showed that OsHAC1;1 and OsHAC1;2 functioned as arsenate

reductases and played a role in the control of As accumulation in rice. Similar crucial role in

As accumulation in rice was reported for OsHAC4 [16]. Based on these findings, some authors

recently advocated turning to gene-editing technology for the control of As accumulation in

rice grains [7, 24].
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Genomic selection (GS) has recently emerged as an alternative option to conventional

marker-assisted selection targeting mapped QTLs [39–41]. By shifting the plant breeding para-

digm from “breeding by design” to a “genome-wide-approach”, GS provides genomic esti-

mated breeding values (GEBV) based on all available marker data, instead of focusing on a

limited set of markers that tag putative genes or QTLs. In the last few years, successful proof of

GS concept has been reported in maize [42], wheat [43], barley [44] and oats [45]. In rice,

moderate to high predictive ability (PA) of GEBV has been reported for a variety of quantita-

tive traits in experiments with the progeny of bi-parental crosses and in diverse germplasm

collections [46–51]. In particular, it was shown that rice diversity panels provide accurate

genomic predictions for complex traits in the progenies of biparental crosses involving mem-

bers of the panel [52]. It was also shown that genomic prediction accounting for genotype by

environment interaction offered an effective framework for breeding simultaneously for adap-

tation to an abiotic stress and for performance under normal cropping conditions in rice [53].

The above reported findings suggest that As uptake and accumulation in rice grains are a

complex process involving a large number of QTLs. We thus, hypthesized that genomic pre-

diction offers the most effective marker assisted breeding approach for ability to prevent As
accumulation in rice grains. To test this hypothesis the potential of two marker assisted selec-

tion approaches to improve the ability of rice to restrict As accumulation in the grains was

evaluated. First, field phenotypic data (leaf and grain As content of rice plants grown in paddy

fields with rather high As concentrations) and genotypic data from a reference diversity panel,

were used to either map QTLs involved in As accumulation through GWAS or to train geno-

mic prediction models. Second, using similar phenotypic and genotypic data from a panel of

advanced lines from a breeding program, congruence between GWAS results in the two popu-

lations was analyzed, and the predictive ability of genomic prediction across the two popula-

tions was evaluated. The results identified genomic prediction as the most promising approach

to improve the ability of rice to restrict As uptake and its accumulation in the grains.

Methods

Plant material

The plant material phenotyped comprised a diversity panel of 300 accessions and a set of 100

advanced inbred lines (F5, F6 or F7), all belonging to the japonica subspecies of O. sativa. The

diversity panel, hereafter referred to as the reference population (RP), was composed of 214

accessions representing the European Rice Core Collection [54], and 86 accessions of direct

interest for the Camargue-France breeding program (S1 Table). The 100 advanced breeding

lines hereafter referred to as the validation population (VP), was composed of elite lines of the

rice breeding program run by the Centre Français du Riz (CFR) and Cirad, in the Camargue

region, France. Within this plant material, 228 accessions of the RP and 95 lines of the VP

were genotyped and served for GWAS and genomic prediction studies.

Field trials and phenotyping

Field trials were conducted at the CFR experimental station, Mas d’Adrien (43˚42’13.77”N; 4˚

33’44.71”E; 3 m asl.), under a standard irrigated rice cropping system. The RP was phenotyped

in two consecutive years (2014 and 2015), the VP only in 2016. In 2014, the 300 accessions of

RP were phenotyped under an augmented randomized complete block design repeated twice,

each block being composed of 25 tested accessions and two check varieties (Albaron and Brio).

To confirm the results of the 2014 trial, in 2015, 50 accessions of RP, with contrasted As con-

tent performances in 2014, were phenotyped in a complete randomized blocks design with

eight replicates. In both 2014 and 2015 trials, the size of the individual plot was one row of 15
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plants. In 2016, each of the 100 advanced lines of VP was represented by five full-sib lines and

the size of the individual plot for each full-sib line was one row of 15 plants.

In each field trial, the concentration of total As in the flag leaf (FL-As) and in the cargo

grain (CG-As) was measured and the CG-As/FL-As ratio (Ratio) calculated. In the 2014 and

2015, three biological samples were prepared for each individual plot to measure FL-As. Each

biological sample was composed of three flag leaves of three different plants. Each biological

sample was oven-dried at 75˚C for 120 h, ground, mineralized, and total As concentration was

measured using the inductively coupled plasma mass spectrum (ICP-MA; Bruker Aurora ICP

Mass Spectrometer). For each biological sample, total As was measured in at least two technical

samples and averaged to establish the sample phenotype. Data from the three biological sam-

ples were averaged to establish the plot phenotype. A similar procedure was applied to CG-As
measurement in which the biological samples were composed of three panicles. These panicles

were threshed after oven drying, the paddy grains were de-husked, and the resulting cargo

grains were ground before undergoing the mineralization procedure.

In 2016, FL-As and CG-As were measured in one randomly chosen sib-line in each

advanced line. Two biological samples were prepared from each chosen sib-line: one biological

sample from an individual plant that was also used for DNA extraction and genotyping (see

below), and a second sample from the bulk of at least three plants.

In each field trial, the soil total As content was measured before sowing and after harvest.

Likewise, in each field trial, total As content of irrigation water was monitored once a month

during the rice cropping cycle. Soil samples were collected from 10–15 cm depth in 1 m2 area,

in three points of the field. Water samples were collected monthly from the irrigation canal at

its junction point with the experimental field. The total As concentration was measured using

the ICP-AES (Inductively coupled plasma atomic emission spectrometry) method.

Genotypic data

Genotypic data were produced by two distinct genotyping by sequencing (GBS) experiments,

for 228 accessions of RP and 95 lines of VP (because of limited funds available). In both cases,

DNA libraries were prepared at the Regional Genotyping Technology Platform (http://www.

gptr-lr-genotypage.com) hosted at Cirad, Montpellier, France. For each accession, genomic

DNA was extracted from the leaf tissues of a single plant, using the MATAB method [55].

Each DNA sample was diluted to 100 ng/μl and digested separately with the restriction enzyme

ApekI. DNA libraries were then single-end sequenced in a single-flow cell channel (i.e. 96-plex

sequencing) using an Illumina HiSeq2000 (Illumina, Inc.) at the Regional Genotyping Plat-

form (http://get.genotoul.fr/) hosted at INRA, Toulouse, France. The fastq sequences were

aligned to the rice reference genome, Os-Nipponbare-Reference-IRGSP-1.0 [56] with Bowtie2

(default parameters). Non-aligning sequences and sequences with multiple positions were dis-

carded. Single nucleotide polymorphism (SNP) calling was performed using the Tassel GBS

pipeline v5.2.29 [57]. The initial filters applied were the quality score (>20), call rate>80% the

count of minor alleles (>1), and the bi-allelic status of SNPs. In the second step, loci with

minor allele frequency (MAF) below 2.5% and with more than 20% missing data were dis-

carded. The missing data were imputed using Beagle v4.0 [58].

Analysis of phenotypic data

In 2014, plot level phenotypic data of the 300 accessions of RP were modeled for each trait as:

Yijk ¼ mþ ai þ rj þ bjk þ bðrÞjk þ ðarÞij þ eij

where Yijk is the observed phenotype of accession i in replicate j and bloc k, μ is the overall
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PLOS ONE | https://doi.org/10.1371/journal.pone.0217516 June 13, 2019 4 / 22

http://www.gptr-lr-genotypage.com/
http://www.gptr-lr-genotypage.com/
http://get.genotoul.fr/
https://doi.org/10.1371/journal.pone.0217516


mean, ai the accession effect, rj the replicate effect, bjk the check effect considered as quantita-

tive covariate, β(r)jk the block effect within the replicate, (ar)ij the interaction between acces-

sions and replicates, and eij the residual.

In 2015, plot level phenotypic data of the 50 accessions of RP were modeled for each trait as

Yij = μ+ai+rj+(ar)ij+eij where Yij is the observed phenotype of accession i in bloc j, μ is the over-

all mean, ai the accession effect, ri the replicate effect, (ar)ij the interaction between accession i
and replicate j, considered as random, and eij the residual. For each dataset and each trait, least

square means were estimated using the mixed model procedure of Minitab 18.1.0 statistical

software.

Broad-sense heritability was calculated for each trait as: h2 ¼ s2
g=ðs

2
g þ s

2
e=nÞ, where s2

g and

s2
e are the estimates of genetic and residual variances, respectively, derived from the expected

mean squares of the analysis of variance and n is the number of replicates. The computed CG-

As/FL-As ratio were subjected to the angular transformation 2Arcsin square root before

analysis.

Genotypic characterization of RP and VP

The genetic structure of 228 accessions of RP and 95 advanced lines of VP was analyzed jointly

using a distance-based method [59]. First, a matrix of 3,620 SNPs was extracted from the work-

ing genotypic dataset of 22,370 SNPs common to RP and VP, by discarding loci that had

imputed data and by imposing a minimum distance of 25 kb between two adjacent loci. Then,

an unweighted neighbor-joining tree based on dissymmetry matrix was constructed using

DarWin v6 software [59].

The speed of decay of linkage disequilibrium (LD) in RP and VP was estimated by comput-

ing r2 between pairs of markers on a chromosome basis using Tassel 5.2 software [60], and

then averaging the results by distance classes using XLStat.7.

Association analysis

Separate association analyses were performed with phenotypic and genotypic data from 228

accessions of RP and from 95 advanced lines of VP. A single marker regression-based associa-

tion analysis was performed for each phenotypic trait under a mixed linear model (MLM), in

which marker and population structure (Q matrix) effects were considered as fixed and the

kinship effect (K matrix) was considered as random. The MLM was run under the exact

method option of Tassel 5.2 software [60], where the additive genetic and residual variance

components are re-estimated for each SNP. For each SNP tested, Tassel 5.2 computed a p-

value, the log likelihood of the null and alternative models, and the fixed-effect weight of the

SNP with its standard error. The threshold to declare the association of a SNP marker with a

trait to be significant was set at a probability level of 1e-05. Genes underlying the significant

loci were analyzed using the MSU database (http://rice.plantbiology.msu.edu/) search and

gene annotation.

Genomic prediction

Construction of the incidence matrix. In order to reduce possible negative effects of

redundancy of marker information on the predictive ability of genomic predictions and to

reduce computing time, redundant SNPs were discarded as follows. First, using the genotypic

dataset of the RP (N = 228 entries and P = 22,370 SNPs), for each SNP pairwise LD with all

other SNPs was calculated. Second, among each group of SNPs in complete LD (r2 = 1), the

first SNP along the chromosome was maintained and all the others were discarded. This
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procedure reduced the total number of SNP loci to 16,902. Once the list of these SNPs was

established, the incidence matrix of 16,902 SNP was constructed for the VP accordingly.

Cross-validation experiment in the RP. Three whole-genome regression models, the

genomic best linear unbiased prediction (GBLUP), the Bayesian regression BayesA, and the

reproducing kernel Hilbert spaces regressions (RKHS) were used to regress the FL-As, CG-As
and Ratio traits of RP accessions on their genotype at 16,902 SNP loci. GBLUP is a parametric

model (i.e. genetic values are approximated by using linear regression procedures) with Gauss-

ian prior density of marker effects, that hypothesizes homogenous marker effects and strictly

additive determinism of the genetic effects [61]. It was implemented using the genomic matrix

G = M�M’ (M being the incidence matrix). BayesA is a parametric model with a scaled-t prior

density of marker effects, i.e. density with higher mass at the neighborhood of zero, inducing

strong shrinkage toward zero of effects of markers with small effects [62]. It hypothesizes that

some markers are linked to QTL while others are in regions that do not harbor QTL. RKHS is

a semiparametric regression model that combines the additive genetic model with a kernel

function and has the ability to capture more complex genetic determinisms [63]. The three

models were implemented using the BGLR statistical package [64]. The default parameters for

prior specification were used and the number of iterations for the Markov chain Monte Carlo

(MCMC) algorithm was set to 25,000 with a burn-in period of 5,000.

The cross-validation experiments used 171 (3/4) of the 228 accessions of the RP as the train-

ing set and the remaining 57 (1/4) accessions as the validation set. Each cross-validation exper-

iment was repeated 100 times using 100 independent partitioning of the RP into training set

and validation set. For each independent partitioning, the correlation between the predicted

and the observed phenotype was calculated so as to obtain 100 correlations for each cross-vali-

dation experiment. The predictive ability of each cross-validation experiment was computed

as the mean value of the 100 correlations.

To analyze sources of variation in the predictive ability of genomic predictions, the correla-

tion (r) of repetition was transformed into a Z statistic using the equation: Z = 0.5 {ln[1+r]−ln
[1−r]} and analyzed as a dependent variable in an analysis of variance. After estimation of con-

fidence limits and means for Z, these were transformed back to r variables.

Genomic prediction across populations. The predictive ability of genomic prediction

across populations was evaluated under three scenarios of composition of the training set.

Under the first scenario (S1), the training set included all 228 accessions of RP. Under S2, the

training set was composed of 100 accessions of the RP with the lowest average pairwise Euclid-

ian distances with the 95 lines of the VP. Under S3, 100 accessions of the training set were

selected among the 228 accessions of RP, using the CDmean method of optimization of the

training set [65]. In this 3rd scenario, a dedicated training set was selected for each phenotypic

trait to account for trait heritability. Predictions were performed with the three above-

described statistical methods (GBLUP, BayesA and RKHS) using the BGLR statistical package

[64]. For each trait (FL-As, CG-As, and CG-As/FL-As Ratio), the predictive ability of the pre-

diction experiment was calculated as the correlation between the predicted and the observed

phenotypes of the 95 lines.

Results

Phenotypic diversity for arsenic content

In 2014, soil analyses before crop establishment and after crop harvest revealed similar As con-

centrations of about 10 mg kg-1 dry soil weight. During the same period, the monthly survey of

the irrigation water revealed variable As contents (0.014 to 0.034 mg l-1) with an average of

0.021 mg l-1. Similar soil and water As contents were observed in 2015 and 2016 (S2 Table).
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Variation in arsenic content in the reference population. The distributions of the three

traits (FL-As, CG-As and Ratio) measured in 2014 among the 300 accessions of RP are pre-

sented in Fig 1. Variation in FL-As ranged from 1.393 (Bexibell accession) to 15.509 mg kg-1

(Auzgusta accessions) and averaged 5.881 mg kg-1 of dry weight. Variation in CG-As ranged

from 0.147 (Suweon accession) to 0.656 mg kg-1 (Octet accession) and averaged 0.335 mg kg-1

(S1 Table). Partitioning of the observed phenotypic variations into different sources of varia-

tion via the mixed model analysis revealed a highly significant effect of accession for the three

traits considered (Table 1). The model R2 was greater than 0.701 for the three traits, indicating

a good fit of the model. Broad-sense heritability tended to confirm this trend, with values rang-

ing from 0.803 to 0.861 in 2014 (Table 1). The determination coefficient between FL-As and

CG-As was rather low but highly significant (R2 = 0.204, p < 0.0001). This rather loose rela-

tionship between FL-As and CG-As corroborates the significant accession effect observed for

the Ratio trait.

In 2015, the range of variation in FL-As among the 50 accessions of RP with contrasted As
contents in 2014 was much larger (from 3.692 to 34.689; average of 16.833 mg kg-1), while the

range of variation in CG-As was slightly narrower (0.169 to 0.493; average of 0.338 mg kg-1).

However, these differences in the range of variation did not change the relative ranking of the

50 accessions observed in 2014. Indeed, the Spearman coefficient of rank correlation between

performances of the 50 RP accessions in 2014 and 2015 was r = 0.724 (p< 0.0001) for FL-As,
r = 0.681 (p< 0.0001) for CG-As, and r = 0.587 (p< 0.0001) for Ratio. The determination

Fig 1. Distribution of adjusted phenotypic values for flag leaf arsenic content (FL-As), Cargo grain arsenic content (CG-As), and the CG-As/FL-As ratio, in the

reference (RP) and validation (VP) populations. a: data from 2014 field experiment. The vertical blue line indicates the mean value of arsenic content the in the

population.

https://doi.org/10.1371/journal.pone.0217516.g001
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coefficient between FL-As and CG-As of the 50 accessions in 2015 was higher (R2 = 0.563,

p< 0.0001) than the one observed in 2014 for the 300 accessions.

Variation in arsenic content in the validation population. Variation in FL-As among the

95 accessions in the VP ranged from 3.241 to 37.760 mg kg-1 and averaged 14.651 mg kg-1 (Fig

1). Variation in CG-As ranged from 0.208 to 0.729 mg kg-1 and averaged 0.341 mg kg-1. The

determination coefficient between the FL-As and CG-As was low but highly significant (R2 =

0.20, p< 0.0001). The computed Ratio varied between 0.179 and 0.636 and averaged 0.336.

Genetic structure of the reference and validation populations

The RP and VP genotyping experiment yielded 39,497 and 67,658 SNP loci, respectively,

among which 22,370 were common to the two populations. This working dataset is presented

in S3 Table. The 22,370 SNP markers of the working dataset were unevenly distributed along

the 12 chromosomes (S1 Fig; S4 Table). Average marker density was one SNP every 17.1 kb.

However, it ranged from one SNP every 10.7 kb in chromosome 11 to 26.7 kb in chromosome

9. The number of pairs of loci with distance greater than 250 kb, 500 kb and 1,000 kb were 175,

27 and 1, respectively.

The decay of LD over physical distance in the two populations is presented in Fig 2. For

between-marker distances of 0 to 25 kb, the average r2 was 0.671 and 0.733 in RP and VP,

respectively. In the RP, the r2 value dropped to half its initial level at around 450 kb, reached

0.2 at 1.25 Mb, and 0.1 at 2.10 Mb. In the VP, r2 reached the 0.2 threshold only at pairwise dis-

tances of around 1.70 Mb, and the 0.1 threshold at distances above 3,0 Mb. No major differ-

ence in LD decay was observed between the 12 chromosomes. Given these extents of average

LDs, marker density and distribution along the chromosome should not be a major limiting

factor for the next steps of the study, i.e. detection of significant associations and genomic pre-

diction. Both RP and VP populations showed similar MAF patterns for the 22,370 common

SNP loci. RP and VP had the same minor allele in 95.4% of the common loci. In both popula-

tions, the MAF distribution was slightly skewed toward low frequencies, the average MAF was

close to 22.2%, and the proportion of loci with MAF < 10% was close to 75%. Likewise, the

Spearman correlation between the MAF of the 21,343 loci with identical minor alleles in the

two populations was r = 0.849 (p<0.011).

Dissymmetry-based clustering of RP accessions led to two major clusters corresponding to

the temperate japonica (65% of accessions) and tropical japonica (35% of accessions) sub-

Table 1. Variance components of three phenotypic traits in the reference population (RP) evaluated in 2014 and in 50 selected accessions of RP evaluated in 2015.

Trial Factors FL-As CG-As Ratio

300 RP accessions 2014 Accession (A) 10.389 ��� 0.012 ��� 0.022 ���

Replicate (R) 6.681 NS 0.121 ��� 0.055 NS

(A) x (R) 8.373 NS 0.005 ��� 0.009 NS

Residual 4.134 0.004 0.011

h2 0.831 0.864 0.803

50 RP accessions 2015 Accession 425.303 ��� 0.042 ��� 0.054 ���

Replicate 286.182 ��� 0.006 ��� 0.071 ���

Residual 17.448 0.002 0.005

h2 (SE) 0.995 0.994 0.911

FL-As: flag leaf arsenic content; CG-As: cargo grain arsenic content; Ratio: CG-As/FL-As
h2: broad sense heritability

���: significant at p�0.001; NS: not significant.

https://doi.org/10.1371/journal.pone.0217516.t001
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groups (Fig 3). The majority of the temperate japonica accessions are of European origin,

while the majority of the tropical japonica accessions originate from the American continent.

The inclusion of the VP lines in the dissymmetry-based clustering did not modify the cluster-

ing into two groups. Indeed, 69% of VP lines clustered with the temperate japonica group and

the remaining 31% with the tropical japonica group (Fig 3; S1 Table).

Relationship between genotypic and phenotypic diversity

Highly significant differences in FL-As and CG-As contents were observed between the tem-

perate japonica and the tropical japonica accessions of RP (total of 300 accessions) evaluated in

2014. The former subgroup had the highest As contents (S5 Table; S2 Fig). Data from the 50

RP selected accessions evaluated in 2015 and from the 95 advanced lines of VP confirmed this

trend.

Association analyses

Association analysis in the reference population. Results of association analysis for FL-

As, CG-As and Ratio traits in the RP are presented in Fig 4 and in S6 Table. The number of sig-

nificant associations (p-value < 1e-05) was 41 for FL-As, 23 for CG-As and 82 for Ratio. These

associations represented 6, 13 and 19 independent loci, i.e. a cluster of SNPs with a distance of

less than 1.25 Mb between two consecutive significant SNPs, corresponding to the average LD

Fig 2. Patterns of decay in linkage disequilibrium in the reference population (RP) and in the validation population (VP). The curves represents the average r2

among the 12 chromosomes; the bars represent the associated standard deviation.

https://doi.org/10.1371/journal.pone.0217516.g002

Breeding rice for arsenic tolerance

PLOS ONE | https://doi.org/10.1371/journal.pone.0217516 June 13, 2019 9 / 22

https://doi.org/10.1371/journal.pone.0217516.g002
https://doi.org/10.1371/journal.pone.0217516


of r2 < 0.2. These loci were composed of 1–35 SNPs, not always adjacent. None of the signifi-

cant SNPs or independent loci detected for one trait was found to be significant for another

trait. The MAF of the significant SNPs ranged from 2.5% to 49.4% and averaged 36.1% for FL-

As, 11.7% for CG-As and 27.5% for Ratio. The contribution of individual significant SNPs to

the total variance of the trait considered (marker R2) was low and did not exceed 12%. Among

the 41 SNPs significantly associated with FL-As, 11 corresponding to three independent loci

had marker R2> 10%. The highest marker R2 observed among the 23 SNPs significantly asso-

ciated with CG-As, was 8%. Among the 82 SNPs significantly associated with Ratio, nine cor-

responding to six independent loci had marker R2> 10%.

Association analysis in the validation population. Results of association analysis for the

three traits in the VP are presented in Fig 4 and S6 Table. The number of significant associa-

tions was 15 for FL-As, 75 for CG-As and 8 for Ratio. These associations represented 8, 30 and

Fig 3. Unweighted neighbor-joining tree based on simple matching distances constructed from the genotype of 228 accessions of the reference population (RP)

and 95 advanced lines of the validation population (VP), using 3,620 SNP markers. Green: VP; Red and blue: RP accessions belonging to tropical japonica and

temperate japonica, respectively.

https://doi.org/10.1371/journal.pone.0217516.g003
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5 independent loci. These loci were composed of 1–22 not always adjacent SNPs, with p-values

ranging between 1e-05 and 1e-09. Similar to what was observed in association analysis in the

RP, in the VP significant SNP loci for the three traits did not colocalize. The MAF of the signif-

icant SNP ranged from 2.6% to 46.8% and averaged 28.0% for FL-As, 9.0% for CG-As and

9.1% for Ratio. The significant SNPs contributed much more, on average, to trait total variance

than the ones observed in the RP. The mean marker R2 was 18% for SNPs associated with FL-

As, 24% for SNPs associated with CG-As and 16% for SNPs associated with Ratio.

Congruence between the results of GWAS in RP and in VP. Among the 146 SNPs sig-

nificantly associated with one of the three traits in the RP, only eight were also significant in

the VP. These SNPs corresponded to one independent locus associated with CG-As. The appli-

cation of a margin of tolerance of 1.7 Mb between a significant locus in the RP and its counter-

part in the VP (corresponding to the average distances for LD of 0.2 in the VP) increased

slightly the number of colocalizations: four additional colocalizations for CG-As and one for

Ratio. The number of such colocalizations increased markedly (9, 20 and 12 for FL-As, CG-As
and Ratio, respectively) when the threshold of significance of association in the two popula-

tions was lowered to a p-value < 1e-04 (Fig 4). The latter features represented 69%, 40% and

52% of the independent significant loci detected in RP for FL-As, CG-As and Ratio,

respectively.

Genomic localization and co-localization with QTLs and gene reported in the litera-

ture. Out of a total of 146 SNPs significantly associated with one of the three As related traits

in the RP, 41% were located in intergenic regions, 14% in introns, 27% in exons with synony-

mous coding effects, 10% in exons with non-synonymous coding effects, 6% in UTR-3 regions

Fig 4. Results of association analyses in the reference population (RP) and in the validation population (VP) in the present study, and comparison with data from

the literature. For the present study, data points represent SNPs significantly associated with arsenic concentration in the flag leaf (FL-As) in the cargo grain (CG-As),
and the CG-As/FL-As ratio in RP and VP. Data from the literature include significant SNPs mapped by GWAS [30], QTLs for grain arsenic concentration [25, 29] and

candidate genes [21, 39].

https://doi.org/10.1371/journal.pone.0217516.g004
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and 2% in stop-gained sites (S7 Table). The proportions were similar for the 96 significant loci

in the VP and for those observed among all the 22,370 SNPs used for GWAS. Genes underly-

ing the significant loci included ATP binding cassette involved in As detoxification (e.g.

Os04g0620000), transporters (e.g. phosphate, ammonium, peptide, efflux transporters

MATE), abiotic stress responsive genes (e.g. several F-box and DUF domain containing pro-

teins, cytochrome P450), and transcription factors (e.g. MBY, zinc finger family protein, ERF).

A genome survey within an interval of 400 kb (200 kb downstream and 200 kb upstream)

surrounding each significant SNP in the RP and in the VP, led to the identification of at least

one gene with the product involved in plant response to abiotic stresses or reported in the liter-

ature as responsive to As stress (Fig 4 and S7 Table). The latter included OsLsi1, OsHAC1,

OsHAC6, OsACR2-1 and representative of glutathione S-transferases, Cytochrome P450s,

heat shock proteins, metal-binding proteins, phosphate acquisition proteins, transporter pro-

teins and transcription factors. Likewise, survey of the surrounding interval of 400 kb of the

significant SNPs for QTL reported in the literature to be associated with As resulted in a large

number of colocalizations (Fig 4 and S7 Table).

Genomic prediction

Cross-validation experiment in the reference population. The nine cross-validation

experiments involving the three prediction methods and the three phenotypic traits yielded

predictive ability ranging from 0.326 to 0.543 (Table 2). The average predictive ability was

0.452 for FL-As, 0.535 for CG-As and 0.333 for Ratio. Based on ANOVA results, differences in

predictive ability between the three traits were highly significant (P< 0.0001). Conversely, dif-

ferences in predictive ability between the three prediction methods were not significant. This

was also the case for interactions between prediction methods and phenotypic traits.

In order to evaluate the effect of exclusion of highly redundant SNP (r2 = 1), the cross-vali-

dation experiment was also implemented with the full set of SNPs available (22,370), under

GBLUP. Results showed negligible effects on predictive ability: r = 0.449 versus 0.450 with the

incidence matrix of 16,902 for FL-As, r = 0.535 versus 0.531 for CG-As, and r = 0.326 versus

0.328 for Ratio.

Genomic prediction across populations. Under the S1 scenario, using all the 228 acces-

sions of the RP as the training set, the predictive ability of genomic estimate of breeding value

(GEBV) of the 95 lines of VP was on average 0.426 for FL-As, 0.476 for CG-As and 0.234 for

Ratio (Fig 5 and S8 Table). The three prediction methods implemented provided similar levels

of predictive ability. However, there was some interaction between prediction methods and

phenotypic traits. Similar to the cross-validation experiments, the addition of the redundant

SNPs in the incidence matrix did not noticeably modify the predictive ability (Fig 5).

Table 2. Predictive ability (r) of three methods of genomic prediction for three rice arsenic content traits in the reference population, based on cross-validation

experiments.

Prediction method Phenotypic traits

FL-As CG-As Ratio

r sd r sd r sd Average r

BayesA 0.447 0.095 0.530 0.118 0.326 0.130 0.435

GBLUP 0.450 0.097 0.531 0.097 0.328 0.132 0.437

RKHS 0.457 0.094 0.543 0.123 0.343 0.130 0.448

Average 0.452 0.095 0.535 0.113 0.333 0.131 0.440

FL-As: flag leaf arsenic content; CG-As: cargo grain arsenic content; Ratio: CG-As/FL-As. r: average predictive ability; sd: standard deviation.

https://doi.org/10.1371/journal.pone.0217516.t002
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The predictive ability of GEBV were much lower under S2, with averages of 0.266, 0.411

and -0.016 for FL-As, CG-As and Ratio, respectively (Fig 5). Under S3, the average predictive

ability was slightly higher than under S1 for CG-As (0.491), and much lower than under S1 for

FL-As (0.341) and for Ratio (0.073).

Discussion

The aim of this work was to explore (i) the phenotypic diversity of the rice japonica subspecies,

adapted to cultivation in Mediterranean Europe, to restrict As accumulation in the edible

grains, and (ii) the potential of the two major options of marker-assisted selection for the

improvement of the trait, i.e. QTL-based selection and genomic estimate of breeding value

(GEBV)-based selection.

Phenotypic diversity for arsenic content

Phenotypic diversity for As accumulation in the flag leaf and in the cargo grain was evaluated

in field experiments with uncontrolled intensity of exposure to As. However, a rather stable

soil As concentration, of about 10 mg kg-1, was observed across the crop cycles, and in the

three consecutive years of field experiments. This concentration corresponded to the class of

rather high As contents reported for paddy fields in countries including Bangladesh [66],

China [67] and the USA [66]. The range of variation of CG-As (0.147 to 0.656 mg kg-1) among

the accessions of RP was similar to the range observed by [29, 32] in a panel of some 400 acces-

sions representative of the diversity of all the O. sativa species (http://www.ricediversity.org/),

evaluated during multilocation trials in Bangladesh, China and USA. Relationship between

Fig 5. Predictive ability of genomic prediction of the arsenic concentration in the flag leaf (FL-As) in the cargo grain (CG-As), and for the CG-As/FL-As ratio of

the validation population obtained with three statistical methods, BayesA, GBLUP and RKHS, under three scenarios of composition of the training set.

https://doi.org/10.1371/journal.pone.0217516.g005
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FL-As and CG-As was rather loose suggesting there are differences between accessions in the

ability to limit As transfer from the leaves to the grains. To our knowledge, the existence of

such genetic diversity for the CG-As/FL-As ratio has not been reported yet in the literature.

Correlation between the FL-As and CG-As observed in 2014 and 2015 for the 50 RP accessions

of RP that were evaluated in the two consecutive years was rather high. This confirmed the

robustness of our findings concerning the extent of genetic diversity for FL-As and CG-As and

on the relationship between the two traits. Interestingly, the extent of FL-As and CG-As in the

VP was as large as that observed in the RP, despite its much smaller size.

Detection power and robustness of GWAS

In order to explore the potential of marker-QTL association-based breeding for aptitude to

restrict As accumulation in the grains, association analysis was performed in the RP to detect

QTLs. A large number of QTLs was detected for each of the three traits considered. Some of

these QTLs colocalized with already reported QTLs [27–28], candidate genes [21, 67], or

cloned genes [21, 37]. To ascertain further the results of GWAS in the RP a validation experi-

ment was performed in an independent population, our VP, as recommended in the literature

[68, 69]. GWAS with the VP also detected a large number of SNP and independent loci. How-

ever, only a few QTLs detected in the VP colocalized with the QTLs detected in the RP, despite

loosening of the interval surrounding each QTL, or lowering the significance threshold from

1e-05 to 1e-04. Replication of GWAS experiment requires similarity for several features

between the two populations and sufficiently large validation population to ensure detection

power [70]. Our validation experiment fulfilled all similarity conditions as VP had similar pop-

ulation structure to RP (composed of temperate and tropical japonica), similar relationship

between population structure and variability of the target trait (the temperate japonica having

the highest As contents) and similar MAF distribution. Thus, the limited colocalisation

between the QTL detected in RP and in VP should be attributed mainly to the rather small size

of the VP.

Given the above-mentioned superposition of the distributions of the phenotypic variability

and the structuring of RP and VP into temperate and tropical japonica, our GWAS results

might have been subject to an abnormal rate of false negatives due to a confounding phenome-

non [71]. To evaluate this risk, separate association analyses were performed with the 153 tem-

perate and the 75 tropical japonica accessions of RP. These analyses detected, at best, 50% of

the QTLs detected with the entire RP, without markedly increasing the P-value for each associ-

ation (S9 Table). The expected positive effects of diverting the confounding phenomenon

proved to be smaller than the reduced detection power due to the reduced size of the

population.

The conclusions drawn from these results are that (i) it is unlikely that a single GWAS

makes it possible to establish robust and precise genotype–phenotype associations, especially

for complex traits, (ii) validation of GWAS results by a second independent GWAS experi-

ment is a complex process with uncertain results, (iii) new validation options, such as develop-

ment of b-parental mapping population or the genome editing approach [72], need to be

explored. Some of the QTLs our two GWAS experiments have identified colocalized tightly

enough with candidate genes to deserve such validation effort. This is the case, for instance, for

qAs-01 (Os01g74300, Metal-Binding Proteins), qAs-07 (Os07g12130, MYB family transcrip-

tion factor), qAs-08 (Os08g16260, cytochrome P450 protein), qAs-10 (Os10 g38600, Glutathi-

one S-transferases) and qAs-12 (Os12g36670, F-box/LRR-repeat protein involved in response

to abiotic stresses).
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Predictive ability of genomic predictions

To explore the potential of genomic prediction options for marker-assisted breeding for the

ability to restrict As accumulation in the grains, three prediction methods were tested.

Although these methods represented contrasted hypotheses regarding the effects of markers

and/or the genetic determinism of target trait (see M&M section), they did not show signifi-

cantly different predictive ability for FL-As and CG-As. This is in agreement with the large

number of QTLs of rather small effect detected in our GWAS experiment and suggest a mainly

additive genetic determinism of FL-As and CG-As. Similar limited differences in predictive

ability between prediction methods, for complex traits, were reported in rice [51, 52] and in

other crops [73, 74]. Given these limited differences, the RKHS method which can capture

both additive and more complex genetic effects seems to be the most recommendable option.

The exclusion of the most redundant SNP markers, based on LD information, had a limited

effect on predictive ability, confirming the fact that accounting for LD in the population mat-

ters more than the absolute marker density [75].

The level of predictive ability for FL-As and CG-As in the cross-validation experiments was

similar to the levels reported in the literature for traits of equivalent heritability in rice [52] and

other major crops [74–75]. Predictions were less accurate for the Ratio trait, which, by design,

accumulates the experimental noises associated with the evaluation of FL-As and CG-As, and

had lower heritability.

Across population genomic prediction with models trained with RP data led to slightly

lower predictive ability than the predictive ability observed in the cross-validation experi-

ments. Similar decreases in predictive ability were reported in rice [52], barley [74] bread

wheat [76], and strawberry [77] and were attributed to differences in LD and allele frequencies

between the training and the validation sets [78]. In our case, no significant differences in pre-

dictive ability were found between the GBLUP model that captures marker-based relationship

between RP and VP, and RKHS and BayesA that captures LD between markers and QTLs. An

attempt to reduce the discrepancy in allele frequency between RP and VP by discarding SNP

loci with highly divergent MAF did not markedly change predictive ability (data not shown).

Neither could conclusive improvement in predictive ability be achieved by optimizing the

composition of the training set using the CD-mean approach [65]. These findings suggest that

further research aimed at improving the predictive ability of across population genomic pre-

dictions should explore the effects of the size of the training set (using a larger training set) and

of the balance between marker density and the regularity of their distribution along the

genome. Indeed, in the present work, marker density (one SNP every 17.1 kb) was rather high,

given the extent of LD, but their distribution was not optimized given the GBS genotyping

technology. Another option that deserves further research is the use of the available QTL infor-

mation in genomic selection. These QTLs’ information could serve to build trait-specific geno-

mic relationship matrices, based on the modified VanRaden genomic relationship matrix,

with marker weights for each locus, proposed by [79].

Implication for breeding rice to prevent As accumulation in the grains

The critical importance of reducing the presence of As in the rice grains in a large proportion

of rice growing areas has recently resulted in steady efforts to understand the molecular mech-

anisms involved in plant response to overexposure to As [12, 24] and the genetic control of

these mechanisms [17, 18, 21]. Although a few genes, reported as being “crucial”, have been

cloned [38], transcriptome analyses [23, 67] and GWAS results [32] suggest that As tolerance

is a complex trait involving large number of loci with limited individual effect on the trait.
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The number of candidate loci makes marker-assisted pyramiding of the favorable alleles

unpractical. Moreover, uncertainty concerning the exact genomic position of some of the loci

makes the outcome of marker-assisted pyramiding unpredictable. Indeed, as discussed above,

GWAS results raise robustness issues and this also seems to be the case for transcriptome anal-

yses [68].

The GEBV obtained for FL-As and CG-As were reasonably accurate in both intra-popula-

tion (cross- validation in the RP) and across-population (RP/VP) prediction experiments.

Translation of those predictive abilities into average phenotypic performances of VP lines

selected based on their GEBV, by model trained with the RP, is even more encouraging.

Indeed, the average FL-As and CG-As of the best 10 VP lines selected on the basis of pheno-

typic data were 41% and 65% of the average FL-As and CG-As of all 95 lines of VP. The average

FL-As and CG-As of the best 10 VP lines selected on the base of GEBV were 55% and 85% of

the average FL-As and CG-As the all 95 lines of VP (S10 Table). In other words, for a selection

rate of 10%, the difference in genetic gain between phenotypic selection and GEBV based

selection was approximately 10% for FL-As and 5% for CG-As. Given these rather small differ-

ences in genetic gains, at first sight the choice between phenotypic and GEBV based selection

will depend mainly on the comparative costs of genotyping and phenotyping for As content. If

the costs are similar, the best choice would be GEBV-based selection because genotypic data

are a multi-purpose asset that can also be used for genomic prediction of other traits than As
content. However, integration of GS in a breeding program has multiple implications [80, 81]

that require thorough evaluation.

To conclude, considering the limitations of QTL-based marker-assisted selection for As
and the rather high level of predictive ability of GEBV, the hypothesis that genomic prediction

offers the most effective marker assisted breeding approach for the ability to prevent As accu-

mulation in the rice grains, proved to be exact. This is especially the case for breeding pro-

grams that have already adopted GS approach for other traits. It was shown that a rice

diversity panel could provide accurate genomic predictions for complex traits in the progenies

of biparental crosses involving members of the panel [52]. In addition, associated with the

rapid generation advancement technique, genomic selection can accelerate the genetic gain of

the pedigree breeding scheme, the most common breeding scheme in rice. GS for As content

can be incorporated rather easily in such breeding programs. The main additional cost would

be the phenotyping of the diversity/reference panel for As content.
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