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The human brain can be characterized as functional networks. Therefore, it is important

to subdivide the brain appropriately in order to construct reliable networks. Resting-state

functional connectivity-based parcellation is a commonly used technique to fulfill this

goal. Here we propose a novel individual subject-level parcellation approach based

on whole-brain resting-state functional magnetic resonance imaging (fMRI) data. We

first used a supervoxel method known as simple linear iterative clustering directly on

resting-state fMRI time series to generate supervoxels, and then combined similar

supervoxels to generate clusters using a clustering method known as graph-without-cut

(GWC). The GWC approach incorporates spatial information and multiple features

of the supervoxels by energy minimization, simultaneously yielding an optimal graph

and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster

number is exactly equal to the initialized cluster number. By comparing the results

of the GWC approach and those of the random GWC approach, we demonstrated

that GWC does not rely heavily on spatial structures, thus avoiding the challenges

encountered in some previous whole-brain parcellation approaches. In addition, by

comparing the GWC approach to two competing approaches, we showed that GWC

achieved better parcellation performances in terms of different evaluation metrics. The

proposed approach can be used to generate individualized brain atlases for applications

related to cognition, development, aging, disease, personalized medicine, etc. The major

source codes of this study have been made publicly available at https://github.com/

yuzhounh/GWC.

Keywords: whole-brain parcellation, resting-state fMRI, supervoxel, graph-without-cut, random parcellation

INTRODUCTION

Since the first manifestation that specific brain areas are functionally connected in resting brain
(Biswal et al., 1995), neuroscientists have been characterizing the human brain as networks (Sporns
et al., 2005; Bullmore and Sporns, 2009). To construct brain networks, a critical step is to parcellate
the brain into a specific number of functional units (Wig et al., 2011). However, no agreement has
been reached on how the brain should be parcellated (Hallquist and Hillary, 2018).
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Brain atlases generated based on meta-analysis, random
criteria, structural criteria, and functional connectivity (Wig
et al., 2011; de Reus and Van den Heuvel, 2013; Fornito
et al., 2013; Stanley et al., 2013) have long been used
to construct functional networks. Among them, resting-state
functional connectivity (RSFC)-based parcellations (Craddock
et al., 2012; Shen et al., 2013) draw significant attention
because they are originally designed for such purpose and
are more reliable. The common idea is to parcellate the
brain into spatially contiguous, functionally homogeneous, and
reproducible clusters. Many clustering algorithms have been
applied in RSFC-based parcellations, e.g., spectral clustering (van
den Heuvel et al., 2008; Craddock et al., 2012; Shen et al.,
2013), K-means (Kim et al., 2010; Kahnt et al., 2012), and
hierarchical clustering (Blumensath et al., 2013; Thirion et al.,
2014). Some of these studies (Kim et al., 2010; Kahnt et al., 2012)
focused on subdividing a region of interest (ROI) while the other
studies focused on parcellating the whole brain. In this study, we
introduce a novel RSFC-based whole-brain parcellation approach
with the aim to improve the current parcellations.

Our study focused on individual subject-level parcellation
rather than group-level parcellation. Previous studies have
observed anatomical and functional variability across individuals
(Mueller et al., 2013; Laumann et al., 2015). Individual subject-
level parcellation captures this variability and leads to more
reliable delineation of parcels (Wang D. H. et al., 2015; Chong
et al., 2017; Tong et al., 2017). Therefore, it has recently become
a mainstream in brain parcellation.

Most previous studies (Craddock et al., 2012; Shen et al.,
2013; Thirion et al., 2014) generated clusters from voxels directly.
In contrast, we used supervoxels as the building blocks of the
clusters in this study. Specifically, we first aggregated similar
voxels to generate supervoxels, and then combined similar
supervoxels to generate clusters. Supervoxel methods (Veksler
et al., 2010; Lucchi et al., 2012; Xu and Corso, 2012; Papon
et al., 2013) effectively extract image structure, reduce image
redundancy, provide a solid basis to compute local image
features, and facilitate subsequent processing. Therefore, they
are suitable for application in brain parcellation. The supervoxel
method utilized in this study was simple linear iterative clustering
(SLIC) (Lucchi et al., 2012). SLIC has been demonstrated to
be superior to many existing superpixel algorithms in two-
dimensional (2D) image segmentation tasks (Achanta et al.,
2012). It has also been widely applied in three-dimensional (3D)
image segmentation tasks (Lucchi et al., 2012; Menze et al.,
2015). We have previously used SLIC to generate brain atlases
(Wang andWang, 2016;Wang et al., 2016). Both previous studies
treated supervoxels as clusters in brain atlases. However, the
generation of superpixels or supervoxels is commonly used as
a pre-processing step in segmentation algorithms. Therefore, we
combined similar supervoxels to generate clusters in this study.

To combine supervoxels, we utilized a state-of-the-art image
segmentation approach known as graph-without-cut (GWC)
(Gao et al., 2016). GWC is a graph-based approach, stemming
from clustering with adaptive neighbors (CAN) (Nie et al.,
2014). The CAN approach was originally designed to partition
low dimensional data while the GWC approach was originally

designed to segment 2D images. Traditional graph-based
approaches organize the elements of an image into a graph
and then partition the image based on the graph. GWC merges
the two steps, i.e., calculating the graph and partitioning the
image, into a single optimization problem. This algorithm
design generates the optimal graph for segmentation. Both
spatial information and multiple visual features of the image are
considered in GWC. Additionally, GWC restricts the number
of connected components in the obtained graph so that it is
exactly equal to the initialized cluster number. Gao et al. (2016)
have reported that GWC achieves better clustering performances
than some existing image segmentation approaches. Therefore,
we extended GWC to 3D space and applied it to perform whole-
brain parcellation for individuals in this study.

After generating a brain atlas, it is important to ensure
that the brain atlas does not rely heavily on spatial structures.
Different parcellation approaches incorporate spatial structures
in different ways. In the normalized cuts (Ncut) approach
(Craddock et al., 2012), spatial structure is introduced by the
spatial constraint in weight definition. In the SLIC approach
(Wang and Wang, 2016), spatial structures are introduced by
initializing an ideal geometric pattern, integrating the spatial
distance into the unified distance, and searching in a local space.
As Wang and Wang (2016) have shown, incorporating suitable
spatial structures in whole-brain parcellation approaches is quite
necessary to guarantee the spatial contiguity of the resultant
clusters. However, parcellation approaches with excessive spatial
structures would encounter three major problems (Craddock
et al., 2012; Blumensath et al., 2013; Shen et al., 2013; Gordon
et al., 2016; Wang and Wang, 2016). First, they tend to generate
clusters with comparable shapes and sizes, which are unlikely to
be the functional units in the brain (Glasser et al., 2016). Second,
when applying these approaches, random parcellation would be
visually similar to functional parcellation (Craddock et al., 2012).
Third, when applying these approaches, random parcellation
and functional parcellation tend to achieve nearly identical
performances under different evaluation metrics, such as Dice
coefficient and silhouette width (Craddock et al., 2012; Wang
and Wang, 2016). The utility of such approaches is limited due
to the above three problems. Therefore, to justify a parcellation
approach, besides visually inspecting the generated clusters, it is
necessary to compare the results obtained based on functional
magnetic resonance imaging (fMRI) data to those obtained based
on random data obtained using the same approach. If the two
results are very close, then the parcellation approach encounters
the above problems and is not reasonable, and vice versa.

To our knowledge, only few studies (Gordon et al., 2016;
Parisot et al., 2016; Arslan et al., 2017; Gallardo et al.,
2017) have demonstrated that their parcellations are better
than corresponding random parcellations. Among these studies,
Gordon et al. (2016) created null models by randomly rotating
each hemisphere of the original parcellation, Parisot et al.
(2016) and Arslan et al. (2017) created random parcellations by
Poisson disk sampling, and Gallardo et al. (2017) created random
parcellations by random region growing and random hierarchical
clustering. All of these studies focused on parcellating the
cortical surface rather than parcellating the brain volume. Our
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study focuses on volume-based analysis. Therefore, the strategies
to generate random parcellations using the above approaches
cannot be directly applied in our case. In this study, we generated
random parcellations by applying parcellation approaches to
random data. Except for the proposed GWC approach, two state-
of-the-art whole-brain parcellation approaches, i.e., the Ncut
approach (Craddock et al., 2012) and the SLIC approach (Wang
et al., 2016) were compared in the experiments. By comparing
these approaches to their corresponding random versions, we
demonstrated that unlike the other two approaches, GWC does
not rely heavily on spatial structures. We modified the Ncut
and SLIC approaches to reduce their dependencies on spatial
structures in order to avoid the above problems, and then treated
the new approaches as competing approaches. Experimental
results showed that GWC outperformed the two competing
approaches under different evaluation metrics. In summary, our
study verifies both the rationality and superiority of the proposed
GWC approach.

MATERIALS AND METHODS

Participants and Imaging Data Acquisition
In this study, we used publicly available data from the
1,000 Functional Connectomes Project (https://www.nitrc.org/
projects/fcon_1,000/; Biswal et al., 2010). Specifically, we used
the structural and resting-state fMRI data acquired from the first
thirty-six subjects in the Beijing_Zang dataset of that project. The
demographics and scanning parameters of this dataset can be
found online.

Preprocessing
The dataset was preprocessed using the Data Processing Assistant
for Resting-State fMRI (DPARSF) (Yan and Zang, 2010), which
was built on Statistical Parametric Mapping (SPM) (Friston
et al., 1994). The preprocessing steps included discarding the
first ten volumes; slice timing correction; motion correction;
coregistration; segmenting the structural images; normalizing the
functional images to the Montreal Neurological Institute (MNI)
space at 4 × 4 × 4 mm3 resolution; smoothing with a 6-mm
full width at half maximum (FWHM) Gaussian kernel; linear
detrending; bandpass filtering with a passband of 0.01–0.08Hz;
regressing out nuisance covariates including six head motion
parameters, autoregressive models of motion (the Friston 24-
parameter model; Friston et al., 1996; Yan et al., 2013), and the
mean time courses of white matter signal and cerebrospinal fluid
signal. No subject was excluded due to excessive head motion
under the excluding criteria of 2.0mm and 2.0 degrees.

Supervoxel Generation
We applied SLIC (Achanta et al., 2012; Lucchi et al., 2012) to
the preprocessed fMRI data to generate supervoxels for further
clustering. SLIC has previously been used to performwhole-brain
parcellation. In Wang et al. (2016), we applied SLIC to resting-
state fMRI time series directly to perform individual subject-level
parcellation. In Wang and Wang (2016), we applied SLIC to the
features extracted by Ncut (Shi and Malik, 2000; Craddock et al.,
2012) to perform group-level parcellation. The current study

focuses on individual subject-level parcellation. We generated
supervoxels using the SLIC approach in Wang et al. (2016), and
then combined these supervoxels to perform parcellation.

Feature Extraction
After generating the supervoxels, we extracted multiple features
from them. In 2D image segmentation tasks, typical visual
features extracted from superpixels include color, texture, and
shape (Cheng et al., 2011; Kong et al., 2015; Wang X. F. et al.,
2015). Usually, color feature is characterized by mean color and
color histogram, texture is characterized by local binary pattern
(LBP) (Ojala et al., 2002), and shape is characterized by scale-
invariant feature transform based bag-of-words (SIFT-BoW)
(Lowe, 1999; Cheng et al., 2011). In this study, we extracted three
kinds of features from the supervoxels, namely mean intensity,
intensity histogram, and LBP. The number of bins of the intensity
histogram was empirically set to 12. We also set this number
to 6 and 18, and found that it hardly affected the parcellation
performance. LBP in 3D space was calculated according to the
proposition in Montagne et al. (2013), which only considers six
nearest neighborhoods for encoding patterns. The number of
bins for LBP was set to 10, as there were 10 groups of patterns
in the LBP method we utilized.

GWC
After extracting features from the supervoxels, we input these
features into GWC to perform parcellation. Assume there are N0

voxels in the brain, the voxels are aggregated into N supervoxels
by SLIC, andM features are extracted for each supervoxel. Let

X = [x1, x2, . . . , xN] ∈ R3×N

denote the average coordinates of the supervoxels. Let

Y(m) =
[

y
(m)
1 , y

(m)
2 , . . . , y

(m)
N

]

∈ Rdm×N

denote the feature matrix of the mth feature of the supervoxels,
m = 1, 2, . . . ,M. The aim of GWC (Gao et al., 2016)
is to find a graph S ∈ RN×N that reflects the similarity
between supervoxels based on spatial information and feature
information. Meanwhile, S has exactly K connected components
so that the supervoxels are combined into K clusters. This is
achieved by formulating an optimization problem consisting
of several parts that restrict the graph S to satisfy the desired
properties. Similar ideas have previously been implemented to
perform brain parcellation in Ryali et al. (2013) and Honnorat
et al. (2015), with the aim of generating brain atlases that fit in
different models.

An ideal graph S should reflect the spatial information as
well as the feature information of the supervoxels, which can be
formulated as

min
s,a

g (X, S) + λ
∑

m
αmh

(

Y(m), S
)

+ βf (S,α), (1)

where g(X, S) is the penalty function (also called cost function
or energy function) that measures the smoothness between the
graph S and the spatial information X, h

(

Y(m), S
)

is the penalty
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function that measures the smoothness between the graph S and
the mth feature Y(m), f (S,α) is the regularization term of the
target variables S and α, λ and β are tuning parameters, and

α = [α1,α2, . . . ,αM]T ∈ RM×1,

αm is the mth element in the vector α and it determines the
importance of the mth feature, m = 1, 2, . . . ,M. The penalty
function g(X, S) is defined as follows:

g (X, S) =
∑

ij

∥

∥xi − xj
∥

∥

2

2
sij, (2)

where xi and xj denote the average coordinates of the voxels in the
ith supervoxel and the jth supervoxel, respectively. This function
ensures that supervoxels with small spatial distances have large
weights on the corresponding edges in graph S, and vice versa.
Similarly, the penalty function h

(

Y(m), S
)

is defined as

h
(

Y(m), S
)

=
∑

ij

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2
sij, (3)

This function ensures that supervoxels with small feature
distances have large weights on the corresponding edges in the
graph S, and vice versa. Therefore, by combining the above
two penalty functions, the graph S reflects both the spatial
information and the feature information of the supervoxels. The
regularization term f (S,α) is defined as follows:

f (S,α) = ‖S‖2F + γ ‖α‖22 , (4)

where γ is a tuning parameter. Let

S = [s1, s2, . . . , sN] ∈ RN×N ,

where si ∈ RN×1, i = 1, 2, . . . ,N. The target variables S and α are
further constrained as follows:

sTi 1 = 1, si ≥ 0, i = 1, 2, . . . ,N, (5)

and

αT1 = 1, α ≥ 0, (6)

where 1 denotes a vector whose elements are ones and its length
is not fixed. By combining the penalty functions (2) and (3), the
regularization term (4), and the constraints (5) and (6), we can
rewrite the optimization problem (1) as

min
S,α

∑

ij

∥

∥xi − xj
∥

∥

2

2
sij + λ

∑

mij

αm

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2
sij

+ β ‖S‖2F + βγ ‖α‖22
s.t. sTi 1 = 1, si ≥ 0, i = 1, 2, . . . ,N

αT1 = 1, α ≥ 0.

(7)

In order to combine the supervoxels into K clusters, the graphs
S should contain exactly K connected components. According to

Nie et al. (2014) and Gao et al. (2016), this can be achieved by
introducing a new penalty function to problem (7), as follows:

min
S,α,Z

∑

ij

∥

∥xi − xj
∥

∥

2

2
sij + λ

∑

mij

αm

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2
sij

+ µ
∑

ij

∥

∥zi − zj
∥

∥

2

2
sij + β ‖S‖2F + βγ ‖α‖22

s.t. sTi 1 = 1, si ≥ 0, i = 1, 2, . . . ,N (8)

αT1 = 1, α ≥ 0

ZTZ = I, Z ∈ RN×K ,

where

Z = [z1, z2, . . . , zK] ∈ RN×K ,

µ is a sufficiently large constant and we set its value to 104 in
practice.

The Algorithm Procedure
The optimization problem (8) was solved using the following
iteration procedure. We first initialized α = 1/M and then
initialized S based on the solution to problem (7). After that, we
performed the following three steps in order. The first step was
to update Z by fixing S and α, the second step was to update S by
fixing α and Z, and the third step was to update α by fixing Z and
S. The details of the updating steps are described below.

Updating Z
By fixing S and α, problem (8) becomes

min
Z

∑

ij

∥

∥zi − zj
∥

∥

2

2
sij

s.t. ZTZ = I, Z ∈ RN×K .

(9)

In order to solve this problem, we define a symmetric matrix

S
∗
=

ST + S

2
.

Let D be an N × N diagonal matrix whose ith diagonal element
satisfies

D (i, i) =
∑

j

s
∗
ij, i = 1, 2, . . .N.

Let L be a Laplacian matrix that satisfies

L = D− S
∗
.

Then we have

∑

ij

∥

∥zi − zj
∥

∥

2

2
sij = 2tr

(

ZTLZ
)

.
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Problem (9) is equivalent to

min
Z

tr
(

ZTLZ
)

s.t. ZTZ = I, Z ∈ RN×K .

(10)

The optimal Z is formed by the K eigenvectors corresponding to
the K smallest eigenvalues of L.

Updating S
By fixing α and Z, problem (8) becomes

min
S

∑

ij

∥

∥xi − xj
∥

∥

2

2
sij + λ

∑

mij

αm

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2
sij

+ µ
∑

ij

∥

∥zi − zj
∥

∥

2

2
sij + β ‖S‖2F (11)

s.t. sTi 1 = 1, si ≥ 0, i = 1, 2, . . . ,N.

To simplify problem (11), we define

pij =
∥

∥xi − xj
∥

∥

2

2
+ λ

∑

m

αm

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2

+µ
∥

∥zi − zj
∥

∥

2

2
(12)

i, j = 1, 2, . . . ,N. P ∈ RN×N is a constant matrix. Problem (11)
can then be rewritten as

min
S

∑

ij

pijsij + β ‖S‖2F

s.t. sTi 1 = 1, si ≥ 0, i = 1, 2, . . . ,N.

(13)

The matrix P can be denoted by its columns as follows:

P = [p1, p2, . . . , pN] ∈ RN×N , (14)

Since problem (13) is independent for different values of i, we
separate it into a series of optimization problems as follows:

min
si

pTi si + βsTi si

s.t. sTi 1 = 1, si ≥ 0,
(15)

i = 1, 2, . . . ,N. Problem (15) is a quadratic programming
problem. It has an optimal solution when β is a positive value.
It can be rewritten as

min
si

∥

∥

∥

∥

si +
pi

2β

∥

∥

∥

∥

2

2

s.t. sTi 1 = 1, si ≥ 0.

(16)

The solution to problem (16) is provided in the section titled
Quadratic programming II in the Supplementary Materials.
Suppose that the number of nonzero elements in si is k. It means
that only k supervoxels can possibly be connected to the ith
supervoxel. By fixing k, we can determine β and obtain the

optimal si. Tuning the parameter k is easier than tuning β since k
is an integer and has an explicit meaning. Therefore, we chose to
tune k rather than β in practice. In the initialization step, problem
(7) with an initialized α was solved in the same manner as that
used to solve problem (11).

Updating α

By fixing Z and S, problem (8) becomes

min
α

λ
∑

mij

αm

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2
sij + βγ ‖α‖22

s.t. αT1 = 1, α ≥ 0.

(17)

Define

q =
[

q1, q2, . . . , qM
]T ∈ RM×1, (18)

where

qm =
∑

ij

∥

∥

∥
y
(m)
i − y

(m)
j

∥

∥

∥

2

2
sij, (19)

m = 1, 2, . . . ,M. Then problem (17) can be simplified as

min
α

λqTα + βγαTα

s.t. αT1 = 1, α ≥ 0.
(20)

It is a quadratic programming problem. And it has an optimal
solution when βγ is a positive value. Problem (20) can be
rewritten as

min
α

∥

∥

∥

∥

α +
λq

2βγ

∥

∥

∥

∥

2

2

s.t. αT1 = 1, α ≥ 0,

(21)

where q is a constant vector, β is a constant value, and λ and
γ are tuning parameters. When updating S by solving problem
(16), we can obtain a β value for each i. We averaged the
obtained β values and assigned the averaged result to the β

in problem (21). Therefore, λq/(2βγ ) is a constant vector as a
whole. The solution to problem (21) is provided in the section
titled Quadratic programming I in the Supplementary Materials.

The above updating steps were repeated until Swas converged
or the maximum number of iterations, i.e., 100, was reached.
The graph S is theoretically guaranteed to contain exactly K
connected components. To extract these components, we applied
Ncut (Craddock et al., 2012; Wang et al., 2016) to graph S.
This step generated cluster labels for the supervoxels. After that,
we mapped the parcellation result from the supervoxel level to
the voxel level. The parcellation result at the voxel level is the
final brain atlas. Table 1 and Figure 1 summarize the algorithm
procedure for the GWC approach.

Graph Normalization
Based on the definition of the matrix P in (12) and the
definition of the vector q in (18–19), we observed that the
average coordinates X, the features Y , and the eigenvectors Z are
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transformed into graphs. We defined the graph of the average
coordinates X as follows:

Gij =
∥

∥xi − xj
∥

∥

2
,

i, j = 1, 2, . . . ,N. The graphs of the features and the graphs of the
eigenvectors were defined likewise. Then the matrix P was equal
to the weighted sum of the squares of the graphs. To calculate
the mth element of the vector q, i.e., qm, we first calculated the
Hadamard product between the graph S and the square of the
graph of themth feature, and then summed all of the elements in
the Hadamard product. Based on the optimization problems (16)
and (21), we concluded that the average coordinates, features, and
eigenvectors were in fact participating in GWC in the form of
graphs.

These graphs were measured and computed on different
scales. In order to adjust them to a notionally common scale,
a normalization procedure was performed on each graph.
Specifically, we divided all of the elements in each graph by the
maximum value in that graph. We also attempted to normalize
the average coordinates, features, and eigenvectors instead of
normalizing their graphs. However, this strategy reduced the

TABLE 1 | The algorithm procedure for the GWC approach.

Input: number of supervoxels, number of clusters, and parameters λ, γ , and k.

Output: parcellation result.

Generate supervoxels by SLIC.

Calculate the average coordinates and extract multiple features for the

supervoxels.

Apply GWC to calculate the graph S:

Initialize α = 1/M and then initialize S based on the solution to problem (5).

while S is not converged and the maximum number of iterations is not

reached do

Update Z by fixing S and α according to problem (7).

Update S by fixing α and Z according to problem (10).

Update α by fixing Z and S according to problem (14).

end while

Apply Ncut to S to generate cluster labels for the supervoxels.

Map the parcellation result from the supervoxel level to the voxel level.

clustering performance of GWC in practice. Therefore, we
performed normalization on graphs in our experiments.

Tuning Parameters
The Number of Supervoxels
The number of supervoxels was empirically set to 1,000. If this
number is too large, there would be only few voxels in each
supervoxel. In this case, the impact of the supervoxel method
would be limited. If this number is too small, there would be
only few supervoxels combined in each cluster in the final brain
atlas, especially when the cluster number is large. This would
deteriorate the performance of the GWC approach in practice.

The Number of Clusters
To the best of our knowledge, there is no optimal cluster number.
The initialized cluster number was set to [25:25:500] in order
to generate parcellations with multiple granularities. This range
covers the cluster numbers of the brain atlases inmost of the latest
studies (Fan et al., 2016; Glasser et al., 2016; Gordon et al., 2016;
Arslan et al., 2017; Schaefer et al., 2017).

The Parameter λ

The parameter λ was set to 0.1 empirically. This parameter
determines the weight of visual features in the optimization
problem of GWC, and therefore indirectly determines the weight
of spatial information in that problem. By setting it to be a small
value, the weight of spatial information would be large. This
can guarantee the spatial contiguity of the parcellation result.
However, λ should not be too small, or the parcellation approach
would rely heavily on spatial structures.

The Parameter Ŵ

The parameter γ was set to 1 empirically. This parameter
determines the weight of the regularization term α (Gao et al.,
2016). When γ is set to a small value, GWC depends on the
performance of the optimal feature. When γ is set to a large
value, different features have similar weights. The performance of
GWC is not sensitive to γ in image segmentation tasks (Gao et al.,
2016). We found that this rule also applied to the whole-brain
parcellation tasks in our study. Therefore, we set the value of γ

to 1.

FIGURE 1 | The algorithm procedure for the GWC approach. First, we applied SLIC directly to the fMRI time series to generate supervoxels. Next, we extracted

multiple features from the supervoxels. By inputting these features into the GWC algorithm, we obtained the graph S. Then, we applied Ncut to S and obtained the

parcellation at the supervoxel level. Finally, we mapped the parcellation to the voxel level. The parcellation at the voxel level was the final brain atlas.
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The Parameter k
The parameter k is the number of nonzero elements in each
column of the graph S. We determined k by adapting the idea
of the second sparsifying scheme in Wang and Wang (2016).
To choose an appropriate k value, we constructed a graph S0
that reflected the spatial relationship between the supervoxels,
and assumed that the sparse rate of S was close to that of S0.
To be specific, S0 was an N × N adjacency matrix formulated
by setting the element sij to one if supervoxels i and j were
spatially connected, and to zero otherwise. Here, two supervoxels
were spatially connected meant that we could find at least one
voxel from each of them so that the two voxels were in the 26-
connected neighborhoods of each other in 3D space. Then k
was estimated as the average number of nonzero elements in the
columns of S0. The graph S0 for the first subject is shown in
Figure 2. It reflects the spatial relationship between supervoxels.
Correspondingly, the spatial constraint in Wang and Wang
(2016) reflects the spatial relationship between voxels. Therefore,
the two are very similar. The resultant value of k was nine for all
subjects. Therefore, we set k to nine in our experiments.

Evaluation Criteria
To evaluate the parcellation results, we used three criteria, i.e.,
spatial contiguity, functional homogeneity, and reproducibility
(Wang and Wang, 2016; Wang et al., 2016). It is worthwhile to
mention that there is no gold standard for the evaluation of a
brain parcellation (Thirion et al., 2014; Eickhoff et al., 2015) and
that the above evaluation criteria have some inherent limitations
(Wang and Wang, 2016). To the best of our knowledge, the
most credible way to evaluate a brain parcellation is manually
comparing it to multi-modal areal features by experienced
neuroanatomists (Blumensath et al., 2013; Glasser et al., 2016).
This is beyond the scope of our study. Nevertheless, the

FIGURE 2 | A graph illustrating the spatial relationship between supervoxels of

the first subject. Each node (row and column) represents a supervoxel. If two

supervoxels are spatially connected, then the corresponding element in the

graph is set to one. This value is set to zero otherwise.

aforementioned three criteria are widely used. Therefore, we
used these criteria to evaluate the parcellation results in our
experiments.

For spatial contiguity, we identified the spatially discrete
regions that belonged to the same cluster in a brain atlas, and
assigned a unique label to each region. The increased cluster
number was termed the spatial discontiguity index. A small result
indicates that the clusters in the brain atlas has good spatial
contiguity.

For functional homogeneity, we first averaged similarities
across all pairs of voxels within each cluster in a brain atlas, and
then averaged the obtained results across clusters. The final result
is the functional homogeneity of the brain atlas. Assume that
there are N0 voxels being parcellated into K clusters in a brain
atlas; the voxel number in the kth cluster Ck is nk, k = 1, 2, . . . ,K;
and the similarity between voxels i and j is sij which equals the
Pearson correlation coefficient in our study, i, j = 1, 2, . . . ,N0.
The average similarity within the kth cluster is

a
(

k
)

= 1
nk(nk−1)

∑

i,j∈Ck, i6=j

sij.

Then the functional homogeneity of the brain atlas is calculated
by averaging the similarities across clusters, as follows:

1
K

K
∑

k=1

a
(

k
)

.

Clusters that contain only one voxel are omitted in the
calculation. To avoid circular analysis, we trained an atlas on one
subject and calculated the functional homogeneity based on this
atlas and the resting-state fMRI data of the remaining subjects. A
large result indicates good functional homogeneity.

To determine reproducibility, we calculated Dice coefficient
(Dice, 1945) between two brain atlases that were independently
generated from two subjects when the initialized cluster number
was fixed. The average cluster sizes of the two brain atlases were
very close. Prior to calculating the Dice coefficient, we calculated
an adjacency matrix for each brain atlas. An adjacency matrix A
is an N0 × N0 symmetric matrix that is calculated by setting its
elements aij to one if voxels i and j belong to the same cluster
in the brain atlas, and to zero otherwise. The Dice coefficient
between two adjacencymatricesA and B derived from two atlases
is

2 |A ∩ B|
|A| + |B|

,

where |·| denotes the number of ones in an adjacency matrix, and
A∩B denotes the intersection of the two adjacency matrices. The
intersection of two matrices, i.e., C = A∩B, is defined as follows:
Cij is set to one if and only if Aij and Bij are both equal to one, and
Cij is set to zero otherwise. A large Dice coefficient indicates good
reproducibility.

The Competing Approaches
In this study, we focused on individual subject-level parcellation.
The competing approaches included the Ncut approach (Shi and
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Malik, 2000; Yu and Shi, 2003) and the SLIC approach (Achanta
et al., 2012). The Ncut approach has been used to find resting-
state networks (van den Heuvel et al., 2008), to subdivide regions
of interest (Shen et al., 2010), and to parcellate the whole brain
(Craddock et al., 2012; Shen et al., 2013). The SLIC approach
has been used to parcellate the whole brain (Wang and Wang,
2016). Most of these studies focused on group-level parcellation.
In Wang et al. (2016), the Ncut and SLIC approaches were
applied as individual subject-level parcellation approaches, and
were carefully compared.

The Ncut-based parcellation approaches (Craddock et al.,
2012; Shen et al., 2013) rely heavily on spatial structures
(Blumensath et al., 2013; Gordon et al., 2016; Wang and Wang,
2016). This is due to the spatial constraint in weight definition.
The SLIC approach is also subject to this problem since it
places great emphasis on spatial structures by initializing an
ideal geometric pattern, integrating the spatial distance into
the unified distance, and searching in a local space (Wang
and Wang, 2016; Wang et al., 2016). Therefore, the utility
of these approaches is limited. In this study, the proposed
GWC approach incorporates spatial structures by SLIC in the
supervoxel generation procedure, and by the penalty function of
spatial distances in Equation (2). Therefore, the GWC approach
might also encounter the aforementioned problem.

To determine whether a parcellation approach relies heavily
on spatial structures, we applied the approach to fMRI data and
random data, and then compared the obtained results. We will
show that the Ncut and SLIC approaches rely heavily on spatial
structures, and that the proposed GWC approach does not. To
improve the two competing approaches, we attempted to weaken
their dependence on spatial structures. This enabled us to make
fair comparisons among the Ncut, SLIC, and GWC approaches.

For the Ncut approach, a typical weight is defined as follows.
Suppose there are N0 voxels in the brain, vi is the fMRI time
course of the ith voxel, and ui is the coordinates of the ith voxel
in the MNI space, i = 1, 2, . . . , N0. The weight on the edge
connecting voxels i and j is defined as

wij =







corr
(

vi, vj
)

if
∥

∥ui − uj
∥

∥

2
≤

√
3

0 otherwise,

(22)

where corr
(

vi, vj
)

denotes the Pearson correlation coefficient
between vi and vj. This definition differs from that in Craddock
et al. (2012) by taking out the hard threshold 0.5. Negative
weights are often handled in graph analysis (Hallquist and
Hillary, 2018), because some graph metrics still need to be
defined or adapted when negative edges are present (Rubinov and
Sporns, 2011). However, this is not the case in brain parcellation
since the parcellation approaches in our study are feasible when
negative and weak weights are present. Wang and Wang (2016)
have demonstrated that taking out the hard threshold hardly
affects the parcellation performances. Therefore, we did not
include the hard threshold in (22). We will show that the Ncut
approach with the weight in (22) relies heavily on the spatial
structure introduced by spatial constraint.

To modify the Ncut approach (Craddock et al., 2012), we
changed the weighting function to reduce its dependency on
spatial structure. Gaussian functions are common choices for
defining weight matrix (Shen et al., 2013; Cheng et al., 2014).
Here we adapted the weight definition proposed in Shi andMalik
(2000) by reserving the Gaussian function of functional distance
and spatial distance, and removing the spatial constraint. That is,

wij = e
−‖vi−vj‖22

σ2v
−‖ui−uj‖22

σ2u ,
(23)

where σv and σu are tuning parameters set to the median of all
functional distances and spatial distances, respectively. Spatial
information is incorporated in this definition, but is muchweaker
than the spatial constraint in (22). Therefore, the generated brain
atlases are more meaningful. Since we did not apply a spatial
constraint or a threshold to this weight matrix, it is a densematrix
and would consume significant computational resources. Note
that other weighting functions might also be used. We used the
weighting function defined in (23) because it was sufficient for
our purpose.

For the SLIC approach (Wang et al., 2016), the unified
distance between voxels i and j is defined as

dij =

√

‖vi−vj‖22
m2 + ‖ui−uj‖22

S2
, (24)

where m and S are tuning parameters that normalize the
functional distance and the spatial distance, respectively. The
parameter S is set to the average length of the supervoxels. For
the parameterm, we will show that a value of 40, which was used
in Wang et al. (2016), is too large. This renders the parcellation
results heavily reliant on spatial structures.

To modify the unified distance, we used a smaller m value,
which increased the weight of functional distance in the unified
distance and weakened the influence of spatial structures on the
parcellation results. The m value was set to 10 because when
m equals 10, the normalized functional distance

∥

∥vi − vj
∥

∥

2
/m

and the normalized spatial distance
∥

∥ui − uj
∥

∥

2
/S have similar

weights in the unified distance. To generate supervoxels for GWC
using SLIC, the parameter m in SLIC was also set to 10. This
allowed us to make a fair comparison between the modified SLIC
approach and the GWC approach when they were applied as
whole-brain parcellation approaches.

Other than the above modifications, the Ncut and SLIC
approaches applied in this study were the same as those used in
Wang et al. (2016). More details regarding the two approaches
can be found in Craddock et al. (2012) and Wang and Wang
(2016).

Although the weight in (23) and the unified distance in (24)
are closely related, the strategies to select parameters for these
values are quite different. This is because the Ncut and SLIC
approaches differ substantially. One of the major differences is
that Ncut is globally operated on a brain graph while SLIC is
locally operated on supervoxels. Therefore, the parameters of the
two approaches are tuned differently.
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Random Parcellation
To determine whether a parcellation approach relies heavily
on spatial structures, we compared its resulting parcellations
to random parcellations using different evaluation metrics. In
this study, random parcellations were generated by applying
parcellation approaches to random data. For the Ncut approach,
we randomly permutated the weight matrices calculated by
Equations (22) and (23) to form random weight matrices, and
then applied Ncut to the random weight matrices to perform
parcellation. For the SLIC and GWC approaches, we randomly
permutated the fMRI time series within the brain and then
applied SLIC or GWC to the random fMRI time series to perform
parcellation. In other words, to generate random parcellations,
the Ncut approach was applied to random weight matrices while
the SLIC and GWC approaches were applied to random fMRI
time series. The random parcellation approaches corresponding
to Ncut, SLIC, and GWC are referred to as randomNcut, random
SLIC, and random GWC below.

The random parcellations were likewise evaluated by the three
evaluation metrics. Note that functional homogeneity relies not
only on the generated brain atlas, but also on the fMRI data
from the subjects that did not participate in generating the atlas.
Since there is no similarity between two random datasets, using
random fMRI data to calculate homogeneity would result in a
value close to zero. Therefore, we used original fMRI data rather
than random fMRI data to calculate functional homogeneity
for random parcellations. The other two evaluation metrics, i.e.,
spatial discontiguity index and Dice coefficient, were calculated
only based on random parcellations.

RESULTS

GWC
We applied the GWC approach to resting-state fMRI data
from 36 subjects to perform individual subject-level parcellation.
For each parcellation approach, each subject, and each cluster
number, one brain atlas was generated using GWC. Spatial
discontiguity index was calculated for each brain atlas, and then
averaged across subjects. Functional homogeneity was calculated
based on the brain atlas of one subject and the resting-state
fMRI data of the remaining subjects. It was then averaged across
subjects. To calculate reproducibility, we randomly chose one
hundred pairs of subjects, calculated the Dice coefficient between
the brain atlases of each pair of subjects, and then averaged
the results across the one hundred pairs to obtain the mean
Dice coefficient. We did not use all pairs of subjects to calculate
the Dice coefficient because it was computationally expensive.
Except for the group-averaged results, standard deviations were
calculated to quantify the inter-individual variability for spatial
contiguity and functional homogeneity, and to quantify the inter-
pair variability for reproducibility.

To demonstrate that the GWC approach does not rely heavily
on spatial structures, we compared its parcellations to the
corresponding random parcellations using the three evaluation
metrics. In other words, we compared between the GWC
approach and the random GWC approach. Figure 3 shows
the results of this comparison. The three evaluation metrics

were plotted against the averaged actual cluster number. The
initialized cluster numbers of the blue circles were [25:25:500],
as presented from left to right in order in each subfigure. When
the initialized cluster number was smaller than 400, the actual
cluster number and the initialized cluster number were nearly
equal. When the initialized cluster number was larger than 400,
the actual cluster number was much smaller than the initialized
cluster number. In summary, GWC behaves abnormally when
the initialized cluster number is larger than 400. This is because
only a few supervoxels are combined in each cluster when
the initialized cluster number is larger than 400 given that
the supervoxel number is 1,000, which negatively affects the
performance of GWC. This problem does not occur when using
random GWC, mainly because the supervoxels and the clusters
generated by random GWC are rather spatially discontiguous.
The results of GWC with initialized cluster number larger
than 400 were not favorable when assessed using the three
evaluation metrics. Therefore, we mainly considered the results
with initialized cluster number smaller than 400 in the following
experiments.

With the exception of one outlier, i.e., the Dice coefficient
when the cluster number was 25, the results of GWC were much
better than the results of random GWC. This indicates that
the proposed GWC approach does not rely heavily on spatial
structures.

We had repeated the random GWC approach multiple times
and found that the results were rather robust with different
randomizations. The random versions of Ncut, SLIC, and their
aforementioned variants behaved similarly in our experiments.
Therefore, the randomization steps in all of these random
parcellation approaches could be set arbitrarily. We thus only
displayed one result from the multiple computations.

Tuning Parameters
We then investigated the influences of the four parameters
on the GWC approach. It is difficult to tune four parameters
simultaneously. Therefore, we changed one parameter at a
time and then checked how the parcellation performances were
affected by each parameter.

The number of supervoxels was set to 1000 by default. We
tested several values near 1000 to check whether setting this
number to 1000 was appropriate. Figure 4A shows the results
when the number of supervoxels was set to [800 : 200 : 1600].
The spatial contiguity improved when the supervoxel number
increased. The functional homogeneity tended to increase with
increasing supervoxel number, but the magnitudes of the
changes were trivial. The Dice coefficient tended to decrease
with increasing supervoxel number when the cluster number
was smaller than 150, but tended to increase with increasing
supervoxel number when the cluster number was larger than 150.
To achieve balance, we fixed the supervoxel number to 1,000 in
our experiments.

The parameter k, i.e., the number of nonzero elements in the
columns of S, was set to 9 by default, as discussed in section
The Parameter k. We tested three values near 9, i.e., 5, 20, and
30, to check whether setting k to 9 was appropriate. Figure 4B
shows the results when k = [5, 9, 20, 30]. The spatial contiguity
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FIGURE 3 | The results of the different evaluation metrics for the GWC approach and the random GWC approach. The three columns correspond to spatial

discontiguity index, functional homogeneity, and Dice coefficient in order. The markers and shaded areas represent the mean plus/minus a standard deviation of the

results. These evaluation metrics are plotted against the averaged actual cluster number which is denoted by K. A shared legend for the three subfigures is placed on

the right side. Note that the shaded areas for some curves are very small.

and functional homogeneity generally became worse when k
increased. For the reproducibility, when the cluster number was
larger than 25 and smaller than 225, the Dice coefficients when
k = 5 were much smaller than those when k = 9. Generally
speaking, k = 9 was the appropriate choice.

The parameter λ was set to 0.1 by default. As there was
no prior knowledge regarding this parameter, we tuned it
in a large range to determine whether the value 0.1 was
appropriate, as in Gao et al. (2016). Figure 4C shows the
results when λ =

[

10−3, 10−2, 10−1, 1, 10, 102, 103
]

. The
results of the three evaluation metrics generally improved
when λ decreased. When λ was smaller than 0.1, the
differences between the results corresponding to different λ

values were subtle. On the other hand, as discussed before,
λ should not be too small, or the parcellation approach
would rely heavily on spatial structures. Therefore, the optimal
λ should be as large as possible while achieving good
parcellation performances. With the above two considerations
in mind, λ = 0.1 was determined to be a suitable
choice.

The parameter γ was set to 1 by default. We tuned this
parameter in a large range, as we tuned λ. Figure 4D shows the
results when γ =

[

10−3, 10−2, 10−1, 1, 10, 102, 103
]

. The curves
corresponding to different γ values overlapped with each other.
This indicates that the γ value hardly affected the parcellation
performances, which is consistent with the findings of Gao et al.
(2016). Therefore, we set γ to 1 by default.

Competing Approaches
For the competing approaches, we first investigated the Ncut and
random Ncut approaches using the weight in Equation (22). The
results are shown in Figure 5A. The performances of the random
Ncut approach were only slightly worse than those of Ncut. This
indicates that the Ncut approach with the weight in (22) relies
heavily on spatial structures.

Next, we investigated the Ncut and random Ncut approaches
with the weight in (23). The results are shown in Figure 5B. The
performances of random Ncut were much worse than those of
Ncut, with the exception of the Dice coefficients when the cluster

number was no larger than 100. This demonstrates that the Ncut
approach with the weight in (23) does not rely heavily on spatial
structures. It is thus a more reasonable parcellation approach.

Then, we investigated the SLIC and random SLIC approaches
withm = 40. The results are shown in Figure 6A. For functional
homogeneity, the two approaches were close. For spatial
contiguity and reproducibility, random SLIC even performed
better than SLIC. These results indicate that SLIC with m = 40
relies heavily on spatial structures.

Finally, we investigated the SLIC and random SLIC
approaches withm = 10. The results are shown in Figure 6B. For
spatial contiguity and functional homogeneity, SLIC performed
much better than random SLIC. For reproducibility, SLIC
performed better than random SLIC when the cluster number
was larger than 150. These results demonstrate that SLIC with
m = 10 does not rely heavily on spatial structures. It is therefore
more reasonable than SLIC withm = 40.

Since the parameter m greatly influences the SLIC and
random SLIC approaches, it is meaningful to test the two
approaches when m is set to other values. The results are
shown in Supplementary Figures 1–6. When m was smaller than
10, the performances of the two approaches were rather bad.
When m was larger than 10, the differences in performances
between SLIC and random SLIC diminished with increasing
m values. These results indicate that SLIC relies heavily on
spatial structures when the m value is larger than 10. Therefore,
using m = 10 is an appropriate choice for the SLIC
approach.

Note that the Ncut approach with the weight in
(22) outperformed the Ncut approach with the weight
in (23), and that the SLIC approach with m = 40
outperformed the SLIC approach with m = 10, especially
in terms of spatial contiguity and reproducibility. This
is mainly due to the fact that the Ncut approach with
the weight in (22) and the SLIC approach with m = 40
rely heavily on spatial structures. Modifying the two
approaches to avoid the problem in fact leads to sacrifices
in parcellation performances. Nevertheless, the sacrifices are
worthwhile.
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FIGURE 4 | Tuning parameters for the GWC approach. One parameter is tuned in each row while the remaining parameters are fixed at the default settings. The four

rows represent tuning of (A) the number of supervoxels, (B) parameter k, (C) parameter λ, and (D) parameter γ in order. We do not display the standard deviations for

the curves because the mean results were sufficient for parameter selection.

Comparison
Available online at: We have demonstrated that the three
approaches, i.e., GWC with default parameters, Ncut with
the weight in (23), and SLIC with m = 10, do not
rely heavily on spatial structures. Therefore, they are reliable
parcellation approaches. The three approaches are referred

to as GWC, Ncut, and SLIC for brevity in the following
experiments.

A comparison of the three approaches is shown in Figure 7.
As some curves were overlapping, we plotted the results in
separate figures to reveal the concealed details, as shown in
Supplementary Figure 7. For spatial contiguity, GWC greatly
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FIGURE 5 | The results of the different evaluation metrics for the Ncut approach and the random Ncut approach. The two rows represent the results of (A) the two

approaches using the weight in Equation (22), and (B) the two approaches using the weight in Equation (23).

FIGURE 6 | The results of the different evaluation metrics for the SLIC approach and the random SLIC approach. The two rows represent the results of (A) the two

approaches with m = 40, and (B) the two approaches with m = 10.

outperformed Ncut and SLIC. For functional homogeneity,
the three approaches achieved similar performances. For
reproducibility, GWC outperformed Ncut and SLIC when the
initialized cluster number was larger than 50 and smaller
than 400, and the best average result was obtained by GWC
with an initialized cluster number of 100. Generally, GWC
performed better than Ncut and SLIC. It is worthwhile to

mention that SLIC outperformed Ncut with the exception of
the Dice coefficients when the cluster number is smaller than
150.

Since the three approaches are subject-level approaches, it is
also meaningful to make comparisons among these approaches
at the individual subject level. Figure 8 shows the results of
spatial contiguity and functional homogeneity for the first three
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FIGURE 7 | The results of the different evaluation metrics for the Ncut, SLIC, and GWC approaches.

subjects. These results were generally consistent with the group-
averaged results, which further demonstrated the superiority of
the GWC approach. Moreover, the results of the three subjects
were different from each other, which demonstrated the inter-
subject variability. Therefore, GWC is an appropriate individual
subject-level parcellation approach.

When evaluating reproducibility, we randomly selected
only one hundred pairs of subjects and averaged the Dice
coefficients across these pairs. Since there were 36 subjects in our
experiments, there were 36×(36−1)/2, i.e., 630, pairs of subjects
in total. We did not calculate the Dice coefficients based on all
of these pairs because it was time-consuming. It was thus very
important to guarantee that random sampling did not greatly
alter the results of the Dice coefficients. To address this issue,
we re-calculated the Dice coefficients in Figure 7 by using two
other random selections of subject pairs, and also by using all
of the 630 subject pairs, as shown in Figure 9. The results were
very close to those in Figure 7. Therefore, the Dice coefficients
are rather stable against random selections of subject pairs, and
the results obtained based on a random selection of subject pairs
can reflect those based on all subject pairs. Consequently, it is
appropriate to choose one hundred pairs of subjects randomly in
related calculations.

Figure 10 illustrates the atlases of the first subject when the
brain is parcellated into 50, 100, and 400 clusters by the three
approaches. Figure 11 illustrates the atlases of the first three
subjects when the brains are parcellated into 100 clusters by the
three approaches.

DISCUSSION

This study aims to improve the current RSFC-based
parcellations. Specifically, its purpose is to parcellate the
brain into spatially contiguous, functionally homogeneous,
and reproducible clusters (Craddock et al., 2012). The major
contributions of this study are threefold. First, we proposed a new
subject-level whole-brain parcellation approach, i.e., combining
supervoxels using the GWC approach. Clustering by combining
supervoxels is better than clustering by aggregating voxels since
supervoxel methods can effectively extract image structure,

reduce image redundancy, provide a solid basis to compute
local image features, and facilitate subsequent processing
(Lucchi et al., 2012). Therefore, the GWC approach has a
great methodological advantage over traditional parcellation
approaches. Second, we ensured that the GWC approach does
not rely heavily on spatial structures, thus avoiding the problem
present in many previous parcellation approaches. Third, the
GWC approach outperformed the two other approaches under
different evaluation metrics, and therefore fulfilled our original
purpose. The GWC approach would be useful in brain network
analysis, especially when inter-subject variability is emphasized
(Dubois and Adolphs, 2016). Some limitations of the GWC
approach and potential ways for improvement are discussed
below.

The GWC approach has many parameters that are difficult
to tune. In this study, we chose the parameters empirically and
changed one parameter at a time by fixing the other parameters
in order to determine whether the parameters were appropriate.
Since there is no standard criterion to evaluate a parcellation
approach (Eickhoff et al., 2015; Wang and Wang, 2016), we
cannot guarantee that our parameter settings are optimal. We
can at most claim that GWC performs well under the metrics
evaluated when certain parameters are used. It is also likely
that the selected parameters are appropriate for the database
used, but are not appropriate for another database. Therefore,
when applying GWC to a different dataset, its parameters should
be carefully tuned again. This is a common problem faced by
parcellation approaches with tuning parameters.

To demonstrate that the GWC approach does not rely heavily
on spatial structures, we compared the results obtained based
on fMRI data to those obtained based on random data. If the
results on fMRI data were close to the results on random data, we
concluded that the parcellation approach relied heavily on spatial
structures, and vice versa. However, whole-brain parcellation
approaches almost inevitably rely on spatial structures since
spatial structures are necessary to guarantee the spatial contiguity
of the generated clusters (Wang and Wang, 2016). Ideally,
comparisons among different parcellation approaches can be fair
only when these approaches depend on spatial structures to a
close degree. However, we have not figured out how to quantify
this degree. It requires further investigation. The current study is
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FIGURE 8 | The results of spatial contiguity and functional homogeneity for the Ncut, SLIC, and GWC approaches. Each row represents the results of one subject. (A)

Subject 1. (B) Subject 2. (C) Subject 3.

FIGURE 9 | The results of reproducibility for the Ncut, SLIC, and GWC approaches. The first two columns show the results calculated based on two other random

selections of subject pairs. The third column shows the results calculated based on all subject pairs.

only an initial attempt at judging whether a parcellation approach
is reasonable at a very coarse level.

Many whole-brain RSFC-based parcellation studies are
aiming to identify functionally connected networks (Salvador

et al., 2005; van den Heuvel et al., 2008; Yeo et al., 2011). Among
them, Salvador et al. (2005) applied hierarchical clustering to
the mean time series generated from a 90-region anatomical
template and defined six major systems, van den Heuvel et al.

Frontiers in Human Neuroscience | www.frontiersin.org 14 May 2018 | Volume 12 | Article 166

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Individual Subject Level Parcellation by GWC

FIGURE 10 | Illustrations of the atlases generated by the Ncut, SLIC, and GWC approaches when the brain of the first subject was parcellated into 50, 100, and 400

clusters. Each atlas is represented by its three orthogonal cross-sections. The colormap for each atlas is randomly generated, and each color represents a cluster.

FIGURE 11 | Illustrations of the atlases generated by the Ncut, SLIC, and GWC approaches when the brains of the first three subjects were parcellated into 100

clusters.

(2008) applied Ncut to perform whole-brain parcellation and
revealed seven resting-state networks that showed large overlap
with previously reported results, Yeo et al. (2011) applied a
clustering algorithm based on von Mises-Fisher distribution to
the cortical surface and resulted in 7- and 17-network cortical
parcellations. The frequently reported networks including the
default mode network, the attention network, and the auditory
network were identified in these studies. However, the resultant
networks in these studies may be too coarse to reveal some
concealed brain connectome characteristics (de Reus and Van
den Heuvel, 2013; Shen et al., 2013). The number of clusters in
most of the latest studies is in the range of 50–500 (Fan et al.,
2016; Glasser et al., 2016; Gordon et al., 2016; Arslan et al.,
2017; Schaefer et al., 2017). Our study aims to generate clusters
with fine granularities. Therefore, we set the cluster number to

[25:25:500] in the experiments. The default mode network, the
attention network, the auditory network, and other networks are
thus being divided into smaller clusters.

The neurobiological meanings of the obtained parcellations
are yet to be determined. This is usually assessed by visually
comparing the generated brain atlases to task activations,
myelin maps, cortical thickness, topography, electrical cortical
stimulationmaps, and the like (Blumensath et al., 2013; Laumann
et al., 2015; Wang D. H. et al., 2015; Parisot et al., 2016;
Arslan et al., 2017). However, there are several problems with
such comparisons. First, they are based on the assumption
that neuroimaging data with different modalities should yield
similar parcellations, which has long been debated (Wig et al.,
2011; Amunts et al., 2014; Eickhoff et al., 2015). Second, the
transferability of the parcellations between different modalities is
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often far from perfect in practice (Glasser et al., 2016; Eickhoff
et al., 2017). Third, it is difficult to quantify this comparison for
parcellations with multiple granularities at the whole brain level.
The situation becomes evenmore complex for individual subject-
level parcellations considering the inter-subject variability.
Therefore, we did not assess the neurobiological meanings of the
obtained parcellations in this study.

Since GWC can conveniently incorporate multiple features,
a potential way to improve the current parcellations is to use
multi-modal neuroimaging data (Glasser et al., 2016) rather than
resting-state fMRI data alone. This will naturally increase the
neurobiological meaning of the generated brain atlases. Even
when using resting-state fMRI data alone, wemight explore other
features such as 3D SIFT-based descriptors (Scovanner et al.,
2007; Rister et al., 2017), 3D Ray descriptors (Lucchi et al., 2012),
and 3D LBP with farer neighborhoods (Fehr and Burkhardt,
2008; Paulhac et al., 2008) in order to extract more information
from the data. The necessity of these features requires further
investigation. Additionally, while we constructed graphs for
the average coordinates, features, and eigenvectors based on
Euclidean distance, many other options can be tested. Recent
studies have shown that sparse representation (Cheng et al., 2010)
and low-rank representation (Liu et al., 2013) are suitable for
graph construction due to several promising characteristics such
as robustness to noise, sparsity, and data-adaptive neighborhood.
These techniques might help to improve the parcellations.

It is very meaningful to compare the GWC approach to
other parcellation approaches. In our study, GWCwas compared
to its random version to demonstrate that it does not rely
heavily on spatial structures. In addition, GWC was compared
to Ncut (Craddock et al., 2012; Shen et al., 2013) and SLIC
(Wang and Wang, 2016; Wang et al., 2016) to demonstrate its
advantages over other approaches. To include more parcellation
approaches into comparison, there exists several problems since
the configurations of different approaches are quite different. A
few examples of such differences are described below: Gallardo
et al. (2017) focused on structural parcellation rather than
functional parcellation; Ryali et al. (2013) focused on parcellating
a ROI rather than the whole brain; Honnorat et al. (2015), Parisot
et al. (2016), and Gordon et al. (2016) focused on group-level
parcellations rather than individual subject-level parcellations;
Gordon et al. (2016), Fan et al. (2016), and Glasser et al. (2016)
parcellated the brain into a fixed resolution rather than multiple
resolutions. Additionally, a large number of parcellation studies
including those by Gordon et al. (2016), Glasser et al. (2016),
and Schaefer et al. (2017) performed parcellation in surface space
rather than volume space. As a special case, the study by Arslan
et al. (2017) is highly relevant to the current study, although
it focused on surface-based analysis. In Arslan et al. (2017),
ten subject-level whole-brain parcellation methods including
Ncut, K-means, hierarchical clustering, geometric clustering, and
random clustering were evaluated systematically. In our study,
both Ncut and random clustering were included for comparison.
The Ncut approach is free from strong assumptions on data
distribution, robust to outliers and random initializations, easy to
implement, and reasonably fast for huge graphs (Shi and Malik,
2000; Yu and Shi, 2003; von Luxburg, 2007). Therefore, it has

great advantages over traditional clustering approaches (Ng et al.,
2002).Moreover, the Ncut approach has been successfully applied
to brain parcellation and outperforms the competing approaches
in this area (van den Heuvel et al., 2008; Shen et al., 2010, 2013;
Craddock et al., 2012). The SLIC approach is a novel whole-brain
parcellation approach that has been demonstrated to outperform
Ncut in different situations (Wang and Wang, 2016; Wang et al.,
2016). With the above considerations, we chose the Ncut and
SLIC approaches as competing approaches and did not consider
other approaches.

It might be possible to modify the latest parcellation
approaches (Gordon et al., 2016; Parisot et al., 2016; Gallardo
et al., 2017; Schaefer et al., 2017) in several major aspects in
order to make a direct comparison between these approaches
and the proposed GWC approach. First, they should be RSFC-
based approaches. Second, the parcellations should be performed
in the whole brain. Third, the parcellations should be performed
at the individual subject level. Fourth, the numbers of clusters
should be varied in the same range. Fifth, it is better to restrict
all competing approaches in one space, no matter whether it is
volume space or surface space, because a parcellation optimized
in one space may not perform well in another space. Sixth, the
parcellation approaches should depend on spatial structures to
a close degree. Only when these requirements are satisfied can
we make a fair and thorough comparison between the modified
approaches and the GWC approach. However, the approaches
in most parcellation studies are highly specialized. The potential
to extend them to meet our requirements might thus be limited.
This area also requires further investigation.

Despite the aforementioned limitations, the proposed GWC
approach successfully fulfills the original purpose of RSFC-based
parcellations, i.e., parcellating the brain into spatially contiguous,
functionally homogeneous, and reproducible clusters. Therefore,
it can be utilized to construct reliable functional networks for
brain network analysis. Previously, RSFC-based parcellations
have been successfully used to track ongoing cognition
(Gonzalez-Castillo et al., 2015), to identify individuals (Finn et al.,
2015), to measure sustained attentional abilities (Rosenberg et al.,
2016), and to predict age (Liem et al., 2017). In a recent literature
review, Hallquist and Hillary (2018) reported that more than
50 distinct parcellation techniques have been used to investigate
brain disorders in 106 studies. The clinical disorders presented in
these studies included Alzheimer’s disease, epilepsy, depression,
schizophrenia, etc. The GWC approach offers an alternative and
possibly a better choice in similar applications. Therefore, we
remain optimistic about this approach and expect it to facilitate
related studies.

CONCLUSION

This study aimed to improve RSFC-based parcellation
approaches in order to construct more reliable brain networks.
In this study, we introduced a new supervoxel-based approach,
i.e., the GWC approach, to perform whole-brain parcellation for
individuals. The parameters of GWC were selected empirically,
and we showed that our choices were generally appropriate by
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tuning one parameter at a time. By comparing the results of
the GWC approach to those of the random GWC approach,
we demonstrated that GWC does not rely heavily on spatial
structures. This reflects a great advantage over many previous
whole-brain parcellation approaches. By comparing the GWC
approach to the modified Ncut and SLIC approaches, we found
that GWC outperformed Ncut and SLIC in terms of spatial
contiguity and reproducibility, and led to comparable results in
terms of functional homogeneity. Therefore, the performance
of GWC is satisfying. As an improved RSFC-based parcellation
approach, GWC might have applications in various studies
related to brain network analysis, e.g., cognition, development,
aging, disease, and personalized medicine. Since GWC could
conveniently incorporate multiple features, it has the potential
to integrate multi-modal neuroimaging data and thus naturally
increase the neurobiological meanings of the generated brain
atlases. Additionally, we might extract other types of features
from brain data to improve the GWC approach.

AUTHOR CONTRIBUTIONS

JW and HW: Designed the study; JW: Analyzed the data and
drafted the manuscript under the supervision of HW; ZH and
HW: Revised the manuscript. All authors approved the final
version of the manuscript.

ACKNOWLEDGMENTS

JW gives special thanks to Prof. G. Xue for his instructions.
The authors would like to thank the reviewers and editors
for their valuable comments and suggestions that significantly
consolidate the study and enrich the manuscript. The authors
would also like to thank the language editing service provided
by Editage. This work was supported in part by the National
Natural Science Foundation of China under grants 61773114
and 61472089, the Joint Fund of the National Natural Science
Foundation of China and Guangdong Province under grant
U1501254, the Science and Technology Planning Project
of Guangdong Province under grants 2015B010131015
and 2015B010108006, the Natural Science Foundation
of Guangdong Province under grant 2014A030308008,
and the Key Project of Internation as well as Hongkong,
Macao & Taiwan Innovation Platform and International
Cooperation by Universities in Guangdong Province under grant
2015KGJHZ023.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnhum.
2018.00166/full#supplementary-material

REFERENCES

Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Susstrunk, S. (2012).

SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans.

Pattern Anal. Mach. Intell. 34, 2274–2282. doi: 10.1109/TPAMI.2012.120

Amunts, K., Hawrylycz, M. J., Van Essen, D. C., Van Horn, J. D., Harel, N., Poline,

J. B., et al. (2014). Interoperable atlases of the human brain. Neuroimage 99,

525–532. doi: 10.1016/j.neuroimage.2014.06.010

Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C., Rueckert, D., and

Parisot, S. (2017). Human brain mapping: a systematic comparison of

parcellation methods for the human cerebral cortex. Neuroimage 170, 5–30.

doi: 10.1016/j.neuroimage.2017.04.014

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).

Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.

107, 4734–4739. doi: 10.1073/pnas.0911855107

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-planar mri.

Magnet. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Blumensath, T., Jbabdi, S., Glasser, M. F., Van Essen, D. C., Ugurbil,

K., Behrens, T. E. J., et al. (2013). Spatially constrained hierarchical

parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324.

doi: 10.1016/j.neuroimage.2013.03.024

Bullmore, E. T., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Cheng, B., Liu, G., Wang, J., Huang, Z., and Yan, S. (2011). “Multi-task low-rank

affinity pursuit for image segmentation,” in IEEE International Conference on

Computer Vision (Barcelona), 2439–2446. doi: 10.1109/ICCV.2011.6126528

Cheng, B., Yang, J. C., Yan, S. C., Fu, Y., and Huang, T. S. (2010). Learning

with L1-graph for image analysis. IEEE Trans. Image Process. 19, 858–866.

doi: 10.1109/TIP.2009.2038764

Cheng, H. W., Wu, H., and Fan, Y. (2014). Optimizing affinity measures for

parcellating brain structures based on resting state fMRI data: a validation

on medial superior frontal cortex. J. Neurosci. Methods 237, 90–102.

doi: 10.1016/j.jneumeth.2014.09.004

Chong, M., Bhushan, C., Joshi, A. A., Choi, S., Haldar, J. P., Shattuck,

D. W., et al. (2017). Individual parcellation of resting fMRI with

a group functional connectivity prior. Neuroimage 156, 87–100.

doi: 10.1016/j.neuroimage.2017.04.054

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. P., and Mayberg, H.

S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral

clustering. Hum. Brain Mapp. 33, 1914–1928. doi: 10.1002/hbm.21333

de Reus, M. A., and Van den Heuvel, M. P. (2013). The parcellation-

based connectome: limitations and extensions. Neuroimage 80, 397–404.

doi: 10.1016/j.neuroimage.2013.03.053

Dice, L. R. (1945). Measures of the amount of ecologic association between species.

Ecology 26, 297–302. doi: 10.2307/1932409

Dubois, J., and Adolphs, R. (2016). Building a science of individual differences

from fMRI. Trends Cogn. Sci. 20, 425–443. doi: 10.1016/j.tics.2016.03.014

Eickhoff, S. B., Constable, R. T., and Yeo, B. T. T. (2017). Topographic organization

of the cerebral cortex and brain cartography. Neuroimage 170, 332–347.

doi: 10.1016/j.neuroimage.2017.02.018

Eickhoff, S. B., Thirion, B., Varoquaux, G., and Bzdok, D. (2015). Connectivity-

based parcellation: critique and implications.Hum. BrainMapp. 36, 4771–4792.

doi: 10.1002/hbm.22933

Fan, L. Z., Li, H., Zhuo, J. J., Zhang, Y., Wang, J. J., Chen, L. F., et al. (2016). The

human brainnetome atlas: a new brain atlas based on connectional architecture.

Cereb. Cortex 26, 3508–3526. doi: 10.1093/cercor/bhw157

Fehr, J., and Burkhardt, H. (2008). “3D rotation invariant local binary patterns,”

in The 19th International Conference on Pattern Recognition (Tampa, FL), 1–4.

doi: 10.1109/ICPR.2008.4761098

Finn, E. S., Shen, X. L., Scheinost, D., Rosenberg, M. D., Huang, J., Chun,

M. M., et al. (2015). Functional connectome fingerprinting: identifying

individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671.

doi: 10.1038/nn.4135

Fornito, A., Zalesky, A., and Breakspear, M. (2013). Graph analysis of the

human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444.

doi: 10.1016/j.neuroimage.2013.04.087

Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. P., Frith, C. D.,

and Frackowiak, R. S. (1994). Statistical parametric maps in functional

Frontiers in Human Neuroscience | www.frontiersin.org 17 May 2018 | Volume 12 | Article 166

https://www.frontiersin.org/articles/10.3389/fnhum.2018.00166/full#supplementary-material
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1016/j.neuroimage.2014.06.010
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1016/j.neuroimage.2013.03.024
https://doi.org/10.1038/nrn2575
https://doi.org/10.1109/ICCV.2011.6126528
https://doi.org/10.1109/TIP.2009.2038764
https://doi.org/10.1016/j.jneumeth.2014.09.004
https://doi.org/10.1016/j.neuroimage.2017.04.054
https://doi.org/10.1002/hbm.21333
https://doi.org/10.1016/j.neuroimage.2013.03.053
https://doi.org/10.2307/1932409
https://doi.org/10.1016/j.tics.2016.03.014
https://doi.org/10.1016/j.neuroimage.2017.02.018
https://doi.org/10.1002/hbm.22933
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1109/ICPR.2008.4761098
https://doi.org/10.1038/nn.4135
https://doi.org/10.1016/j.neuroimage.2013.04.087
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Individual Subject Level Parcellation by GWC

imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210.

doi: 10.1002/hbm.460020402

Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., and Turner, R.

(1996). Movement-related effects in fMRI time-series.Magnet. Reson. Med. 35,

346–355. doi: 10.1002/mrm.1910350312

Gallardo, G., Wells, W. 3rd, Deriche, R., and Wassermann, D. (2017).

Groupwise structural parcellation of the whole cortex: a logistic

random effects model based approach. Neuroimage 170, 307–320.

doi: 10.1016/j.neuroimage.2017.01.070

Gao, L., Song, J., Nie, F., Zou, F., Sebe, N., and Shen, H. T. (2016). “Graph-

without-cut: an ideal graph learning for image segmentation,” in The 30th AAAI

Conference on Artificial Intelligence (Phoenix), 1188–1194.

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub,

E., et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature

536, 171–178. doi: 10.1038/nature18933

Gonzalez-Castillo, J., Hoy, C. W., Handwerker, D. A., Robinson, M. E., Buchanan,

L. C., Saad, Z. S., et al. (2015). Tracking ongoing cognition in individuals using

brief, whole-brain functional connectivity patterns. Proc. Natl. Acad. Sci. U.S.A.

112, 8762–8767. doi: 10.1073/pnas.1501242112

Gordon, E. M., Laumann, T. O., Adeyemo, B., Huckins, J. F., Kelley, W.

M., and Petersen, S. E. (2016). Generation and evaluation of a cortical

area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303.

doi: 10.1093/cercor/bhu239

Hallquist, M. N., and Hillary, F. G. (2018). Graph theory approaches to functional

network organization in brain disorders: a critique for a brave new small-world.

BioRxiv. doi: 10.1162/NETN_a_00054

Honnorat, N., Eavani, H., Satterthwaite, T. D., Gur, R. E., Gur, R. C., and

Davatzikos, C. (2015). GraSP: geodesic graph-based segmentation with shape

priors for the functional parcellation of the cortex. Neuroimage 106, 207–221.

doi: 10.1016/j.neuroimage.2014.11.008

Kahnt, T., Chang, L. J., Park, S. Q., Heinzle, J., and Haynes, J. D. (2012).

Connectivity-based parcellation of the human orbitofrontal cortex. J. Neurosci.

32, 6240–6250. doi: 10.1523/JNEUROSCI.0257-12.2012

Kim, J.-H., Lee, J.-M., Jo, H. J., Kim, S. H., Lee, J. H., Kim, S. T., et al.

(2010). Defining functional SMA and pre-SMA subregions in human MFC

using resting state fMRI: functional connectivity-based parcellation method.

Neuroimage 49, 2375–2386. doi: 10.1016/j.neuroimage.2009.10.016

Kong, Y. Y., Deng, Y., and Dai, Q. H. (2015). Discriminative clustering and feature

selection for brain MRI segmentation. IEEE Signal Process. Lett. 22, 573–577.

doi: 10.1109/LSP.2014.2364612

Laumann, T. O., Gordon, E. M., Adeyemo, B., Snyder, A. Z., Joo, S. J.,

Chen, M. Y., et al. (2015). Functional system and areal organization

of a highly sampled individual human brain. Neuron 87, 657–670.

doi: 10.1016/j.neuron.2015.06.037

Liem, F., Varoquaux, G., Kynast, J., Beyer, F., Masouleh, S. K., Huntenburg,

J. M., et al. (2017). Predicting brain-age from multimodal imaging

data captures cognitive impairment. Neuroimage 148, 179–188.

doi: 10.1016/j.neuroimage.2016.11.005

Liu, G. C., Lin, Z. C., Yan, S. C., Sun, J., Yu, Y., and Ma, Y. (2013). Robust recovery

of subspace structures by low-rank representation. IEEE Trans. Pattern Anal.

Mach. Intell. 35, 171–184. doi: 10.1109/TPAMI.2012.88

Lowe, D. G. (1999). “Object recognition from local scale-invariant features,”

in IEEE International Conference on Computer Vision (Corfu), 1150–1157.

doi: 10.1109/ICCV.1999.790410

Lucchi, A., Smith, K., Achanta, R., Knott, G., and Fua, P. (2012). Supervoxel-based

segmentation of mitochondria in EM image stacks with learned shape features.

IEEE Trans. Med. Imaging 31, 474–486. doi: 10.1109/TMI.2011.2171705

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.

(2015). Themultimodal brain tumor image segmentation benchmark (BRATS).

IEEE Trans. Med. Imaging 34, 1993–2024. doi: 10.1109/TMI.2014.2377694

Montagne, C., Kodewitz, A., Vigneron, V., Giraud, V., and Lelandais, S. (2013).

“3D local binary pattern for PET image classification by SVM, application

to early Alzheimer disease diagnosis,” in The 6th International Conference on

Bio-Inspired Systems and Signal Processing (Barcelona), 145–150.

Mueller, S., Wang, D. H., Fox, M. D., Yeo, B. T. T., Sepulcre, J., Sabuncu, M. R.,

et al. (2013). Individual variability in functional connectivity architecture of the

human brain. Neuron 77, 586–595. doi: 10.1016/j.neuron.2012.12.028

Ng, A. Y., Jordan, M. I., and Weiss, Y. (2002). “On spectral clustering: Analysis

and an algorithm,” in Advances in Neural Information Processing Systems

(Vancouver), 849–856.

Nie, F., Wang, X., and Huang, H. (2014). “Clustering and projected clustering

with adaptive neighbors,” in The 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (New York, NY), 977–986.

doi: 10.1145/2623330.2623726

Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and

rotation invariant texture classification with local binary patterns. IEEE Trans.

Pattern Anal. Mach. Intell. 24, 971–987. doi: 10.1109/TPAMI.2002.1017623

Papon, J., Abramov, A., Schoeler, M., and Worgotter, F. (2013). “Voxel

cloud connectivity segmentation - supervoxels for point clouds,” in IEEE

Conference on Computer Vision and Pattern Recognition (Oregon), 2027–2034.

doi: 10.1109/CVPR.2013.264

Parisot, S., Arslan, S., Passerat-Palmbach, J., Wells, W.M., and Rueckert, D. (2016).

Group-wise parcellation of the cortex through multi-scale spectral clustering.

Neuroimage 136, 68–83. doi: 10.1016/j.neuroimage.2016.05.035

Paulhac, L., Makris, P., and Ramel, J. Y. (2008). Comparison between 2D

and 3D local binary pattern methods for characterisation of three-

dimensional textures. Image Anal. Recogn. Proceed. 5112, 670–679.

doi: 10.1007/978-3-540-69812-8_66

Rister, B., Horowitz, M. A., and Rubin, D. L. (2017). Volumetric image registration

from invariant keypoints. IEEE Trans. Image Process. 26, 4900–4910.

doi: 10.1109/TIP.2017.2722689

Rosenberg, M. D., Finn, E. S., Scheinost, D., Papademetris, X., Shen, X.

L., Constable, R. T., et al. (2016). A neuromarker of sustained attention

from whole-brain functional connectivity. Nat. Neurosci. 19, 165–171.

doi: 10.1038/nn.4179

Rubinov, M., and Sporns, O. (2011). Weight-conserving characterization

of complex functional brain networks. Neuroimage 56, 2068–2079.

doi: 10.1016/j.neuroimage.2011.03.069

Ryali, S., Chen, T. W., Supekar, K., and Menon, V. (2013). A parcellation

scheme based on von Mises-Fisher distributions and Markov random fields

for segmenting brain regions using resting-state fMRI. Neuroimage 65, 83–96.

doi: 10.1016/j.neuroimage.2012.09.067

Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D.,

and Bullmore, E. T. (2005). Neurophysiological architecture of functional

magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342.

doi: 10.1093/cercor/bhi016

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N.,

Holmes, A. J., et al. (2017). Local-global parcellation of the human

cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex

doi: 10.1093/cercor/bhx179. [Epub ahead of print].

Scovanner, P., Ali, S., and Shah, M. (2007). “A 3-dimensional sift descriptor and its

application to action recognition,” in The 15th ACM International Conference

on Multimedia (Augsburg), 357–360. doi: 10.1145/1291233.1291311

Shen, X., Papademetris, X., and Constable, R. T. (2010). Graph-theory based

parcellation of functional subunits in the brain from resting-state fMRI data.

Neuroimage 50, 1027–1035. doi: 10.1016/j.neuroimage.2009.12.119

Shen, X., Tokoglu, F., Papademetris, X., and Constable, R. T. (2013). Groupwise

whole-brain parcellation from resting-state fMRI data for network node

identification.Neuroimage 82, 403–415. doi: 10.1016/j.neuroimage.2013.05.081

Shi, J. B., and Malik, J. (2000). Normalized cuts and image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell. 22, 888–905. doi: 10.1109/34.868688

Sporns, O., Tononi, G., and Kotter, R. (2005). The human connectome: a

structural description of the human brain. PLoS Comput. Biol. 1, 245–251.

doi: 10.1371/journal.pcbi.0010042

Stanley, M. L., Moussa, M. N., Paolini, B. M., Lyday, R. G., Burdette, J. H.,

and Laurienti, P. J. (2013). Defining nodes in complex brain networks. Front.

Comput. Neurosci. 7:169. doi: 10.3389/fncom.2013.00169

Thirion, B., Varoquaux, G., Dohmatob, E., and Poline, J. B. (2014). Which

fMRI clustering gives good brain parcellations? Front. Neurosci. 8:167.

doi: 10.3389/fnins.2014.00167

Tong, T., Aganj, I., Ge, T., Polimeni, J. R., and Fischl, B. (2017). Functional

density and edge maps: characterizing functional architecture in individuals

and improving cross-subject registration. Neuroimage 158, 346–355.

doi: 10.1016/j.neuroimage.2017.07.019

Frontiers in Human Neuroscience | www.frontiersin.org 18 May 2018 | Volume 12 | Article 166

https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1016/j.neuroimage.2017.01.070
https://doi.org/10.1038/nature18933
https://doi.org/10.1073/pnas.1501242112
https://doi.org/10.1093/cercor/bhu239
https://doi.org/10.1162/NETN_a_00054
https://doi.org/10.1016/j.neuroimage.2014.11.008
https://doi.org/10.1523/JNEUROSCI.0257-12.2012
https://doi.org/10.1016/j.neuroimage.2009.10.016
https://doi.org/10.1109/LSP.2014.2364612
https://doi.org/10.1016/j.neuron.2015.06.037
https://doi.org/10.1016/j.neuroimage.2016.11.005
https://doi.org/10.1109/TPAMI.2012.88
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/TMI.2011.2171705
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1016/j.neuron.2012.12.028
https://doi.org/10.1145/2623330.2623726
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/CVPR.2013.264
https://doi.org/10.1016/j.neuroimage.2016.05.035
https://doi.org/10.1007/978-3-540-69812-8_66
https://doi.org/10.1109/TIP.2017.2722689
https://doi.org/10.1038/nn.4179
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1016/j.neuroimage.2012.09.067
https://doi.org/10.1093/cercor/bhi016
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1145/1291233.1291311
https://doi.org/10.1016/j.neuroimage.2009.12.119
https://doi.org/10.1016/j.neuroimage.2013.05.081
https://doi.org/10.1109/34.868688
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.3389/fncom.2013.00169
https://doi.org/10.3389/fnins.2014.00167
https://doi.org/10.1016/j.neuroimage.2017.07.019
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Wang et al. Individual Subject Level Parcellation by GWC

van den Heuvel, M., Mandl, R., and Pol, H. H. (2008). Normalized

cut group clustering of resting-state fMRI data. PLoS ONE 3:e2001.

doi: 10.1371/journal.pone.0002001

Veksler, O., Boykov, Y., and Mehrani, P. (2010). “Superpixels and

supervoxels in an energy optimization framework,” in The 11th European

Conference on Computer Vision (Crete), 211–224. doi: 10.1007/978-3-642-

15555-0_16

von Luxburg, U. (2007). A tutorial on spectral clustering. Stat. Comput. 17,

395–416. doi: 10.1007/s11222-007-9033-z

Wang, D. H., Buckner, R. L., Fox, M. D., Holt, D. J., Holmes, A. J., Stoecklein,

S., et al. (2015). Parcellating cortical functional networks in individuals. Nat.

Neurosci. 18, 1853–1860. doi: 10.1038/nn.4164

Wang, J., Hu, Z. L., and Wang, H. X. (2016). “Parcellating whole brain

for individuals by simple linear iterative clustering,” in The 23rd

International Conference on Neural Information Processing (Kyoto), 131–139.

doi: 10.1007/978-3-319-46675-0_15

Wang, J., and Wang, H. X. (2016). A supervoxel-based method for groupwise

whole brain parcellation with resting state fMRI data. Front. Hum. Neurosci.

10:659. doi: 10.3389/fnhum.2016.00659

Wang, X. F., Tang, Y. X., Masnou, S., and Chen, L. M. (2015). A global/local affinity

graph for image segmentation. IEEE Trans. Image Process. 24, 1399–1411.

doi: 10.1109/TIP.2015.2397313

Wig, G. S., Schlaggar, B. L., and Petersen, S. E. (2011). Concepts and principles

in the analysis of brain networks. Ann. N. Y. Acad. Sci. 1224, 126–146.

doi: 10.1111/j.1749-6632.2010.05947.x

Xu, C. L., and Corso, J. J. (2012). “Evaluation of super-voxel methods

for early video processing,” in IEEE Conference on Computer Vision

and Pattern Recognition (Providence), 1202–1209. doi: 10.1109/CVPR.2012.

6247802

Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A.,

et al. (2013). A comprehensive assessment of regional variation in the impact of

head micromovements on functional connectomics. Neuroimage 76, 183–201.

doi: 10.1016/j.neuroimage.2013.03.004

Yan, C. G., and Zang, Y. F. (2010). DPARSF: a MATLAB toolbox for

“pipeline” data analysis of resting-state fMRI. Front. Syst. Neurosci. 4:13.

doi: 10.3389/fnsys.2010.00013

Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D.,

Hollinshead, M., et al. (2011). The organization of the human cerebral cortex

estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165.

doi: 10.1152/jn.00338.2011

Yu, S. X., and Shi, J. B. (2003). “Multiclass spectral clustering,” in

IEEE International Conference on Computer Vision (Nice), 313–319.

doi: 10.1109/ICCV.2003.1238361

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The reviewer [GG] and handling Editor declared their shared affiliation, and

the handling Editor states that the process nevertheless met the standards of a fair

and objective review.

Copyright © 2018 Wang, Hao and Wang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Human Neuroscience | www.frontiersin.org 19 May 2018 | Volume 12 | Article 166

https://doi.org/10.1371/journal.pone.0002001
https://doi.org/10.1007/978-3-642-15555-0_16
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1038/nn.4164
https://doi.org/10.1007/978-3-319-46675-0_15
https://doi.org/10.3389/fnhum.2016.00659
https://doi.org/10.1109/TIP.2015.2397313
https://doi.org/10.1111/j.1749-6632.2010.05947.x
https://doi.org/10.1109/CVPR.2012.6247802
https://doi.org/10.1016/j.neuroimage.2013.03.004
https://doi.org/10.3389/fnsys.2010.00013
https://doi.org/10.1152/jn.00338.2011
https://doi.org/10.1109/ICCV.2003.1238361
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles

	Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation
	Introduction
	Materials and Methods
	Participants and Imaging Data Acquisition
	Preprocessing
	Supervoxel Generation
	Feature Extraction
	GWC
	The Algorithm Procedure
	Updating Z
	Updating S
	Updating α

	Graph Normalization
	Tuning Parameters
	The Number of Supervoxels
	The Number of Clusters
	The Parameter λ
	The Parameter Γ
	The Parameter k

	Evaluation Criteria
	The Competing Approaches
	Random Parcellation

	Results
	GWC
	Tuning Parameters
	Competing Approaches
	Comparison

	Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


