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Creep rupture of heterogeneous materials occurring under constant sub-critical external loads is
responsible for the collapse of engineering constructions and for natural catastrophes. Acoustic monitoring
of crackling bursts provides microscopic insight into the failure process. Based on a fiber bundle model, we
show that the accelerating bursting activity when approaching failure can be described by the Omori law.
For long range load redistribution the time series of bursts proved to be a non-homogeneous Poissonian
process with power law distributed burst sizes and waiting times. We demonstrate that limitations of
experiments such as finite detection threshold and time resolution have striking effects on the characteristic
exponents, which have to be taken into account when comparing model calculations with experiments.
Recording events solely within the Omori time to failure the size distribution of bursts has a crossover to a
lower exponent which is promising for forecasting the imminent catastrophic failure.

M
aterials subject to a constant external load below their fracture strength typically exhibit a time depend-
ent response and fail in a finite time. Such creep rupture phenomena have an enormous technological
importance and human impact since they are responsible for the collapse of engineering constructions

and they lie at the core of natural catastrophes such as landslides, snow and stone avalanches and earthquakes1–11.
The acoustic waves generated by the nucleation and propagation of cracks allow for the monitoring of the failure
process on the meso- and micro scales. Crackling noise is usually characterized by the integrated statistics
accumulating all the events of the time series up to failure2–14. Experiments revealed that the probability distri-
bution of the energy of crackling bursts and of the interoccurrence times have power law functional form, which
are considered to be the fingerprint of correlations in the microscopic breaking dynamics1–14. The value of the
exponents measured on different types of heterogenous materials show a surprisingly large scatter between 1 and
2 which has not been captured by theoretical studies1–10. The approach to failure is usually characterized on the
macroscale by the strain rate which proved to have a power law divergence as a function of time to failure1,5,6,14.

Here we take a different strategy and investigate the details of the crackling time series in order to understand
how the creeping system evolves towards catastrophic failure. We consider a generic fiber bundle model16–20

(FBM) of damage enhanced creep rupture which successfully reproduces measured creep behaviour of hetero-
geneous materials both on the micro and macro scales (Methods)21,22. In the model under a constant subcritical
external load the fibers break due to two physical mechanisms: immediate breaking occurs when the load of fibers
exceeds the local failure strength. Time dependence emerges such that intact fibers accumulate damage which
results in failure in a finite time. The separation of time scales of slow damaging and of immediate breaking
together with the load redistribution following failure events lead to a highly complex time evolution where slowly
proceeding damage sequences trigger bursts of immediate breakings21,22. An example of the time series of bursts
can be seen in Fig. 1 where the increasing burst size D and the decreasing waiting time T between consecutive
events clearly mark the acceleration of the system towards failure. As a novel approach to creep we focus on the
evolution of the rate of bursts and show that the temporal occurrence of crackling events and the power law
statistics of waiting times can fully be described based on non-homogeneous Poissonian processes without
assuming correlations of bursts. Our investigation unveils that limitations of measuring devices in experiments
have astonishing effects on the outcomes of crackling noise analysis which can explain the strong scatter of
measured critical exponents of crackling noise in creep, and the discrepancy between experimental findings and
theoretical approaches. Studying how the time series evolves when approaching the catastrophe we address the
possibility of forecasting the imminent failure. The importance of the results goes beyond fracture phenomena
and catastrophic failures, recently the human activity has been found to exhibit similar bursty character where
analogous problems of the evolution of time series and waiting time statistics occur23–25.
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Results
Bursts of immediate breakings triggered by damage sequences are
analogous to acoustic outbreaks in loaded specimens. However,
damage breakings cannot be recorded by experimental means they
determine the waiting time T between consecutive bursts. The com-
petition of the two failure modes has the consequence that the system
drives itself towards failure under a constant subcritical external load
s0 , sc. The global acceleration of the dynamics that can be
observed in Fig. 1 is the consequence of the increasing load on the
intact part of the system due to subsequent load redistributions, while
the fluctuations of the burst size D and waiting time T emerge due to
the quenched heterogeneity of fibers’ strength in qualitative agree-
ment with experiments1–13.

In order to quantify how the accelerating dynamics appears on the
microscale we determined the rate of bursts n(t) as a function of the
distance from the critical point tf 2 t. Figure 2(a) shows that at the
beginning of the creep process the event rate monotonically increases
having a power law functional form. Approaching catastrophic fail-
ure n(t) saturates and converges to a constant. The most remarkable
result is that the functional form of n(t) can be described by the
modified Omori law26,27

n tð Þ~ A

1z tf {t
� �

=c
� �p , ð1Þ

where A is the saturation rate or productivity at catastrophic failure, c
denotes the characteristic time scale, and p is the Omori exponent.
Perfect agreement can be observed in Fig. 2(a) between the simulated
data and the analytic form of equation (1). In the case of earthquakes,
the Omori law describes the decay rate of aftershocks following
major earthquakes26,27. For creep rupture we observe the inverse
process: considering the macroscopic failure as the main shock, the
breaking bursts are foreshocks whose increasing rate is described by
the (inverse) Omori law.

As a crucial point, our approach makes it posssible to clarify how
the characteristic time scale c of the Omori law emerges: Figure 2(b)
illustrates that due to the increasing load on intact fibers shorter and
shorter damage sequences are sufficient to trigger bursts. However,
this acceleration is limited such that for tf 2 t , c the average length
of damage sequences Ddh i(t) saturates between 1 and 2. The origin of
this high susceptibility is that the load of intact fibers ss(t) gradually
increases to its quasi-static critical value sc

s (see Fig. 2(b))16–22. Hence,
the Omori time scale c is determined by the condition
ss(tf {t~c)<sc

s , where sc
s can be obtained from the quasi-static

constitutive equation of FBMs16–22. Note that the condition
Ddh i~1 marks the point of instability where the avalanche cannot

stop anymore and it becomes catastrophic.
Figure 2(a) also demonstrates that the saturation rate A does not

depend on the external load s0, however, the characteristic time scale
c linearly increases c , s0, indicating that at higher load saturation
sets on earlier. Our simulations revealed that the Omori exponent is p
5 1, it does not depend on any details of the damage law21,22 such as
the c exponent and the disorder distributions until the load redis-
tribution is long ranged.

The event rate n(t) is practically the inverse of the average waiting
time between events occurring at time t. More detailed characteriza-
tion is provided by the probability distribution of waiting times P(T)
which is presented in Fig. 3 corresponding to the system of Fig. 2.
Along the distributions two characteristic time scales can be iden-
tified: for waiting times below a threshold T , Tl, the distributions
have constant values, while in the limit of large waiting times T . Tu

a rapidly decreasing exponential form is obtained.
For the intermediate regime Tl , T , Tu the waiting time dis-

tributions exhibit a power law behavior

P Tð Þ*T{z, ð2Þ

where the exponent proved to be universal z 5 1. Increasing the
external load s0 the upper cutoff Tu decreases, however, the lower
characteristic time Tl is independent of s0. Since the temporal occur-
rence of events is determined by the global increase of the breaking
probability due to the increasing load on intact fibers, the above
results suggest that the time evolution of crackling noise of hetero-
geneous materials undergoing creep rupture can be described as a
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Figure 1 | Time series of bursts in a bundle of N 5 100000 fibers at a load
s0/sc 5 0.05: the size of bursts D (a) and waiting times T between
consecutive events (b) are presented as function of time t of their
occurrence normalized by the lifetime tf of the system. The red lines

represent the moving average of D and T. The increasing average burst size

and decreasing average waiting time indicate the acceleration of the system

towards failure.

Figure 2 | (a) Event rate n as a function of time to failure tf 2 t for several different load values. The continuous lines represent fits with the Omori

law equation (1). (b) Average size of damage sequences Ddh i and average load of single fibers ss normalized by its quasi-static critical value sc
s as

function of time to failure.
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non-homogeneous Poissonian process (NHPP). For NHPP the wait-
ing time distribution of a series of ND events with duration tf can be
obtained analytically from the event rate as28,29

PNHPP Tð Þ~ 1
ND

ðtf {T

0
n sð Þn szTð Þe{

Ð szT

s
n uð Þdudszn tð Þe{

Ð T

0
n sð Þds

:
ð3Þ

To verify the consistency of the NHPP picture for our creeping
system, first we fitted the event rate functions by the Omori law
determining the value of the parameters A, c, and p. Then the analytic
form equation (1) of n(t) with the numerical parameters was plugged
into equation (3) and the integral was calculated numerically taking
into account the load dependent lifetime tf(s0) of the sample21,22, as
well. In Fig. 3 an excellent agreement can be observed between the
waiting time distributions obtained from the simulations P(T) and
the analytic prediction PNHPP(T) of equation (3). An important con-
sequence of the above results is that the lower cutoff Tl of P(T) can be
obtained from the saturation event rate Tl 5 1/A, which does not
depend on the external load. The upper cutoff Tu is determined by

the other time scales as Tu~
1
A

tf

c

� �p

. Inserting the Basquin law of

creep life tf!s{c
0 reproduced by our model21,22 and the linear load

dependence of c it follows that the upper cutoff Tu scales with the

external load as Tu*s
{ 1zcð Þ
0 . The results show that details of the

damage process control the global time scale of rupture, however,
they do not affect the Omori and waiting time exponents. Power law
distributions of interoccurrence times in fracture phenomena are
usually considered to be the fingerprint of correlations between con-
secutive events1–14. Our analysis revealed that for creep phenomena
this is not necessarily true, the global acceleration of a heterogeneous
system can lead to power law distributed inter-event times without
any local correlations.

The comparison of theoretical results to the experimental findings
and different types of measurements to each other can be problem-
atic because in laboratory experiments the time series of bursts is
never complete: small size bursts generate only low amplitude signals
which may fall in the range of background noise1–11. Devices also
have a finite time resolution resulting in a deadtime of detection,
during which bursts generated at different positions in space cannot
be distinguished from each other1–11,15,30. Incompleteness of the time
series, especially in field observations, may also be caused by the fact
that recording does not start exactly at the time when the load was set.
Hence, the beginning of the time series is missing and the measure-
ment is more focused on the vicinity of the failure point where
intensive crackling occurs1–4,32–34.

In order to capture the effect of the detection threshold of the
measuring equipment in the data evaluation, we introduced a thresh-
old value Dth for the size of bursts D, i.e. bursts with size D # Dth are
ignored in the time series. Since the size of bursts increases when
approaching global rupture (see Fig. 1), the detection threshold
removes events typically at the beginning of the time series decreas-
ing the rate of events in this regime. It can be observed in Fig. 4(a) that
asDth increases the functional form of the event rate n(t,Dth) remains
nearly the same described by the Omori law equation (1), however,
the exponent p monotonically increases with the threshold value Dth.
For the corresponding waiting time distributions P(T, Dth) in
Fig. 4(b), the exponent z of the power law regime also increases with
increasing Dth, however, the NHPP nature of the event series is pre-
served at any values of Dth. For NHPPs the two exponents z and p
have the simple relation28

z Dthð Þ~2{1=p Dthð Þ, ð4Þ

which holds with a high accuracy in our system for the numerically
determined exponents at any values ofDth (see Fig. 4(c)). It is import-
ant to emphasize that the exponents increase due to the non-station-
ary nature of creep rupture: the simultaneous increase of the rate and
size of events towards failure has the consequence that the finite
detection threshold mainly affects the beginning of the time series
resulting in a few long waiting times up to the first bigger bursts.
Their statistics is characterized by a peak or small bump in Fig. 4(b),
while the rest of waiting times have a steeper power law distribution.
The results demonstrate that the detection threshold has a dramatic
effect on the outcomes of the analysis of crackling time series, just
varying Dth practically any values can be obtained for the waiting
time exponent z between 1 and 2.

The finite time resolution td of the detectors has the consequence
that bursts pile up, i.e. since bursts cannot be distinguished within the
duration td, the size of bursts sums up giving rise to larger event sizes
in the time series. The effect of the deadtime is captured in the data
evaluation such that if an avalanche of size Di occurred at time ti, all
those avalanches which appeared in the interval ti , t , tt 1 td are
added to Di. In Fig. 5(a) at zero deadtime td 5 0 where all avalanches

Figure 3 | Probability distribution of waiting times P(T) between
consecutive bursts. The numerical results (symbols) are perfectly

described by the analytic prediction PNHPP(T) of equation (3) (continuous

lines).

Figure 4 | Event rates (a) and waiting time distributions (b) at different detection thresholds Dth. (c) Comparison of the exponent z(Dth) of the waiting

time distributions obtained numerically with the NHPP prediction equation (4).
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are distinguished the size distribution P(D, td 5 0) has a power law
form

P D,td~0ð Þ*D{t ð5Þ

followed by an exponential cutoff. The value of the exponent t 5 2.5
is equal to the usual mean field burst exponent of FBMs16–22. As td

increases the pile up of bursts promotes large events while the small
ones get suppressed. Due to the acceleration of the failure process
pile-up gets dominating in the vicinity of macroscopic failure, hence,
in Fig. 5(a) the value of td is compared to Tl of the waiting time
distribution. As a consequence, the waiting time distributions hardly
change, however, the burst size distribution P(D, td) has a crossover
to a power law of a significantly lower exponent td 5 2.0 showing the
higher frequency of large events in the statistics. In Fig. 5(a) pile up
becomes dominating already at td/Tl < 0.001, which shows the
importance of the results for real experiments.

Recently, laboratory experiments on earth materials have revealed
that the b-value, i.e. the exponent of the probability distribution of
the energy of the time series of acoustic events of rupture cascades
decreases in the vicinity of failure31–34. To investigate the possibility of
an analogous phenomenon in creep rupture, we constrained the data
evaluation to events occurring in a time interval of duration t* pre-
ceding macroscopic failure and determined the probability distri-
bution P(D, tf 2 t , t*). It can be observed in Fig. 5(b) that
approaching macroscopic rupture t* , c, where the largest ava-
lanches are triggered, the burst size distribution P(D, tf 2 t , t*)
exhibits a crossover: at a characteristic burst size Dc the exponent of
P(D, tf 2 t , t*) has a striking change from t 5 2.5 to a surprisingly
low value t < 1.4. The value of Dc extends to the largest avalanche as
t* , c decreases. The crossover is accompanied by the change of the
waiting time distribution, as well: Since in the regime t*, c the event
rate is constant, the power law regime of P(D, tf 2 t , t*) disappears
and the distribution turns to a pure exponential as it is expected for
homogeneous (constant event rate) Poissonian processes29.

Discussion
Acoustic outbreaks generated by nucleating and propagating cracks
provide the main source of information on the microscopic temporal
dynamics of creep rupture. For the understanding of acoustic mon-
itoring data of engineering constructions and of field measurements
on steep slopes or rock walls in mountains requires the application of
statistical physics. Our analysis showed that time-to-failure power
laws of macroscopic quantities such as creep rate commonly
observed in experiments are accompanied by the emergence of
Omori type acceleration of the bursting activity on the microscale.
The origin of the Omori time scale is that the aging system drives
itself to a critical state where a few breakings are sufficient to trigger
extended bursts. The Omori law is known to describe the relaxation
of the rate of aftershocks following major earthquakes26,27, and it has

also been confirmed for foreshocks when observed32. Our results
suggest the interpretation that acoustic bursts in creep behave like
foreshocks of the imminent catastrophe.

Our investigations unveiled that the evolving time series of crack-
ling events is the result of an underlying non-homogeneous
Poissonian process. It has the striking consequence that observing
power law distributed waiting times in fracture may not imply the
presence of dynamic correlations, up to a large extent it can be caused
by the global acceleration of the system. We showed that special care
should be taken when comparing results of model calculations to
measurements on crackling noise, since the deadtime of devices and
the finite background noise to signal ratio can even affect the mea-
sured value of critical exponents. Varying solely the detection thresh-
old of events, for the distribution of waiting times any exponents can
be obtained between 1 and 2 covering the range of experimental
results1–15. Due to the finite deadtime of electronics bursts pile up
which gives rise to a crossover to a lower exponent of the size distri-
bution of bursts. Recently, avalanches have been identified with a
high spacial resolution along a propagating crack front using optical
imaging techniques15,30. Considering global avalanches in the same
experiment integrates bursts along the front, giving rise to a signifi-
cantly lower exponent in agreement with our predictions15,30.

Components of engineering constructions are mainly subject to
creep loads3, and creep rupture often lies at the core of natural cat-
astrophes such as landslides, snow and stone avalanches, as well31–34.
We demonstrated that restricting the measurement to the close
vicinity of ultimate failure, the size distribution of bursts exhibits a
crossover to a significantly lower exponent, which is accompanied by
the change of the functional form of the waiting time distribution.
Since the crossover is controlled by the time scale of the Omori law
these results can be exploited for forecasting the imminent cata-
strophic failure event.

Here we focused on the case of long range load redistribution
following failure events. When the load sharing is localized the spa-
tial correlation of failure events leads to the emergence of a prop-
agating crack front. The load accumulated along the crack front gives
rise to an overall acceleration of the failure process again with a non-
homogeneous Poissonian character. However, at short time scales
correlated clusters of events may arise inside the time series. The
results imply the interesting question to clarify when studying burst
time series under creep whether there is anything in the dynamics
beyond non-homogeneous Poissonian processes.

Methods
We use a generic fiber bundle model16–20 of the creep rupture of heterogeneous
materials which has succesfully reproduced measured creep behavior21,22. The sample
is discretized in terms of a bundle of N parallel fibers having a brittle response with
identical Young modulus E. The bundle is subject to a constant external loads0 below
the fracture strength sc of the system. It is a crucial element of the model that the
fibers break due to two physical mechanisms: immediate breaking occurs when the

Figure 5 | (a) Burst size distributions at s0/sc 5 0.001 for different values of the deadtime td. A crossover is observed from a power law of exponent t 5

2.5 to a lower value td 5 2.0 (b) Considering events solely close to failure P(D, tf 2 t , t*) shows a crossover from the exponent 2.5 to 1.4.
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local load s on fibers exceeds their fracture strength si
th,i~1, . . . ,N . Time depend-

ence is introduced such that those fibers, which remained intact, undergo an aging
process accumulating damage c(t)21,22. The rate of damage accumulation Dc(t) is
assumed to have a power law dependence on the local load s(t) of fibers Dc(t) 5

as(t)cDt, where a is a constant and the exponent c controls the time scale of the
accumulation process. Fibers can tolerate only a finite amount of damage so that
when the total damage c(t) accumulated up to time t exceeds a local damage threshold
ci

th the fiber breaks. The two breaking thresholds si
th and ci

th,i~1, . . . ,N of fibers are
independent random variables which are for simplicity uniformly distributed
between 0 and 1. After each breaking event the load dropped by the broken fiber is
equally redistributed over the remaining intact ones21,22.

The separation of time scales of slow damage and of immediate breaking leads to
the emergence of a bursty evolution of the system: damaging fibers break slowly one-
by-one, gradually increasing the load on the remaining intact fibers. After a certain
number of damage breakings the load increment becomes sufficient to induce the
immediate breaking of a fiber which in turn triggers an entire burst of breakings. As a
consequence, the time evolution of creep rupture occurs as a series of bursts corres-
ponding to the nucleation and propagation of cracks, separated by silent periods of
slow damaging. The size of burst D is defined by the number of fibers breaking in a
correlated trail, while the waiting time T between consecutive events is the duration of
the damage sequence of Dd breakings which triggers the next event. Macroscopic
failure occurs in the form of a catastrophic avalanche at time tf which defines the
lifetime of the system21,22. Our model reproduces the Basquin law of creep life, i.e. the
lifetime tf decreases as a power law of the external load tf !s{c

0 , where the exponent
coincides with the exponent of damage accumulation c21,22.

Computer simulations were carried out in our FBM with N 5 107 fibers averaging
over 1000 samples for each parameter set except for Fig. 1 where intensionallly a small
bundle of N 5 105 fibers were considered. The exponent c of the damage law mainly
sets the global time scale of the evolution, hence, the simulation results are presented
only for c 5 1. Other parameters of the model are fixed as E 5 1 and a 5 121,22.
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