
 International Journal of 

Molecular Sciences

Article

Lactacystin-Induced Model of Hypertension in Rats:
Effects of Melatonin and Captopril

Fedor Simko 1,2,3,*, Olga Pechanova 4, Kristina Repova 1 ID , Silvia Aziriova 1,
Kristina Krajcirovicova 1, Peter Celec 1,5, Lubomira Tothova 5, Stanislava Vrankova 4,
Lucia Balazova 3, Stefan Zorad 3 and Michaela Adamcova 6

1 Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava,
Slovakia; repova.k@gmail.com (K.R.); silvia.aziriova@gmail.com (S.A.); krikratina@gmail.com (K.K.);
petercelec@gmail.com (P.C.)

2 3rd Clinic of Internal Medicine, Faculty of Medicine, Comenius University, 83305 Bratislava, Slovakia
3 Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences,

84505 Bratislava, Slovakia; balazova.luc@gmail.com (L.B.); Stefan.Zorad@savba.sk (S.Z.)
4 Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 81371 Bratislava, Slovakia;

olga.pechanova@savba.sk (O.P.); stanislava.vrankova@savba.sk (S.V.)
5 Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 81108 Bratislava, Slovakia;

tothova.lubomira@gmail.com
6 Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;

adamcova@lfhk.cuni.cz
* Correspondence: fedor.simko@fmed.uniba.sk; Tel.: +421-9-08-423-544

Received: 26 May 2017; Accepted: 13 July 2017; Published: 25 July 2017

Abstract: Lactacystin is a proteasome inhibitor that interferes with several factors involved in
heart remodelling. The aim of this study was to investigate whether the chronic administration
of lactacystin induces hypertension and heart remodelling and whether these changes can be
modified by captopril or melatonin. In addition, the lactacystin-model was compared with
NG-nitro-L-arginine-methyl ester (L-NAME)- and continuous light-induced hypertension. Six groups
of three-month-old male Wistar rats (11 per group) were treated for six weeks as follows: control
(vehicle), L-NAME (40 mg/kg/day), continuous light (24 h/day), lactacystin (5 mg/kg/day) alone,
and lactacystin with captopril (100 mg/kg/day), or melatonin (10 mg/kg/day). Lactacystin treatment
increased systolic blood pressure (SBP) and induced fibrosis of the left ventricle (LV), as observed in
L-NAME-hypertension and continuous light-hypertension. LV weight and the cross-sectional area of
the aorta were increased only in L-NAME-induced hypertension. The level of oxidative load was
preserved or reduced in all three models of hypertension. Nitric oxide synthase (NOS) activity in
the LV and kidney was unchanged in the lactacystin group. Nuclear factor-kappa B (NF-κB) protein
expression in the LV was increased in all treated groups in the cytoplasm, however, in neither group
in the nucleus. Although melatonin had no effect on SBP, only this indolamine (but not captopril)
reduced the concentration of insoluble and total collagen in the LV and stimulated the NO-pathway
in the lactacystin group. We conclude that chronic administration of lactacystin represents a novel
model of hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive
drugs or agents exerting a cardiovascular benefit beyond blood pressure reduction.
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1. Introduction

Hypertensive heart disease is a serious consequence of hypertension. Left ventricular hypertrophy
(LVH) is a compensatory response to chronically-increased haemodynamic load which enhances the
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heart performance without substantially increasing wall tension and energy consumption. However,
since hypertrophied myocardium differs from normal myocardium, LVH represents an independent
cardiovascular risk [1–4]. Thus, there is a continuous effort to identify substances that prevent or
reverse LVH [5–8]. However, besides the nature of the drug per se, the effectiveness of anti-remodelling
protection depends on the type and severity of the overload and the concomitant neurohumoral
alterations that modify myocyte and fibrocyte activity. Bearing this in mind, it is essential to test
potentially protective strategies in different models of pathological myocardial growth [9–11].

The ubiquitin-proteasome system degrades many cytosolic, nuclear and myofibrillar proteins [12].
Lactacystin is a proteasome inhibitor that interferes with the synthesis and degradation of several
proteins involved in cardiovascular organ remodelling such as nuclear factor-kappa B (NF-κB),
a nuclear transcriptional factor [13], tyrosine hydroxylase, the rate limiting enzyme in catecholamine
biosynthesis [14], cyclooxygenase-2, a marker of inflammation [15], and the sarcomeric myosin heavy
chain [16].

Due to the complex effect of lactacystin on several factors differently involved in the hypertrophic
growth of the heart and vessels, the aim of this study was to determine whether the chronic treatment
of Wistar rats with lactacystin is able to induce hypertension and the pathological remodelling of
the heart and aorta. Moreover, we sought to determine whether captopril, the classical angiotensin
converting enzyme (ACE)-inhibitor with antihypertensive and anti-remodelling effects or melatonin,
which was previously shown to have an anti-remodelling nature [17–22], supposedly related to
its antioxidant [23–25], nitric oxide (NO)-bioavailability enhancing [26–28] and chronobiologic
actions [29–31], could modify the potential alterations induced by lactacystin. Furthermore,
we compared the lactacystin-model with the well-established NG-nitro-L-arginine-methyl ester
(L-NAME)- and continuous light-induced hypertension in rats.

2. Results

2.1. Cardiovascular Parameters

After six weeks of treatment, systolic blood pressure (SBP) was 120 ± 0.48 mmHg in the control
and was enhanced to 174 ± 2.17 mmHg, 134.5 ± 1.28 mmHg, and 131.2 ± 3.45 mmHg in the L-NAME,
24 h and lactacystin (Lac) groups, respectively (enhancement by 45%, 12%, and 9% respectively, p < 0.05
for all). SBP was decreased significantly (p < 0.05) by captopril (31%), while melatonin had no effect on
SBP (Figure 1A). The left ventricle weight/body weight (LVW/BW) ratio after six weeks of treatment
was 1.10 ± 0.04 mg/g in the control and was only increased by L-NAME-treatment (by 28%, p < 0.05).
Captopril slightly reduced the LVW/BW ratio (by 8%) compared to Lac group (Figure 1B).
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Figure 1. Systolic blood pressure (SBP) (A) and relative left ventricular weight (LVW/BW) (B) in the 
control group (Ctrl), L-NAME (L-NAME)-, continuous 24 h/day light (24 h)-, lactacystin 
(Lac)-induced hypertension, and in lactacystin-hypertension influenced by captopril (Lac+C) or 
melatonin (Lac+M). * p < 0.05 vs. Ctrl, # p < 0.05 vs. Lac. 

Figure 1. Systolic blood pressure (SBP) (A) and relative left ventricular weight (LVW/BW) (B) in the
control group (Ctrl), L-NAME (L-NAME)-, continuous 24 h/day light (24 h)-, lactacystin (Lac)-induced
hypertension, and in lactacystin-hypertension influenced by captopril (Lac+C) or melatonin (Lac+M).
* p < 0.05 vs. Ctrl, # p < 0.05 vs. Lac.
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2.2. Morphometry of the Aorta

The wall thickness (WT) was 0.109 ± 0.003 mm in the control and was increased by L-NAME
treatment by 31% (p < 0.05) (Figure 2A). The cross-sectional area of the aorta was 0.510 ± 0.013 mm2 in
the control and was enhanced by L-NAME treatment by 38% (p < 0.05). In the Lac group, captopril
reduced WT by 18% (p < 0.05) and the cross-sectional area (CSA) by 22% (p < 0.05) (Figure 2B).
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was increased in L-NAME, 24 h, and Lac by 34%, 16%, and 24%, respectively (all p < 0.05). Melatonin 
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Figure 2. Aortic thickness (WT) (A) and cross sectional area (CSA) (B) in the control group (Ctrl),
L-NAME (L-NAME)-, continuous 24 h/day light (24 h)-, lactacystin (Lac)-induced hypertension, and in
lactacystin-hypertension influenced by captopril (Lac+C) or melatonin (Lac+M). * p < 0.05 vs. Ctrl,
# p < 0.05 vs. Lac.

2.3. Hydroxyproline in Soluble and Insoluble Collagenous Fraction in the Left Ventricle (LV)

Hydroxyproline concentration in the soluble collagenous proteins was 0.11 ± 0.004 mg/g in
the control group and was increased in L-NAME, 24 h and Lac by 20%, 36% and 37%, respectively
(all p < 0.05). Neither captopril nor melatonin produced changes in the Lac group. Hydroxyproline
concentration in the insoluble collagenous proteins was 0.38 ± 0.015 mg/g in the control group and
was increased in L-NAME, 24 h, and Lac by 34%, 16%, and 24%, respectively (all p < 0.05). Melatonin
reduced the level of insoluble collagen by 17% (p < 0.05) in the Lac group. The sum of hydroxyproline
in soluble and insoluble fractions was 0.48 ± 0.014 mg/g in the control group and was increased in
L-NAME, 24 h, and Lac by 33%, 23%, and 29%, respectively (all p < 0.05). Melatonin reduced total
hydroxyproline by 16% (p < 0.05) in the Lac group (Figure 3).

2.4. NO-Synthase (NOS) Activity in the LV and Kidney

NOS activity in the LV was 2.92 ± 0.41 pkat/g/protein in the control group and increased by 69%
(p < 0.05) in the L-NAME group. NOS activity was 3.78 ± 0.28 pkat/g protein in the Lac group and
was increased by 37% (p < 0.05) by melatonin (Figure 4A).

NOS activity in the kidney was 4.52 ± 0.30 pkat/g protein in the control group and was not
changed in either model of hypertension. NOS activity was 3.58 ± 0.08 pkat/g protein in Lac and was
increased by 95% (p < 0.05) by melatonin (Figure 4B).
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(Ctrl), L-NAME (L-NAME)-, continuous 24 h/day light (24 h)-, lactacystin (Lac)-induced hypertension
and in lactacystin-hypertension influenced by captopril (Lac+C) or melatonin (Lac+M). * p < 0.05 vs.
Ctrl, # p < 0.05 vs. Lac.
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2.5. Oxidative Stress Parameters

After six weeks of treatment, the advanced oxidation protein products (AOPP) in plasma was
0.0032 ± 0.00041 µmol/g in the control group, and declined significantly in 24 h, Lac, Lac+C by
41%, 42%, 46% (p < 0.05), respectively and numerically in Lac+M by 27% (Figure 5A1). The plasma
level of thiobarbituric acid-reacting substances (TBARS) was 0.0000654 ± 0.71 µmol/g in the control
group and declined in 24 h, Lac, Lac+C and Lac+M by 35%, 37%, 41%, 30% (all p < 0.05), respectively
(Figure 5B1). The concentration of ferric reducing antioxidant power (FRAP) was 0.013 ± 0.0011
µmol/g in the control group and declined in 24 h, Lac, Lac+C, and Lac+M by 36%, 39%, 37%, 15%
(p < 0.05), respectively (Figure 5C1). The plasmatic advanced glycation end-products (AGEs) were
0.474 ± 038 µmol/g in the control group and declined significantly in 24 h, Lac, and Lac+M by 39%,
29%, 29% (p < 0.05), respectively, and numerically in Lac+C by 24% (Figure 5D1).
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Figure 5. The parameters of oxidative status in plasma (A1–D1), left ventricle (LV) (A2–D2) and
aorta (A3–D3) in the control group (Ctrl), L-NAME (L-NAME)-, continuous 24 h/day light (24 h)-,
lactacystin (Lac)-induced hypertension and in lactacystin-hypertension influenced by captopril (Lac+C)
or melatonin (Lac+M). * p < 0.05 vs. Ctrl.

After six weeks of treatment, the AOPP in the LV was 0.0185 ± 0.0048 µmol/g in the control
group, and declined significantly in 24 h, Lac, Lac+C, and Lac+M by 60%, 66%, 58%, 65 (p < 0.05),
respectively, and numerically in L-NAME by 46% (Figure 5A2). The level of TBARS in the LV was
0.00292 ± 0.00093 µmol/g in the control group, and declined significantly in Lac+M by 62% (p < 0.05)
and numerically in L-NAME, 24 h, Lac, Lac+C by 46%, 46%, 55%, 35%, respectively (Figure 5B2).
The concentration of FRAP in the LV was 0.229 ± 0.072 µmol/g in the control group and was not
changed significantly in either group. (Figure 5C2). The level of AGEs in the LV was 4.773 ± 1.389
µmol/g in the control group and was not changed significantly in either group (Figure 5D2).

After six weeks of treatment, the AOPP in the aorta was 0.0444 ± 0.0097 µmol/g in the control
group, and declined significantly in L-NAME, 24 h, Lac, Lac+C by 56%, 80%, 63%, 86%, 76% (p < 0.05),
respectively (Figure 5A3). The aortic level of TBARS was 0.0096 ± 0.0031 µmol/g in the control
group and declined in L-NAME, 24 h, Lac, Lac+C, and Lac+M by 69%, 79%, 70%, 87%, 70% (p < 0.05),
respectively (Figure 5B3). The aortic concentration of FRAP was 0.399 ± 0.110 µmol/g in the control
group and declined in Lac+C and Lac+M significantly by 51% and 30%, respectively (p < 0.05) and in
L-NAME, 24 h, and Lac numerically by 52%, 53%, 46%, respectively (Figure 5C3). The aortic AGEs
were 19.24 ± 5.24 µmol/g in the control group and declined significantly in L-NAME, 24 h, Lac+C and
Lac+M by 65%, 67%, 79%, 65%, respectively (p < 0.05), and in Lac numerically by 49% (Figure 5D3).

2.6. Nuclear Factor-Kappa B (NF-κB) Expression

In the cytoplasm, NF-κB expressed as a percentage of the control group increased in L-NAME,
24 h and Lac by 148%, 216%, and 228% (p < 0.05), respectively. Neither captopril nor melatonin
produced changes in the Lac group (maintained enhancement by 208% and 235% compared to controls,
p < 0.05) (Figure 6A). In the nucleus, the expression of NF-κB as a percentage of the control group
remained unchanged in all groups (Figure 6B).
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Figure 6. Cytoplasmatic (A) and nuclear (B) left ventricular NF-κB expression in the control group
(Ctrl), L-NAME (L-NAME)-, continuous 24 h/day light (24 h)-, lactacystin (Lac)-induced hypertension,
and in lactacystin-hypertension influenced by captopril (Lac+C) or melatonin (Lac+M). * p < 0.05
vs. Ctrl.

3. Discussion

A slight but significant SBP increase was observed in rats treated with lactacystin in this
experiment. This mild SBP enhancement was similar to that of continuous light hypertension, but much
lower compared to L-NAME-hypertension, where SBP increased by about 30%. It corresponded with
the changes in LV mass. While in the lactacystin-model (similarly to continuous light hypertension)
no LVH developed after six weeks of treatment, L-NAME-hypertension caused significant LVH
development as well as hypertrophy of the aorta. This is associated with the fact that the extent of
haemodynamic overload is closely connected to hypertrophic myocardial growth [3,4,32]. On the other
hand, fibrotic remodelling in terms of enhancement of soluble, insoluble, and total collagen level in the
LV observed in lactacystin-treated animals was analogical to fibrotic alterations present in continuous
light- and L-NAME-induced hypertension. It supports the opinion held by several authors that the
interstitial matrix is predominantly modified by factors other than hemodynamic load per se, such as
neurohumoral activation.

The mechanisms of organ rebuilding in hypertension may be related to oxidative stress or
L-arginine-NO pathways. However, no enhancement of oxidative stress was observed in the plasma,
LV or aorta in either model. In general, the parameters of oxidative load even decreased. Indeed,
free radicals may act not just as damaging factors that stimulate pathologic rebuilding of the heart
and vessels but also as signalling or protective factors [33], or molecules indicating or administering
adaptive alterations in different periods of hypertrophic growth [34]. Oxidative stress associated with
hypertension seems to be the consequence rather than the cause of long-lasting hypertension [35].
Large clinical studies have not recorded any reduction in blood pressure or cardiovascular events after
long-term treatment with variable antioxidants [36]. In fact, it has never been proved that patients
who presented with negative results actually had increased oxidative stress [37]. The shortage of free
radicals has even been hypothesized as an etiologic factor in type 2 diabetes [38]. In agreement with the
data of our experiment it was previously shown that the inhibition of proteasome by lactacystin may
result in decreasing the level of oxidative stress [39]. Thus, hypertension is not necessarily associated
with the overproduction of free radicals. Their level may depend on the period of hypertension and
longevity of treatment [34].
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The NO molecule is known to have both vasodilating and anti-proliferative properties [40].
However, NOS activity remained unchanged in lactacystin-induced hypertension (similar to
that in continuous light-hypertension) and was increased in L-NAME-hypertension in the LV.
Thus, NO-deficit does not seem to be a substantial factor in the development of fibrosis in
lactacystin-induced hypertension.

Interestingly, captopril prominently reduced systolic blood pressure, while melatonin had
no significant effect. However, captopril did not influence fibrosis, while melatonin reduced the
hydroxyproline concentration in the insoluble and total collagen of the LV. This fibrosis-reducing
effect of melatonin was consistently observed in several previous experiments with spontaneously
hypertensive rats (SHR) [20], L-NAME-induced hypertension [41], in continuous light [21] and
continuous light+L-NAME-induced hypertension [42], as well as in isopenaline induced heart
failure [43]. Importantly, melatonin predominantly reduced insoluble ross-linked (matured) collagen,
which is considered to be responsible for increased stiffness of the LV with diastolic dysfunction [21,43].
Since the quality and not the quantity of the hypertrophied myocardium is the decisive factor of the
negative cardiovascular prognosis [44], the anti-fibrotic potential of melatonin may be of utmost benefit
for patients with hypertensive heart disease or heart failure. Indeed, the reduction of the insoluble
collagen level in isoprenaline-induced heart failure in rats was associated with decreased mortality [43].
The inability of melatonin to reduce SBP in this experiment indicates that the nature of melatonin
to act against insoluble collagen accumulation is independent from the effect on haemodynamic
load. The previous data indicating melatonin’s sympatholytic effect and interference with the
renin-angiotensin system [45] suggest that the concise anti-fibrotic effect of melatonin in the heart is
potentially determined by the attenuation of undesirable neurohumoral activation.

NF-κB is a ubiquitous inducible transcription factor [46], which seems to play a substantial role
in hypertrophic myocardial growth [47]. There are several indications that NF-κB activation exerts
unfavourable, pathological myocardial growth supporting actions. The NF-κB activation increased
cardiac remodelling and dysfunction following myocardial infarction [48], the development of LVH
induced by angiotensin II [49], and by increased afterload due to thoracic aorta banding [50]. Moreover,
the reversal of cardiac hypertrophy was observed after the inhibition of NF-κB signalling by using
a gene knockdown approach [46]. On the other hand, some data suggest that NF-κB may have
a protective rather than a deleterious effect on a haemodynamically-overloaded heart. Although
NF-κB transgenic inhibition attenuated LVH induced by aortic-constriction, the progression of LVH
to maladaptive LV remodelling was not inhibited, which indicate that NF-κB is needed for adaptive
cardiac hypertrophy [51]. Interestingly, melatonin was shown to inhibit the activity of NF-κB in a
number pathologic states such as neurodegenerative and neurotoxic disturbances [52,53], in oncologic
diseases [54–56], or in aging heart [57], potentially by increasing concentration of NF-κB inhibitor
(IκBα) [58,59].

In this experiment, NF-κB expression in the cytoplasm was increased in all groups with
hypertension including those with captopril and melatonin. However, after activation in the cytoplasm,
NF-κB is translocated into the nucleus with the subsequent stimulation of the expression of various
genes including those that participate in cardiac remodelling. Therefore, it is suggested that the
nuclear fraction of NF-κB and not the cytoplasmatic fraction is decisive for transcriptional induction
of particular genes [47]. NF-κB expression in the nucleus remained unchanged in the all three
models of hypertension. Furthermore, it was also not modified by captopril or melatonin. It may be
supposed that haemodynamic and proliferative effects of lactacystin were not mediated by NF-κB.
However, the consideration regarding the role of NF-κB in pathological hypertrophic growth is more
complex than previously supposed. Neurohumoral stimulators such as angiotensin II [60] activates the
redox sensitive NF-κB factor, which is critical for initiating the complex inflammatory response
involving a number of pro-inflammatory and pro-fibrotic cytokines, chemokines, cell adhesion
molecules, and variable growth factors both in the heart and vasculature [61,62]. On the other
hand, NF-κB stimulates also endothelial NO production with antioxidant, anti-inflammatory,
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and anti-proliferative action, potentially counterbalancing the undesirable effect of pathologic growth
stimulating factors [63,64]. Thus, to elucidate the mechanisms of pathologic myocardial growth
the mutual interplay between neurohumoral activators, oxidative stress, NF-κB, and its targeting
molecules exerting either pro-proliferative or anti-remodeling effects should be investigated.

To the best of our knowledge, we have shown for the first time that the chronic administration of
lactacystin induces a slight but significant SBP increase and the fibrotic remodelling of the LV. Since
the nuclear fraction of NF-κB remained unchanged, it seems that the haemodynamic and proliferative
effects of lactacystin were not triggered through the influence on NF-κB. Although the mechanism of
lactacystin effects remain unclear, it does not seem to be determined by a deficit in NO-production.
Although captopril prominently reduced SBP, it did not influence myocardial fibrosis. On the other
hand, melatonin does not prevent hypertension development, but reduces the level of insoluble and
total collagen which was associated with the enhancement of NOS activity in the LV and kidney. Thus,
the protective action of melatonin might have been determined by the anti-proliferative effect of NO.

4. Experimental Procedures

4.1. Animals and Treatment

All experimental procedures of the project No 2017/08-221 were carried out in accordance with
the Guide for the Care and Use of Laboratory Animals published by the US National Institute of Health
(NIH publication no 8523, revised 1985) and approved by an Ethics Committee for approval of animal
experimental projects of the Institute of Pathophysiology, Faculty of Medicine, Comenius University in
Bratislava on the 26 August 2008. Male adult (three-month-old) Wistar rats were randomly divided
into six groups (n = 11 in each group): age-matched control (Wistar) rats (Cont), rats treated with
L-NAME (L-NAME) (40 mg/kg/day), rats exposed to 24 h/day continuous light (24 h), rats treated
with lactacystin (Lac) (5 mg/kg/day) alone or together with either captopril (100 mg/kg/day) (Egis
Pharmaceuticals Ltd., Budapest, Hungary) (Lac+C), or melatonin (10 mg/kg/day) (Lac+M). Captopril,
melatonin, L-NAME and lactacystin were dissolved in drinking water and their concentrations were
adjusted to daily water consumption to ensure the correct dosage. Solutions containing melatonin
were protected from light exposure. All rats were kept in individual cages at 22–24 ◦C and fed with a
regular pellet diet ad libitum. SBP was measured each week by non-invasive tail-cuff plethysmography
(Hugo-Sachs Elektronik, Freiburg, Germany). After six weeks, the rats were decapitated and the tissues
and samples (LV, kidney, and blood) were collected. Weight of the heart (HW), left ventricle (LVW) and
right ventricle (RVW) were determined and their relative weights (LVW/body weight and RVW/body
weight ratio) were calculated. Samples of the left ventricle were frozen at −80 ◦C and later used for
the determination of hydroxyproline, oxidative stress and NF-κB concentrations. In addition, blood
samples were collected in EDTA tubes, centrifuged and the plasma was stored at −80 ◦C for the
subsequent determination of oxidative stress parameters. Unless stated otherwise, all chemicals were
purchased from Sigma Chemical Co. (Steinheim, Germany).

4.2. Morphometry of the Aorta

Formaldehyde fixed thoracic aorta samples were processed in paraffin, 5 µm thick sections
were stained with haematoxylin and eosin and morphometric parameters were evaluated by light
microscopy and a two-dimensional image analyser (Impor Pro; Kvant s.r.o., Bratislava, Slovakia).
The wall thickness (WT) and the inner circumference in mm were measured and the cross-sectional
area (CSA) in mm2 was calculated [65].

4.3. Determination of Hydroxyproline

The samples from the left ventricle were incrementally treated with different buffers as described
previously [66,67]. The soluble collagenous proteins were isolated with a pepsin buffer with
0.5 mol/L CH3COOH. The insoluble collagenous proteins were isolated with 1.25 mol/L NaOH.
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The hydroxyproline concentration (a marker of fibrosis) was estimated in both collagenous fractions
using spectrophotometry at 550 nm [68].

4.4. Assay of NO-Synthase (NOS) Activity

Total NOS activity was determined in crude LV and kidney tissue homogenates by measuring
the formation of [3H]-L-arginine (Amersham International plc, Little Chalfont, UK), as described
previously [69] with some modifications. The homogenates (10%, 50 µL) were incubated in the
presence of NOS substrate (20 µmol/L [3H]-L-arginine with a specific activity 5 GBq/mmol, about
100,000 dpm/min) and NOS cofactors (30 nmol/L calmodulin, 1 mmol/L β-NADPH, 3 µmol/L
tetrahydrobiopterine and 2 mmol/L Ca2+) in a total volume of 100 µL 50 nmol/L Tris-HCl (pH 7.4).
After 10 min of incubation at 37 ◦C, the reaction was halted by adding 1 mL of 20 mmol/L HEPES
buffer pH 5.5, containing 2 mmol/L EDTA, 2 mmol/L EGTA, and 1 mmol/L L-citrulline. Thereafter,
the samples were centrifuged for 1 min at 4 ◦C (10,000× g). Supernatants were applied to 1 mL Dowex
50 WX-8 columns (Na+ form). L-[3H] citrulline eluated by 1 mL of water was measured by liquid
scintillation counting. Finally, NOS activity was given as a picokatal per gram of protein.

4.5. Oxidative Load Measurement

Samples of plasma, LV and aorta were assayed for oxidative stress markers. Specific fluorescence
(λex. = 370 nm, λem. = 440 nm) was measured in order to assess AGEs (advanced glycation
end-products) as a marker of carbonyl stress. [70]. The calibration curve was constructed using
advanced glycation endproduct-bovine serum albumin (AGE-BSA) standard according to [71].
The standard spectrophotometrical method was used to evaluate advanced oxidation protein products
(AOPP) [72]. AOPP concentration was calculated on the basis of a chloramine T calibration curve
with potassium iodide. Thiobarbituric acid-reacting substances (TBARS) of lipid peroxidation
markers were measured according to Behuliak et al. [73]. TBARS contents were quantified based
on a 1,1,3,3-tetramethoxypropane calibration curve. The ferric reducing ability of plasma or tissue
homogenates (FRAP), as a measure of the antioxidant status in plasma or tissues was assessed [74].
The concentration of proteins in samples was estimated by a commercially available bicinchoninic
acid assay. All measurements were performed using spectrofluorometer Saphire II (Tecan, Gradig,
Vienna, Austria).

4.6. Western Blotting of NF-κB

Nuclear proteins were isolated using a high salt extraction protocol as described previously [75].
Protein concentration was determined by Bradford (Thermo Fisher Scientific, Waltham, MA, USA).
Samples were subjected to SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis).
After blocking, blots were incubated overnight at 4 ◦C with primary antibody anti-NF-κB p65
(sc-372; Santa Cruz Biotechnology, Dallas, TX, USA). After membrane washing, the signal of
fluorescently-labelled secondary antibodies (#5151 and #5257; Cell Signalling Technology, Danvers,
MA, USA) was detected using an Odyssey infrared imager (LI-COR Biosciences, Lincoln, NE, USA).
β-actin was used as endogenous loading control (#3700; Cell Signalling Technology, Danvers, MA,
USA) for cytosolic fraction. The total protein stain with Coomassie Brilliant Blue was used to normalize
the nuclear target protein expression [76]. Protein levels were quantified through the use of Odyssey
IR imaging system software ver. 2.0 (LI-COR Bioscences, Lincoln, NE, USA).

4.7. Statistical Analysis

The results are expressed as mean ± S.E.M. A one-way, two-tailed analysis of variance (ANOVA)
and the Bonferroni post-hoc test were used for statistical analysis. A nonparametric Kruskal-Wallis
test and a Mann-Whitney test were used for the statistical analysis of NF-κB expression. Differences
were considered significant at a p-value < 0.05.
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5. Limitations

To reliably interpret the role of NF-κB in pathological hypertrophic growth, various
methodological approaches such as investigation of the amount of NF-κB vs. its DNA-binding activity
in the nuclear extract should be considered. Despite increased cytosolic NF-κB level in different
models of hypertension in our study, there were no significant changes of NF-κB protein amount in
nuclear extracts of heart in any model. Since nuclear localization is a prerequisite for transcription
factor binding, we do not expect altered NF-κB DNA binding activity following hypertension in the
presented models. Although several posttranslational modifications of NF-κB p65 subunits modulating
its activity, such as phosphorylation or acetylation are known, these actions occur in cytoplasm prior to
nuclear translocation. Importantly, nuclear phosphorylation of NF-κB was shown to determine target
gene specificity, but not its binding activity [77,78]. Moreover, numerous studies found altered NF-κB
binding activity only concomitantly with changes in nuclear NF-κB p65 protein amount [79,80]. Thus,
it does not seem unreasonable to suppose that quantification of nuclear NF-κB protein could represent
a reliable indicator of its activation.

The study might have provided more complex insights if the control group with captopril
or melatonin would have been involved in the design. However, to increase the number of
simultaneously-studied groups and animals was beyond our technical capacity. Moreover, in our
previous studies [41,81] it has been shown that melatonin did not induce changes in hemodynamics,
oxidative parameters, or NO-synthase activities in the control group. Thus, it might be justified to
suppose that melatonin would not have an impact on the structure of the left heart in rats not afflicted
by a pathologic process.

6. Conclusions

We conclude that the chronic administration of lactacystin represents a novel model of
hypertension with collagenous rebuilding of the LV, convenient for testing antihypertensive drugs or
agents exerting a cardiovascular benefit beyond blood pressure reduction.
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