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Abstract

RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows
excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in
which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with
increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show
that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary
rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective
descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We
also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime
will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and
biochemical traits.
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Introduction
The inference of divergence times is accomplished by assum-
ing a constant rate throughout the tree (a strict molecular
clock) or by relaxing the strict molecular clock (Ho and
Duchêne 2014; dos Reis et al. 2016; Kumar and Hedges
2016). Bayesian approaches are widely applied to relaxed
clock dating analyses. They require specification of a proba-
bility distribution of evolutionary rates in the tree (e.g., log-
normal distribution), as well as an assumption of the presence
or absence of rate autocorrelation among branches. In con-
trast, the RelTime approach does not require specification of
such priors, and produces relative node ages that can then be
transformed into absolute dates by using calibration con-
straints for one or more nodes (Tamura et al. 2012, 2013).
RelTime performs well for estimating divergence times in
analyses of many large empirical data sets (Mello et al.
2017) and simulated data sets (Tamura et al. 2012; Filipski
et al. 2014).

RelTime’s computational speed (fig. 1) and accuracy have
led to its use for estimating divergence time for large data sets
(Tamura et al. 2012; Mahler et al. 2013; Bond et al. 2014;
Bonaldo et al. 2016). However, a mathematical foundation
for the RelTime method has not yet been provided, which is
needed not only to understand basic properties and assump-
tions of RelTime, but also to reveal its relationship with other

molecular dating methods (Ho and Duchêne 2014; dos Reis
et al. 2016; Kumar and Hedges 2016). In the following, we
present the theoretical foundation of the RelTime method.
We also assess the absolute performance of RelTime and
compare it with other methods by analyzing data generated
using computer simulations in which sequences were evolved
according to three different branch rate models: independent
(Drummond et al. 2006), autocorrelated (Kishino et al. 2001),
and hybrid (Beaulieu et al. 2015).

Mathematical Theory

Theoretical Analysis for a Phylogeny with Three Taxa
and an Outgroup
We begin with the simplest case in which the phylogeny
contains a clade with three ingroup taxa (subtree at node
5) and one outgroup taxon (fig. 2a). In this tree, branch
lengths b1 and b2 represent the amount of evolutionary
change that has occurred in lineages emanating from node
4 and leading to taxon 1 and taxon 2, respectively. We assume
that taxon 1 and 2 are sampled at the same evolutionary time
(t1¼ 0 and t2¼ 0), which is usually the case in phylogenetic
analysis of data sampled from living species. The contempo-
raneous sampling of data produces sampling times equal to 0,
which serve as calibration points (Tamura et al. 2012). By
using branch lengths in this phylogeny (b’s), we can estimate
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the relative evolutionary rates (r’s) for all the lineages as well
as relative divergence times (t’s). Here, a lineage refers to a
branch and all the taxa (and branches) in the descendant
subtree. For example, lineage a in figure 2a contains two taxa
(1 and 2) and three branches with lengths b1, b2, and b4.

The following system of equations formalizes the RelTime
approach mathematically by linking relative rates for lineages
(ri) with branch lengths (bi) in figure 2a. Here,,

r1=r2 ¼ b1=b2; (1)

r3=ra ¼ b3=La; (2)

where La is depth of node 5 on lineage a that contains taxon 1
and 2; La ¼ b4 þ 1=2(b1þ b2).

We set:

ra ¼ 1=2ðr1 þ r2Þ; (3)

r0 ¼ 1=2ðra þ r3Þ: (4)

The setting of equalities in equations (3) and (4) leads to
preference for the minimum rate change between the lineage
originating at node 5 and the descendant lineage originating
at node 4. The selection of lineage rate ra will be constrained
by rate ratios imposed by equations (1) and (2), which relaxes
the strict molecular clock.

Because all the lineage rates are relative, one unknown is
reduced by setting the group rate at the most recent com-
mon ancestor of the ingroup node to be 1, that is,

r0 ¼ 1: (5)

We solve for each ri by using equations (1–5) and get:

r1¼4b1ðb1þb2þ2b4Þ=½ðb1þb2Þðb1þb2þ2b3þ2b4Þ�; (6)

r2¼4b2ðb1þb2þ2b4Þ=½ðb1þb2Þðb1þb2þ2b3þ2b4Þ�; (7)

r3 ¼ 4b3=ðb1 þ b2 þ 2b3 þ 2b4Þ; (8)

ra ¼ 2ðb1 þ b2 þ 2b4Þ=ðb1 þ b2 þ 2b3 þ 2b4Þ: (9)

The estimates of relative lineage rates and lengths produce
an ultrametric tree with relative times for node 4 (t4) and
node 5 (t5):

t4¼ðb1þb2Þðb1þb2þ2b3þ2b4Þ=4ðb1þb2þ2b4Þ; (10)

t5 ¼ ðb1 þ b2 þ 2b3 þ 2b4Þ=4: (11)

The above equations (6–11) constitute the relative rate
framework (RRF) for phylogenies with three taxa and one
outgroup. These equations yield point estimates for line-
age rates and node ages. Because branch lengths have
variances, the resulting lineage rate estimates have var-
iances. The variance of relative node ages will be a func-
tion of branch length variances and the variance
contributed by evolutionary rate differences among
branches (see Discussion).

Theoretical Analysis for Phylogenies Containing Four
Taxa and an Outgroup
To estimate six evolutionary rates (r1–r4, ra, and rb) using
six branch length estimates (b1–b6) for a phylogeny con-
taining four ingroup taxa (fig. 2b) we write a set of seven
equations:

r1=r2 ¼ b1=b2; (12)

r3=r4 ¼ b3=b4; (13)

ra ¼ 1=2ðr1 þ r2Þ; (14)

rb ¼ 1=2ðr3 þ r4Þ; (15)

r0 ¼ 1=2ðra þ rbÞ; (16)

ra=rb ¼ La=Lb; (17)

r0 ¼ 1: (18)

FIG. 1. (a) Computational time taken by RelTime and MCMCTree (Bayesian method) to estimate divergence times for data sets containing
increasing number of sequences (n). The tested sequence alignment consisted of 4,493 sites in which sequence evolution was simulated with
extensive rate variation (RR50 data from Tamura et al. 2012). RelTime’s speed advantage increases with data volume by O(n2). (b) Distribution of
computation speed ratio of RelTime to MCMCTree for 70 data sets, each containing 100 ingroup sequences that were simulated as described in the
Materials and Methods.
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Here, La ¼ b5 þ 1=2ðb1 þ b2Þ and Lb ¼ b6þ
1=2ðb3 þ b4Þ. Equations (14–16) above lead to a preference
for minimum changes in rates between ancestor–descendant
lineage pairs. In this system, ri ’s are not required to be equal
to one another and the rate assignments are constrained by
the rate ratios among lineages (eqs. 12, 13, and 17), which
relaxes the strict molecular clock.

We solve for each ri from equations (12–18) to estimate
relative rates and node ages.

r1¼ 4b1ðb1þb2þ2b5Þ=½ðb1þb2Þðb1þb2þb3þb4

þ2b5þ2b6Þ�; (19)

r2¼4b2ðb1þb2þ2b5Þ=½ðb1þb2Þðb1þb2þb3þb4

þ2b5þ2b6Þ�; (20)

r3 ¼ 4b3ðb3 þ b4 þ 2b6Þ=½ðb3 þ b4Þðb1 þ b2 þ b3

þ b4 þ 2b5 þ 2b6Þ�;
(21)

r4¼4b4ðb3þb4þ2b6Þ=½ðb3þb4Þðb1þb2þb3þb4

þ2b5þ2b6Þ�; (22)

ra¼2ðb1þb2þ2b5Þ=ðb1þb2þb3þb4þ2b5þ2b6Þ; (23)

rb¼2ðb3þb4þ2b6Þ=ðb1þb2þb3þb4þ2b5þ2b6Þ: (24)

The estimates of relative node ages t5, t6, t7 for nodes 5, 6,
and 7, respectively, are:

t5¼ðb1þb2Þðb1þb2þb3þb4þ2b5þ2b6Þ=½4ðb1

þb2þ2b5Þ�; (25)

t6¼ðb3þb4Þðb1þb2þb3þb4þ2b5þ2b6Þ=½4ðb3

þb4þ2b6Þ�; (26)

t7 ¼ ðb1 þ b2 þ b3 þ b4 þ 2b5 þ 2b6Þ=4: (27)

The above equations (19–27) establish RRF of the RelTime
approach for a tree containing four taxa and one outgroup.
As previously mentioned, point estimates of node ages and
lineage rates have variances because branch lengths have
variances and because evolutionary rates are not equal
among lineages (see Discussion).

Relative Rate Framework with Geometric Means
In both the original RelTime approach (Tamura et al. 2012)
and the mathematical formulations above, we considered an
arithmetic mean when averaging branch lengths to minimize
evolutionary rate changes. This approach does not assume an
equal rate, but is rather a natural way to calculate node
depths by averaging branch lengths. We have now developed
analytical formulas for an alternative RRF using the geometric
mean that balances the rate changes between two descen-
dant lineages. For example, if b1¼ 1 and b2¼ 4 in figure 2a,
then the arithmetic mean will give 2.5. Thus, evolutionary rate
r1 is 2.5 times slower and r2 is 1.6 times faster when compared
with the average rate. The difference in rate change (between
2.5 and 1.6, in the present case) becomes larger as the differ-
ence between b1 and b2 becomes larger when using the ar-
ithmetic mean. In contrast, the geometric mean would give
2.0, which results in two times slower rate in b1 and two times
faster rate in b2, as compared with the average rate. That is,
the difference in rate between the ancestral and descendant
lineages is always equal for sister lineages when using the
geometric mean, which is not the case if the arithmetic
mean is used.

Using a geometric means approach, we obtain the follow-
ing analytical formulas for a phylogeny containing three
ingroup taxa (fig. 2a):

r1 ¼
ffiffiffiffiffi
b1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b4

q
=
ffiffiffiffiffiffiffiffiffi
b2b3

p
; (28)

r2 ¼
ffiffiffiffiffi
b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b4

q
=
ffiffiffiffiffiffiffiffiffi
b1b3

p
; (29)

r3 ¼
ffiffiffiffiffi
b3

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b4

q
; (30)

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1b2

p
þ b4

q
=
ffiffiffiffiffi
b3

p
; (31)

t4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2b3

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b4

q
; (32)

t5 ¼
ffiffiffiffiffi
b3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b4

q
: (33)

For the 4-taxon case in figure 2b, the equations are as
follows:

r1 ¼
ffiffiffiffiffi
b1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
=
ffiffiffiffiffi
b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
; (34)

r2 ¼
ffiffiffiffiffi
b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
=
ffiffiffiffiffi
b1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
; (35)

FIG. 2. The relative rate framework for RelTime method. (a) A tree
containing three ingroup sequences with an outgroup. Branch
lengths are bi’s and lineage rates are ri’s. La ¼ b4 þ 1=2(b1þ b2). (b)
The case of four ingroup sequences with an outgroup. Here, La ¼ b5

þ 1=2(b1þ b2). Lb ¼ b6 þ 1=2(b3þ b4), when using the arithmetic
mean. See figure 3 and its legend for a simple procedure outlining
the calculation of relative rates using RRF.
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r3 ¼
ffiffiffiffiffi
b3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
=
ffiffiffiffiffi
b4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
; (36)

r4 ¼
ffiffiffiffiffi
b4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
=
ffiffiffiffiffi
b3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
; (37)

ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1b2

p
þ b5

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
; (38)

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b3b4

p
þ b6

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
; (39)

t5 ¼
ffiffiffiffiffiffiffiffiffi
b1b2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
; (40)

t6 ¼
ffiffiffiffiffiffiffiffiffi
b3b4

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1b2

p
þ b5

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
; (41)

t7 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1b2

p
þ b5

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b3b4

p
þ b6

q
: (42)

Relative Rate Framework for a General Case
Next, we consider a general case of a phylogeny with more
than four ingroup taxa. In this case, RelTime applies RRF with
a bottom-up approach, starting from the tips (external
branches) of the phylogeny and moving toward the root. In
the first step, we generate local relative lineage rates for the
subtrees containing three and four taxa (subtree x and y,
respectively) in a phylogeny containing eight taxa and an
outgroup (fig. 3). Subtree y contains four taxa, so we apply
equations (34–39) to generate relative rates. Equations (28–
31) will be used to estimate rates for clade x which contains
three ingroup taxa.

In the next step, we consider the parent clade (z) that has
four taxa: composite taxon I consisting of two taxa (1 and 2),

taxon II consisting of one taxon (3), composite taxon III con-
sisting of two taxa (4 and 5), and composite taxon IV con-
taining two taxa (6 and 7) (fig. 3b). We estimate branch
lengths (bI, bII, bIII, and bIV) by using the geometric means:
bI ¼

ffiffiffiffiffiffiffiffiffi
b1b2

p
þ b9, bII ¼ b3, bIII ¼

ffiffiffiffiffiffiffiffiffi
b4b5

p
þ b10, and

bIV ¼
ffiffiffiffiffiffiffiffiffi
b6b7

p
þ b11. Then, we use equations (34–39) to com-

pute relative rates for all the lineages using these branch
lengths. In bigger phylogenies, this process is carried out for
every internal node in a postorder traversal. In the current
example, node w is the common ancestor of all the ingroup
taxa and is in a 3-taxon configuration (fig. 3c). We now have
bV ¼

ffiffiffiffiffiffiffiffi
bIbII

p
þ bx and bVI ¼

ffiffiffiffiffiffiffiffiffiffiffi
bIIIbIV

p
þ by and apply equa-

tions (28–31). At this stage, we have local (relative) lineage
rate estimates for nodes in the ingroup tree. Finally, all the
rates in the tree are computed by multiplying descendant
lineage rates by their respective ancestral lineage rates in
preorder traversal to generate final relative rates such that
the ingroup root node (e.g., node w in fig. 3c) has an average
relative lineage rate equal to 1.

Results
We evaluated the performance of RRF for correctly estimating
lineage rates and divergence times by analyzing data gener-
ated using computer simulation in which sequences were
evolved according to the autocorrelated rate (AR) model
(Kishino et al. 2001), the independent rate (IR) model
(Drummond et al. 2006), as well as a model that contains
multiple distributions of rates (hybrid rates [HR]). We present
results from the analysis of a collection of small data sets
(three ingroup sequences; AR and IR models) and two col-
lections of large data sets: one containing 100 ingroup
sequences (AR and IR models) and another containing 91-
ingroup sequences (HR model).

FIG. 3. Calculating relative lineage rates in a phylogeny. (a) A phylogeny containing eight ingroup sequences (taxa) that consists of three taxa nodes
(x and w) and four taxa nodes (y and z). (b) Reduced phylogeny and branch lengths after applying RRF to nodes x and y. (c) Final phylogeny after
applying RRF to node z in panel b, which produces node w in a three taxa configuration. After applying RRF to node w, a preorder traversal scales
descendant lineage rates by multiplying them by their ancestral lineage rates to generate final relative rates. The ingroup root node (w) has an
average relative lineage rate equal to 1. Multisequence taxa are indicated by Roman numerals.
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Analysis of Small Data Sets (Phylogeny with Three
Ingroup Sequences)
We first tested the accuracy of divergence times esti-
mated via RRF by analyzing data sets containing three
ingroup sequences. We used RRF with geometric means
and compared the modeled (true) values with estimated
lineage rates as well as node ages (fig. 4). The lineage rates
produced by RRF were similar to the true rates for data
sets that were evolved under the AR model (fig. 4a); the
relationship showed a linear regression slope of 0.99. RRF
estimates for external lineages, were similarly good (blue
circles in fig. 4a, r2¼ 0.68). The relationship was also
strong for internal branches, but with greater dispersion
(red circles in fig. 4a, r2¼ 0.29). RRF performance for AR
data sets was similar to that observed for IR data sets
(fig. 4b). Overall, the success in estimating lineage-
specific evolutionary rates translates into robust esti-
mates of relative times for AR (fig. 4c) and IR data sets
(fig. 4d).

Bayesian methods produce branch-specific rates under
a given statistical distribution of rates (e.g., lognormal),
which differs from RRF where relative lineage rates are
considered. Therefore, we compared the true values of
branch rates with the branch rates derived using a
Bayesian method. We provided correct priors (based on
simulation parameters) and conducted the analyses using
MCMCTree software (Yang 2007). Bayesian branch rate
estimates showed a more diffuse relationship with true
rates in internal branches for AR data sets (fig. 4e;
r2¼ 0.00) as compared with RRF (fig. 4a; r2¼ 0.29).
Fundamental reasons underlying these patterns are pre-
sented in the Discussion section. These patterns notwith-
standing, Bayesian estimates of times for AR data sets
showed a slope of 0.99 with true time estimates
(fig. 4g), which means that node age estimates are gener-
ally robust to difficulties in estimating branch-specific
rates. This robustness was also seen for IR data sets, where
Bayesian branch rates showed a more diffuse relationship
with the true rates (fig. 4f), but estimated times showed a
slope close to 1 with a high r2 (0.91). Overall, both
Bayesian and RRF approaches showed similar or lower
accuracy in estimation of rates and node ages for IR
data sets as compared with AR data sets, potentially be-
cause rate independence requires the estimation of a
greater number of free parameters.

Analysis of Large Data Sets (Phylogeny with 100
Ingroup Sequences)
We next analyzed data sets consisting of 100 ingroup
sequences, which were evolved over a range of empirical
rate variation parameters. As observed for data sets con-
taining only three ingroup sequences, RRF lineage rate
estimates were highly correlated with the true rates for
AR data sets (fig. 5a). Lineage rate correlations were gen-
erally lower for IR data sets and these correlations were
higher for external (tip) lineages (fig. 5b). Importantly,
distributions of the slopes of RelTime node age estimates

and true times were centered at close to 1 for both AR
and IR data sets (fig. 5c).

Analysis of Hybrid Rate Data Sets (Phylogeny
Containing 91 Ingroup Sequences)
We also examined the performance of RRF in an analysis of
simulated data from Beaulieu et al. (2015), who simulated two
lognormal distributions (hybrid rate model) for an angio-
sperm phylogeny in which herbaceous clades exhibited higher
and more variable evolutionary rates than woody clades
(fig. 6a). They reported that one rate model Bayesian methods
produced considerably more ancient date estimates for the
divergence of herbaceous and woody clades. This overestima-
tion of divergence time became more severe as the difference
between the two rates increased (fig. 6b). Application of RRF
produced divergence time estimates that were much closer
to true times (fig. 6c and d), which shows that RRF can be
useful in cases where the rate distribution differs among
clades (Smith and Donoghue 2008; Dornburg et al. 2012;
Beaulieu et al. 2015) or when clocks are local (Drummond
and Suchard 2010; Crisp et al. 2014).

Furthermore, Tamura et al. (2012) found that RelTime
produced accurate time estimates in simulations with a
very large number of sequences even when one clade pos-
sessed accelerated evolutionary rates, where penalized likeli-
hood methods did not perform as well. In general, we expect
that the limitations of on rate model Bayesian analyses will be
overcome by local clock methods (Drummond and Suchard
2010; Höhna et al. 2016; Lartillot et al. 2016), but the compu-
tational time required to analyze even modestly sized data
sets via these approaches can be prohibitive. So, the current
RRF approach, which does not assume a specific model for
rate variation, may be suitable for such data in its current
implementation or as a foundation for future methodological
refinements.

Discussion
We have presented a mathematical foundation for the rela-
tive rate framework (RRF) underlying the RelTime method. In
the following, we compare RRF with other approaches for
estimating divergence times and present the motivation be-
hind RRF.

Lineage Rates versus Branch Rates
In RRF, evolutionary rate heterogeneity in a phylogeny is con-
sidered by comparing rates between sister lineages emanating
from internal nodes in a phylogeny. A lineage rate is an av-
erage of all the lineage rates that belong to that lineage, in-
cluding all the descendants (e.g., node x in fig. 3). RRF’s
estimation of evolutionary lineage rates is fundamentally dif-
ferent from the comparison and modeling of branch rates in
other approaches. For example, the penalized likelihood
methods consider differences in rates between ancestral
and descendant branches (Sanderson 1997, 2003), and
Bayesian methods model branch rates to share a probabilistic
distribution (e.g., lognormal distribution).

The distinction between lineage and branch rates compli-
cates direct comparisons of evolutionary rates produced by
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FIG. 4. Performance of RRF and MCMCTree Bayesian analyses for three ingroup sequences with an outgroup (topology in fig. 2a). RRF lineage rate
estimates are compared with the true lineage rate estimates for sequences that evolved under (a) autocorrelated and (b) independent rate models.
Blue circles represent external lineages (single taxon, r1, r2, and r3) and red circles represent the internal lineage (ra). RRF estimates of divergence
times for (c) autocorrelated rate and (d) independent rate data sets. Bayesian (MCMCTree) estimates of branch rates are compared with the true
branch rates for sequences evolved under (e) autocorrelated and (f) independent rate models. Blue circles indicate external branches (r1, r2, and r3)
and red circles show the internal branch (r4). Bayesian estimates of divergence times for (g) autocorrelated rate and (h) independent rate data sets.
Each panel contains results from 50 simulated data sets. All rates and divergence time estimates are normalized to allow direct comparison
between true and estimated values. Regression slope and correlation coefficient (r2) are shown for each panel.
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using RelTime and Bayesian methods, except for external (tip)
branches for which the lineages consist of only one branch. In
this case, RelTime and Bayesian estimates of rates show

similar trends (fig. 4, blue circles). This trend was also observed
in the analysis of 100 sequence data sets, where the correla-
tion of the estimated external branch rates with true branch
rates was high for both RelTime (median correlation¼ 0.76
and 0.69) and Bayesian (median correlation¼ 0.72 and 0.86)
analyses of AR and IR data sets, respectively.

For internal branches, computer simulations showed
greater similarity between RRF estimates of lineage rates
and the true lineage rates (fig. 4a and b) as compared with
the similarity observed between Bayesian estimates of branch
rates and the true branch rates (fig. 4e and f, respectively). This
was also the case in the analysis of 100 sequence data sets:
internal branch rates from Bayesian methods were less
strongly correlated with the true rates (median
correlation¼ 0.42 and 0.36 for AR and IR data sets, respec-
tively), as compared with those observed for lineage rates
from RRF (median correlation¼ 0.79 and 0.55 for AR and
IR data sets, respectively).

These trends are due to the fact that the estimate of a
branch rate is a function of two time estimates: one for
the ancestral node and another for the descendant node.
For example, the variance of the rate on branch with
length b4 in figure 2a is a function of the variance of
two time estimates (t4 and t5), in addition to the variance
of b4. In contrast, the variance of a lineage rate (e.g., ra in
fig. 2a) is a function of the variance of only one time
estimate (t5), in addition to the lineage depth (La), be-
cause the other time point is zero in contemporary se-
quence sampling. Thus, branch rates are estimated with
greater variance than lineage rates, which results in lower
correlations seen for Bayesian approaches.

Underlying Evolutionary Rate Model in RRF
RRF exploits the fact that the estimation of the ratio of lineage
rates at any node in a phylogeny is independent of that node’s
age. For example, the ratio of evolutionary rates at node 4, r1/
r2, does not depend on t4 (Fig. 7a). It is clear that the rate of
evolution is higher in the lineage leading from node 4 to taxon
2 than to taxon 1 (r2> r1), because b2 is longer than b1 in
figure 7a. In fact, we can estimate r1/r2 (¼ b1/b2) without
knowing anything about the probability distribution of evo-
lutionary rates throughout the tree. Similarly, the other rate
ratio in this tree does not depend on knowledge of the dis-
tribution of rates among branches or lineages, it is simply
[(b1þ b2)/2þ b4]/b3 when using the arithmetic means and
ð
ffiffiffiffiffiffiffiffiffi
b1b2

p
þ b4Þ=b3 when using the geometric means.

However, the node-by-node specification of relative line-
age rates is not sufficient to estimate relative times t4 and t5.
For that, we need to know the relationship of subtree rate s4

and branch rate r4, where s4 is the overall evolutionary rate of
the subtree originating at node 4 (contains taxon 1 and 2)
and r4 is the evolutionary rate on branch b4 (fig. 7a). Without
assuming a specific distribution of rates, s4/r4 cannot be de-
termined uniquely and t4 can be at any point between 0 and
t5. Figure 7c and d present two extreme possibilities. In one, if
the subtree rate (s4) is much higher after the divergence event
at node 4 (s4� r4), then the estimate of t4 will be small and
the divergence event recent (fig. 7c). Alternately, if the subtree

FIG. 5. Performance of RRF in the analysis of data sets with 100 ingroup
sequences and an outgroup. Fraction of data sets for which RRF in-
ferred lineage rates are correlated with true rates at different levels of
correlation for data sets simulated with (a) autocorrelated rates and
(b) independent rates. Dotted lines represent external branches and
solid lines indicate the internal branches. (c) Distribution of the linear
regression slopes of RRF estimates and true times for different data
sets. The results presented are from analyses of 35 data sets in which
sequences evolved with autocorrelated branch rates (blue lines) and
another 35 data sets that were evolved with independent branch rates
(red lines). In regression analysis, the intercept was set to zero, because
the estimated node age is expected to be zero when the true node age
is zero. The regression slopes generated with and without this as-
sumption produced similar patterns.
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rate is much slower after the divergence event at node 4
(s4� r4), then t4 will be much more ancient (fig. 7d).

In its mathematical formulation, RRF considers the best
estimate of the rate of evolution of an ancestral lineage to be
the average of the rate of evolution of its two descendant
lineages (e.g., eqs. 3, 14, 15, and 16), while accommodating the
relative rates among lineages. In the current example, this
would result in the timetree shown in figure 7b. This is the
principle of minimum rate change from the ancestor to its
immediate descendants, where we do not favor extreme rate
assignments, for example, those in figure 7c and d.
Probabilities of such extreme rate assignments are also low
in commonly used branch rate distributions (e.g., lognormal,
normal, and exponential distributions), so Bayesian methods
also tend to favor the smallest rate change needed to explain
the data.

Relationship of RRF with Other Molecular Clock
Methods
The treatment of evolutionary rates is conceptually different
between Bayesian methods and RRF, because RRF does not
assume a specific statistical distribution for modeling (lineage)
rate variation at the outset and Bayesian methods model
branch rates rather than the lineage rates. The application

of the principle of minimum rate change in RRF is different
from nonparametric and semiparametric approaches based
on the idea of Sanderson (1997), because RRF minimizes lin-
eage rate changes rather than the branch rate changes from
an ancestor to its immediate descendants. In addition, RRF
does not attempt to estimate a universal penalty for the
speed of rate change throughout the tree.

RRF is distinct from strict clock approaches because strict
clock methods only apply rate averaging (e.g., eqs. 3 and 4) at
each node in the tree, but RRF imposes an additional con-
straint that the ratio of sister lineage rates be the ratio of
their lineage lengths (e.g., eqs. 1 and 2). These additional
constraints relax the strict clock and allow rates to vary
throughout the tree. For this reason, RelTime is also different
from some molecular clock methods that assume the ratio
of ages between two nodes to be proportional to the ratio of
their average node-to-tip distances (Purvis 1995; Britton
et al. 2002, 2007). This assumption is tantamount to assum-
ing equality of rates among lineages, and, thus, a strict mo-
lecular clock. For this reason, these approaches require
pruning of taxa or lineages for which the rate equality
does not apply (Takezaki et al. 1995). RRF does not assume
equality among any lineage rates at any time, and it does not
require the removal of rate heterogeneous lineages.

FIG. 6. (a) Hybrid distribution of rates for branches leading to woody taxa (brown) and herbaceous taxa (green), with the former evolving three
times (3�) slower than the latter. (b) Bayesian estimates reported by Beaulieu et al. (2015) when the rate difference between clades was 3-fold (3�,
solid line) and 6-fold (6�, dashed line), with the simulated angiosperm age of 140 Ma shown by a red line. RelTime estimates of angiosperm age for
Beaulieu et al. (2015)’s alignments with (c) 3�mean rate difference and (d) 6�mean rate difference. Median and SD for age estimates are shown.
Beaulieu et al. (2015) simulated 100 replicates (1,000 bases) under a GTR model for each scenario. Bayesian analyses were conducted using a single
uncorrelated lognormal rate prior in Beaulieu et al. (2015). The same alignments, topology, and ingroup calibrations were used in RRF analyses.
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Statistical Distribution of Relative Lineage Rates
Relative lineage rates produced by RRF will show extensive
correlation, because the evolutionary rate of a lineage is a func-
tion of evolutionary rates of all its descendant lineages. This
would result in both local and global correlation, which is
expected to be present in phylogenies with autocorrelated as
well as independent branch rates. As expected, the analysis of
100 sequence data sets showed correlation between ancestral
and descendant lineage rates when branch rates were autocor-
related (median correlation¼ 0.88) or independent (median
correlation¼ 0.77). Therefore, RRF is fundamentally different
from the autocorrelated (branch) rate model of Kishino et al.
(2001) as well as the independent (branch) rate model of
Drummond et al. (2006), as they deal with branches rather
than lineages, as defined here. For this reason, the lineage rates
produced by RRF are not directly comparable with those ob-
served for branch rates produced by Bayesian methods.

Even though RRF does not require a statistical distribu-
tion of lineage rates at the outset, the resulting estimates of
lineage rates may follow a statistical distribution. We exam-
ined this relationship in an analysis of 100 ingroup sequence
data sets in which branch rates were simulated with lognor-
mal, exponential, or uniform distributions. When branch
rates followed a lognormal distribution, the distribution of
true lineage rates was also lognormal, as was the distribution
of RRF lineage rate estimates (fig. 8a–d). When the branch
rates followed an exponential distribution, the RRF and true
lineage rates showed a similar distribution (fig. 8e). In the
case of a uniform distribution of branch rates, the lineage
rates showed a normal-like distribution and the RRF rate
estimates were lognormally distributed (fig. 8f). All of these
results suggest that a flexible lognormal distribution will
generally fit the distribution of RRF lineage rates.
Importantly, time estimates showed a linear relationship
with the true times, with slopes close to 1.0 (fig. 8g–i).

Point Estimates and Their Variances
RRF yields point estimates for (relative) lineage rates and
divergence times based on branch lengths. As is the com-
mon practice in classical statistics, estimates of dispersion
such as SEs and confidence intervals accompany all esti-
mates. The variance of a lineage rate estimate is a function
of branch length variances. It can be obtained analytically
by using the equations for lineage rate (e.g., eqs. 28–31 for
the case of three taxa with outgroup by the delta method)
or simply by using a bootstrap sampling procedure.
However, the estimation of confidence intervals around
the node ages depends on branch length variances as well
as the degree of inequality of evolutionary rates among
lineages (Kumar and Hedges 2016). Tamura et al. (2013)
proposed a method to estimate confidence intervals
within RelTime, which produces rather wide confidence
intervals. We are currently investigating an advanced ap-
proach to narrow confidence intervals while maintaining
appropriate coverage probabilities, but this subject is be-
yond the scope of the current article.

Computational Speed of RelTime
RRF scales well with increasing numbers of sequences and is
much faster than Bayesian methods for analyzing of molec-
ular sequence data (fig. 1). The fast computational speed is
due to the innovation that RRF uses all the data first to map a
large alignment onto a phylogeny, and then it uses the result-
ing branch lengths to generate relative divergence times and
evolutionary lineage rates. The computational time taken by
RRF is the sum of time taken to generate maximum likelihood
estimates of branch lengths for a given sequence alignment
and phylogeny and the time taken to estimate rates and dates
using RRF. The latter is negligible compared with the former,
because of the analytical nature of RRF. In comparison,
Bayesian methods are computationally demanding because
they require a substantial exploration of likelihood space us-
ing prior distributions to generate posterior estimates of rates
and divergence times.

RelTime for Phylogenies with Branch Lengths
The above decomposition has a positive side effect, in addition
to making RelTime computationally speedy. RRF may be ap-
plied to any phylogeny where branch lengths reflect the
amount of change. For example, RRF is directly applicable
when branch lengths are estimated by using pairwise evolu-
tionary distances and a least squares approach for a given tree
topology (Rzhetsky and Nei 1993). In addition to multiple
sequence alignments, such distances can come from unaligned
and locally aligned genome or genomic segments (Otu and
Sayood 2003; Henz et al. 2005; Auch et al. 2006; Deng et al.
2006; Gao and Qi 2007; Lin et al. 2009; Xu and Hao 2009).

In fact, RRF can be applied to any phylogeny where branch
lengths are generated using other types of molecular data
(e.g., gene expression patterns and breakpoint distances) or
nonmolecular data (e.g., morphological and life history traits)
(Herniou et al. 2001; Gramm and Niedermeier 2002; King et al.
2016; Cooney et al. 2017). Of course, the accuracy of the
relative rate and time inferences made for such data depends

FIG. 7. A phylogenetic tree of three taxa (1, 2, and 3). (a) Original
phylogenetic tree with the observed branch lengths (b’s), which are
necessary to estimate node times (t’s) shown in panel (b).
Evolutionary trees where the rate for the subtree containing taxon
1 and 2 (s4) is much (c) faster or (d) slower than that of its ancestral
branch (r4).
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directly on the accuracy of the phylogenetic tree and the
branch lengths, so the biological interpretations of the results
obtained will require utmost care.

Usefulness of Relative Node Ages
RRF’s accurate estimation of relative node ages without as-
suming a speciation model or calibration priors can benefit
many applications (Tamura et al. 2012). For example, relative
node ages from molecular data are directly comparable with
those from fossil data. This allows evaluation of biological
hypotheses without the circularity created by the use of cal-
ibration priors and densities inferred from molecular data

(Battistuzzi et al. 2015; Gold et al. 2017). Along these lines,
RRF has been used to develop a protocol to identify calibra-
tion priors that have the strongest influence on the final time
estimates in Bayesian dating (Battistuzzi et al. 2015), because
the cross-validation methods are unlikely to be effective
(Warnock et al. 2012, 2015).

Inferring Absolute Times from Relative Node Ages
By placing calibration constraints on one or more nodes in
the tree, we can generate an absolute timetree from the
ultrametric tree containing relative node ages. Tamura et al.
(2013) presented an algorithmic approach for adjusting

FIG. 8. Distributions of true and RRF-derived estimates of lineage rates. Branch rates were simulated under autocorrelated lognormal rate models
with (a) low and (b) high dispersions, independent lognormal rate models with (c) low and (d) high dispersions, and independent rate models with
(e) exponential and (f) uniform distributions. Green lines represent the fitted curves of the true lineage rate distributions and blue bars show the
distributions of RRF rates. Rate unit is substitutions per site per million years. (g–i) Relationships between true times and RRF times in six rate
scenarios. Black circles and lines represent the average times of 5 replicates simulated under rate scenarios in (a), (c), and (e), and gray triangles and
lines represent the average times of 5 replicates simulated under rate scenarios in (b), (d), and (f). All times are normalized to the sum of ingroup
divergence times. Regression slopes and correlation coefficients (r2) are shown.

Theoretical Foundation of the RelTime Method . doi:10.1093/molbev/msy044 MBE

1779

Deleted Text: ; Warnock et<?A3B2 show $146#?>al.


relative rates to ensure that the estimated times for calibrated
nodes are within the boundaries. This process uses the
maximum and minimum boundaries only for calibration,
which is preferable when the uncertainty distribution of
calibrations is not known precisely. Otherwise, there is high
probability of biased time estimation (Hedges and Kumar
2004; Ho and Phillips 2009; Inoue et al. 2010; Heath et al.
2014; Ho and Duchêne 2014; dos Reis et al. 2015). Tamura
et al.’s approach worked well in the analysis of large data sets,
because Bayesian time estimates reported in multiple large-
scale studies are similar to those produced by RRF using ultra-
metric trees with relative times that were transformed into
timetrees using many calibration constraints (Mello et al.
2017).

Conclusions
We have presented a mathematical foundation for the
RelTime method and elucidated its relationship with other
relaxed and strict clock methods. We have shown that the
relative rate framework (RRF) produces excellent estimates of
rates and divergence times for evolutionary lineages. It is,
however, important to note that estimates of divergence
times in a phylogeny are only biologically meaningful when
the reconstruction of evolutionary relationships is robust.
Therefore, the best practice is to first obtain a reliable phy-
logeny and then estimate divergence times. We must also
consider the confidence intervals associated with node ages
to assess the precision of time estimates prior to making
biological inferences.

Materials and Methods

Computer Simulations and Analysis
We simulated 200 multisequence alignments: 50 each for two
models of evolutionary rates (independent and autocorre-
lated among branches) for two model topologies containing
three- and four-ingroup taxa (fig. 2a and b, respectively). The
node height of the ingroup subtree was set to be 10 time
units, while the node heights of all descendent subtrees varied
randomly between 0 and 10 time units. For each resulting
model timetree, branch rates were sampled from a lognormal
distribution, where the mean rate was drawn randomly from
an empirical distribution (Rosenberg and Kumar 2003) and
the SD varied from 0.25 to 0.75 for all branches independently.
For the autocorrelated rates, the initial rate was drawn ran-
domly from an empirical distribution (Rosenberg and Kumar
2003) and the autocorrelation parameter was varied from 0.1
to 0.3. This rate sampling resulted in a phylogram with branch
lengths that could be used as input for SeqGen (Grassly et al.
1997). We used the Hasegawa–Kinshino–Yano (HKY) model
(Hasegawa et al. 1985) with 4 gamma categories and empiri-
cally derived GC content and transition/transversion ratio
(Rosenberg and Kumar 2003) as simulation parameters. We
generated simulated multispecies alignments where each se-
quence was 3, 000 base pairs long. The results from three-
ingroup sequence analysis (fig. 4) were similar to those from
the analysis of four-ingroup sequences (not shown).

Using the same simulation strategy, we created 35 align-
ments each under independent and autocorrelated rate sce-
narios following a master phylogeny of 100 taxa that was
sampled from the bony-vertebrate clade in the Timetree of
Life (Hedges and Kumar 2009). In the independent rate case,
the SD varied from 0.3 to 0.5. In the autocorrelated rate case,
the autocorrelation parameter varied from 0.01 to 0.04. All
other simulation parameters (GC contents, transition/trans-
version ratio, and sequence length) were derived from em-
pirical distributions (Rosenberg and Kumar 2003).

Using the same 100 ingroup taxon master phylogeny of
bony vertebrates, we simulated five additional sequence data
sets under (1) an autocorrelated lognormal rate model with
low dispersion, where the initial rate and the autocorrelation
parameter were set to be r and 0.02, respectively; (2) an
autocorrelated lognormal rate model with high dispersion,
where the initial rate and the autocorrelation parameter
were set to be r and 0.05, respectively; (3) an independent
lognormal rate model with low dispersion, where the mean
rate and the SD (in log scale) were set to be r and 0.25,
respectively; (4) an independent lognormal rate model with
high dispersion, where the mean rate and the SD (in log scale)
were set to be r and 0.75, respectively; (5) an independent
exponential rate model, where the mean rate was set to be r;
and (6) an independent uniform rate model, where the
branch-specific rates were sampled from an uniform distribu-
tion from 0 to 2r. GC contents, transition/transversion ratio,
sequence length, and evolutionary rate r were derived from
empirical distributions (Rosenberg and Kumar 2003).

MEGA software (Kumar et al. 2012, 2016) was used to
obtain maximum likelihood estimates of branch lengths
from simulated sequence alignments, where the correct sub-
stitution model and tree topology were used. RRF (eqs. 28–
42) was applied to the resulting phylogram with branch
lengths, and relative lineage rates and times were obtained.
One calibration (true age 6 10 Ma) at the crown node of the
ingroup was used to convert relative time estimates for com-
parison with true times (fig. 8). No calibrations were used in
other RRF analyses.

All Bayesian analyses were conducted using MCMCTree
(Yang 2007) using correct priors; two independent runs of five
million generations were carried out. Results were checked for
convergence using Tracer (Rambaut et al. 2014). ESS values
were higher than 200 after removing 10% burn-in samples in
each run. MCMCTree analyses used one root calibration (true
age 6 0.1 time units).

Analysis of Hybrid Rate Models
Simulated data sets and BEAST results were provided by
Beaulieu et al. (2015), or retrieved from the Dryad
Repository. All outgroup and root calibrations are automat-
ically disregarded in RelTime, because the assumption of
equal rates of evolution between the ingroup and outgroup
sequences is not testable (Kumar et al. 2016). Lognormal
distributions with fixed median values of “true ages” were
used as calibration densities in the original study (Beaulieu
et al. 2015). Because RelTime does not require specific density
distributions for calibrations, we used true age 6 5 Ma for all
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15 ingroup calibrated nodes in the reanalysis to directly com-
pare RelTime divergence time estimates with those from
BEAST. Calibrations employed in RelTime (true
age 6 5 Ma) had boundaries similar to 99% probability den-
sities of lognormal distributions originally employed as cali-
brations. The same alignments, topology, and ingroup
calibrations were used in RRF analyses. Estimates of angio-
sperm age were obtained by summarizing estimates of 100
data sets each in which the herbaceous clades have 3 times
(3�) and 6 times (6�) higher rates than those of woody
clades.
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