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Investigation of neuronal 
pathfinding and construction 
of artificial neuronal networks 
on 3D-arranged porous fibrillar 
scaffolds with controlled geometry
Dongyoon Kim1, Seong-Min Kim1, Seyeong Lee1,2 & Myung-Han Yoon1

Herein, we investigated the neurite pathfinding on electrospun microfibers with various fiber densities, 
diameters, and microbead islands, and demonstrated the development of 3D connected artificial 
neuronal network within a nanofiber-microbead-based porous scaffold. The primary culture of rat 
hippocampal embryonic neurons was deposited on geometry-controlled polystyrene (PS) fiber scaffolds 
while growth cone morphology, neurite outgrowth patterns, and focal adhesion protein expression 
were cautiously examined by microscopic imaging of immunostained and live neuronal cells derived 
from actin-GFP transgenic mice. It was demonstrated that the neurite outgrowth was guided by the 
overall microfiber orientation, but the increase in fiber density induced the neurite path alteration, 
thus, the reduction in neurite linearity. Indeed, we experimentally confirmed that growth cone could 
migrate to a neighboring, but, spatially disconnected microfiber by spontaneous filopodium extrusion, 
which is possibly responsible for the observed neurite steering. Furthermore, thinner microfiber 
scaffolds showed more pronounced expression of focal adhesion proteins than thicker ones, suggesting 
that the neuron-microfiber interaction can be delicately modulated by the underlying microfiber 
geometry. Finally, 3D connected functional neuronal networks were successfully constructed using PS 
nanofiber-microbead scaffolds where enhanced porosity and vertical fiber orientation permitted cell 
body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.

Electrospinning is a simple but versatile technique for fabricating micro/nanofibers, and both single fibers and 
entangled fibrillar scaffolds have been extensively exploited for energy storage devices1, 2, sensors3, 4, and bio-
medical applications5–9. Beside the relative simplicity and scalability in fabrication, one common reason for its 
popularity is that electrospun fibers exhibit large porosity as well as high surface area-to-volume ratio, which are 
not straightforward to generate by other conventional bottom-up or top-down fabrication methods. Particularly, 
structural parameters of electrospun fiber scaffolds (i.e., fiber diameter and pore size) are typically in the range of 
0.1 to 10 micrometers, which is comparable to the length scale of single cell processes such as cellular alignment, 
migration, proliferation, etc10–14. In fact, many researchers have used electrospun fibers as a culture platform for 
studying various types of cells including stem cells. Previous studies showed that the mechanical15, 16, geometri-
cal17, and chemical properties18, 19 of electrospun fiber scaffolds can affect several different types of apparent cell 
behaviors and protein expression levels. After it was reported that neuronal processes (i.e., neurites) can follow 
the directionality of underlying micro/nanofibers, electrospun fibers have been widely used as an artificial culture 
substrate for various biological and biomedical studies20–22. In particular, peripheral nerve guidance and combi-
natorial approaches based on biodegradable polymer fibers have shown their strong potential for treating human 
nervous systems in the future8, 23.
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Apart from neural engineering and biomedical applications, electrospun fibers can be employed as a sub-
strate platform beneficial for studying the fundamental aspects of neurite outgrowth not only in the periph-
eral but also central nervous system (CNS), since cellular contact points are confined on the surface of a 
pseudo-one-dimensional (1D) structure of electrospun micro/nanofiber. Therefore, it is conceivable that, in 
principle, neurite directionality and synaptic connection could be designed de novo by the overall geometry of 
electrospun fiber scaffolds used for neuronal culture. Several research groups have already demonstrated that 
the axonal guidance is typically in parallel with the electrospun fiber alignment24–26. On the contrary, it was 
also reported that axonal guidance could occur in the direction perpendicular to aligned fibers27. These appar-
ently contradictory results imply that there exists a certain possibility that neurite pathfinding and outgrowth 
may be guided not only by ‘static’ environmental factors, i.e., the underlying micro/nanofiber directionality, but 
also by ‘dynamic’ cellular factors, i.e., growth cone movement and its interaction with extracellular structures. 
Nonetheless, most of the previous studies on neuronal culture on electrospun fibrillar scaffolds focused on the 
guidance of peripheral nerve growth on the parallelly-aligned electrospun fibers, which can be prepared by elec-
trospinning on rotating metallic drum28 or parallelized collecting electrodes29. Note that these reports mainly 
described the formation of neuronal circuit along the aligned direction of underlying fiber, where the fiber align-
ment was considered as a critical factor for efficient generation of neuronal circuit. Unfortunately, there exist only 
few studies on CNS-derived neurons on electrospun micro/nanofibers although such a fibrillary network can 
be employed to define 3D artificial neuronal networks which could be useful in the field of fundamental neuro-
science and/or developmental neurobiology. Moreover, it has not been clarified how neurite outgrowth of CNS 
neurons can be modulated by structural parameters of underlying fibrillar scaffolds, for instance, fiber diameter, 
density, porosity, etc.

In this study, we fabricated various types of free-standing fibrillar scaffolds which consist of entangled elec-
trospun polystyrene (PS) micro/nanofibers with controlled geometric parameters, and investigated growth cone 
dynamics and neuronal cell morphology by fluorescence microscopy in combination with time-lapse live imag-
ing. Particularly, electrospun fibers were visualized by confocal reflection microscopy (CRM), which permits 
the overlay of neuronal processes and micro/nanofibers, thus, the microscopic examination of neuron-fiber 
interaction in terms of growth cone morphology and focal adhesion expression using fibrillar scaffolds with 
distinct fiber density and diameter. Finally, 3D connected artificial neuronal networks were constructed within a 
nanofiber-microbead-based porous scaffold where the enhanced porosity and vertical fiber orientation enabled 
cell body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.

Results
Preparation of fibrillary scaffolds with controlled geometry and microbead inclusion via elec-
trospinning.  Figure 1(a) shows a schematic diagram of electrospinning apparatus employed in this study. 
Fiber density, diameter, and microbead inclusion were judiciously controlled by adjusting the experimental con-
dition of electrospinning. First, the areal density of electrospun micro/nanofibers was altered by inserting paraffin 
films between a metal needle and a collector plate. The increase in overall dielectric film thickness reduced the 
local flux of electrospun fibers, leading to the decrease of resultant fiber density, while the fiber diameter was 
nominally fixed as shown in the corresponding optical microscopy images (Fig. 1(b)). Next, the diameter of 
electrospun fiber was manipulated by varying the concentration of PS solution. Figure 1(c) and (e) show that 
less concentrated PS solutions yield fibers with thinner diameters. This result can be attributed to the reduced 
viscoelasticity of PS solution, leading to the facilitated deformation of a polymer solution drop at the given high 
electric field, thus, the decreased diameter of electrospun fiber. Interestingly, this proportionality ceased around 
20 wt% of PS concentration, where fiber diameters were not relatively uniform as shown in Fig. 1(d). The result-
ant electrospun scaffold contained a mixture of microscale beads and nanofiber threads30, which showed much 
higher porosity (i.e., larger interfiber spacing) than electrospun microfibers prepared using the solutions of higher 
( > 20%) PS concentration (Fig. 1(f)).

Examination of growth cone morphology and neurite directionality.  First of all, the primary cul-
ture of rat hippocampal embryonic (E18) neurons was conducted on various fibrillar scaffolds after poly-D-lysine 
treatment and the biocompatibility was examined (Fig. S1, Supporting Information). Note that the viabilities of 
neuronal cells on all PS fibrillary scaffolds were comparable to that on flat PS dish at 3 DIV although the pro-
longed culture was more viable on flat dish, possibly, due to the facile removal of undesired cell debris during the 
medium exchange. Next, for the detailed investigation of neurite outgrowth dynamics on a geometry-controlled 
pseudo-1D microfiber, growth cone or a leading edge of axon, which determines neuronal elongation in response 
to external stimuli, was visualized on PS dish and microfibers via actin labeling. Figure 2(a) and (b) reveal that 
there exists a substantial difference in growth cone morphology between two substrates. In the case of electrospun 
microfiber mesh, most of the growth cones were concentrated at the distal part of neurites with relatively small 
area compared with those on a flat PS dish. We argue that the cylinder-like electrospun fiber structure confines 
most of the pathfinding activities of growth cone along the underlying fiber direction, leading to the reduction 
in actin coverage area. Next, after primary embryonic neurons were cultured on porous fibrillar scaffolds with 
three different fiber densities (i.e., high, medium, and low) for 7 DIV, cells were immunostained with a microtu-
bule marker, while electrospun microfibers themselves were simultaneously visualized with CRM. As shown in 
Fig. 2(c) and (d), the relatively high fiber density mesh exhibited the statistically meaningful mitigation in neurite 
outgrowth (linear) directionality (see Fig. 2(e) for its schematic definition). This result suggests that the more 
frequent crossing-over among electrospun fibers, especially, at the high-fiber-density scaffold, can induce neurite 
to switch to another neighboring fiber, leading to the decrease in the overall neurite directionality.
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Neuronal locomotion on fibrillary scaffold.  To further understand the locomotion and steering of 
growth cone on spatially-separated micro/nanofibers, paraformaldehyde-fixed neurons were carefully monitored, 
particularly, on curved neurite regions. The microscopic images of immunostained neurons (Fig. 3(a)) show two 
distinct types of freestanding curved neurites hanging over spatially-separated microfibers: crossing fibers with 
an abrupt angle vs. parallel fibers with a small spacing. First, neurites could be partially detached from crossing 
microfibers with an abrupt angle (θ) (Fig. 3(a) upper). As depicted in Fig. 3(b), the neurite detachment could be 
assisted by the traction force (Ttrac) of growth cone because the detaching force is proportional to Ttrac cos(θ/2) 
while the elastic property of microtubule also impedes its bending31. Second, neurite could spontaneously migrate 
to another microfiber which is in parallel with the direction of neurite outgrowth with relatively small spacing 
(Fig. 3(a) lower). In this case, the growth cone’s switch to another fiber could be enabled by filopodium elongation 

Figure 1.  (a) A schematic illustration of electrospinning with controlled structural parameters such as fiber 
density. (b) The optical micrograph of density-varied electrospun fibers under low (upper, scale bar: 500 μm) 
and high magnifications (lower, scale bar: 100 μm). The upper-right metrics represent the number of stacked 
paraffin films. (c) and (d) Scanning electron microscopy (SEM) images of diameter-controlled electrospun 
fibers and microbead-incorporated nanofiber mesh (scale bars: 20 μm). (e) and (f) Plots of fiber diameter 
(n = 25, 30, 30 and 30 fibers for 20, 30, 38 and 46 wt% of PS concentration, respectively) and porosity depending 
on the PS concentration of precursor solution, respectively. All error bars denote standard error of the mean.
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Figure 2.  (a) Laser scanning confocal microscopy images of immunostained growth cones of 5-DIV neurons 
on electrospun PS fibers and PS culture dish (scale bar: 20 μm). Microtubules and actin filaments were labeled 
with tuj1 (red) and phalloidin (green), respectively. (b) Statistical distributions of growth cone area on each 
substrate (***P < 0.001). (c) Fluorescence microscopy images of neurons cultured on electrospun fibers with 
three different densities (i.e., low, medium, high). Microtubules and actin filaments were labeled with tuj1 (red) 
and phalloidin (green), respectively (scale bar: 20 μm). (d) Statistical distributions of neuronal directionality 
(i.e., straightness) depending on electrospun fiber coverage (*P < 0.05). (e) A schematic of neuronal 
directionality definition (the ratio of vectorial length over trajectory length). All error bars denote standard 
error of the mean.
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as schematically depicted in Fig. 3(c). To verify the roll of traction force during this course, the non-muscle 
myosin II inhibition assay with blebbistain was conducted. As shown in Fig. 3(d) inset, the length of detached 
(free-standing) neurite is compared between 50 μM blebbistatin- and DMSO-treated (control) neurons. The total 
numbers of free-standing neurites of blebbistatin- and DMOS-treated neurons are 158 and 145, respectively. 
Remarkably, the majority of neurons where the expression of non-muscle myosin II was inhibited by blebbista-
tin treatment, exhibited relatively short free-standing neurites compared to the control group. This evidence 
suggests that the detachment of neurites at the given situation could be assisted by traction force. To investi-
gate the existence of spontaneous growth cone migration, time-lapse fluorescence microscopy was performed 
on actin-GFP transgenic mice derived embryonic hippocampal neurons. As demonstrated in Fig. 3(e) (see also 
Fig. S2, Supporting Information), growth cone was actively searching for its pathway by scanning not only the 
surface of electrospun fibers but also the substrate-free interfiber region. Occasionally, the spontaneous elon-
gation of filopodium leads to the eventual migration to another fiber through the interfiber void (i.e., no fiber 
region). The above-mentioned behaviors of neuronal growth cone on the electrospun fibrillar scaffold are very 
similar to those of worm on tree branches, implying that growth cone dynamic is mechanically robust and, there-
fore, can maintain its structural integrity even in the absence of adhesion support.

Investigation of focal adhesion protein expression.  In parallel, the adhesion of neuronal cells onto 
the surface of electrospun micro/nanofibers was also investigated. Focal adhesion is a protein complex which 
forms a junction between cytoskeleton and extracellular matrix. The spatial coverage and expression level of focal 
adhesion-related protein complexes are influenced by mechanical rigidity, ligand density, and type of extracellular 
matrix32–37. For instance, the expression level of vinculin, a type of focal adhesion proteins, is determined by the 
interaction between myosin motor-mediated traction force and elastic modulus of adhesion site to integrin38, 
and a stiff substrate triggers strong myosin traction force so that the vinculin expression level is substantially 
increased33. Remarkably, Fig. 4(a)–(d) show that the increase of electrospun fiber diameter leads to the reduction 
of focal adhesion protein level. In contrast, the neurons cultured on thinner electrospun fiber mesh exhibited 
higher fluorescence intensity of vinculin labeling throughout the whole axon than those cultured on thicker elec-
trospun fiber mesh. One may expect the reduced vinculin level on thinner microfibers due to their low stiffness 
compared to thicker microfibers39 (Fig. S3, Supporting Information). Note that the modulation of fiber stiffness 
is more effectively controlled by varying its diameter rather than intrinsic modulus39–41. To address this apparent 
contradiction, we speculate that the self-strained focal adhesion might be involved especially on thinner fibers as 
schematically shown in Fig. 4(e). Due to the elastic modulus of neurite itself, its adhesion to the curved surface 
of microfiber generates the restoring force of neurite cylinder itself at the interacting surface between neurite and 

Figure 3.  (a) Immunofluorescence images of 5 DIV neurons on electrospun PS fiber mesh showing neurites 
hanging over fibers. Microtubules and actin filaments were labeled with tuj1 (red) and phalloidin (green), 
respectively (scale bar: 10 μm). (b) and (c) Two proposed scenarios on neurite detachment from the fibrillary 
substrate via growth cone’s traction force and filopodium elongation. (d) Comparison of the length of detached 
neurite from the underlying fiber between 50 μM blebbistatin- and DMSO-treated (control) neurons. The 
average diameter of used PS fibrillary scaffold is 2.3 μm and the detached neurite length was extracted from 
the fluorescence microscopy images of neurons (5 DIV) immunostained with tuj1 (***P < 0.001, the total 
cell number is 150 for each condition). (e) A series of time-lapse confocal microscopy images of actin-GFP 
expressing mouse hippocampal neuron (green) and confocal reflection microscopy-revealed electrospun fibers 
(red) (scale bar: 10 μm).
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electrospun fiber. Therefore, if electrospun microfiber was much thicker than the curvature of neurite, the tension 
could be more equally distributed throughout the focal adhesion complex, and the force exerted on integrin could 
be moderated, leading to the decrease in vinculin expression. In fact, the detailed vinculin expression was care-
fully examined to understand the correlation between neurite contact area and fiber diameter (Fig. 4(f) to (i)).  
The statistical analyses of spatial distributions and intensity profiles of vinculin at different fiber diameters indi-
cate that while the underlying fiber diameter minimally affects the contact area or lateral spreading of neurite, the 
vinculin expression is enhanced by the reduction of fiber thickness.

Construction of 3D artificial neuronal network on highly porous nanofiber-microbead scaf-
fold.  Until now, we have investigated neuronal dynamics demonstrated on electrospun fiber surface without 
considering vertical neuronal outgrowth. Typically, the overall fiber orientation in the conventional electrospun 
micro/nanofiber scaffold is in parallel with the collecting metal plate. Therefore, neurons cultured on electro-
spun fibrillary scaffolds mostly display a majority of cell bodies sitting on top of mesh and neurite extension 
confined in parallel with the horizontal plane, however, rarely exhibit neurite outgrowth in a vertical direction 

Figure 4.  (a), (b) and (c) Fluorescence microscopy images of vinculin-expressing neurons (7 DIV) depending 
on PS fiber diameter (1.5, 2.7, and 5.2 μm, respectively). Red and green represent microtubule and vinculin, 
respectively (scale bar: 20 μm). (d) A statistical distribution of vinculin fluorescence intensity shown in 
Fig. 4a–c (**P < 0.01). (e) Proposed mechanism on fiber diameter-dependent vinculin expression. all error bars 
denote standard error of the mean. (f) Laser scanning confocal fluorescence microscopic images of neurites 
stained with vinculin (green) on PS fiber scaffolds (white; upper 1.7 μm and lower 3.7 μm of diameters) at the 
7-DIV neuronal culture. Scale bars denote 5 μm. (g) Cross-sectional fluorescence intensity profiles of vinculin 
as indicated by yellow lines in (f). (h) Distributions of the lateral width of vinculin expression depending on the 
underlying fiber diameter. (i) Distributions of fluorescence intensity of vinculin depending on the underlying 
fiber diameter.
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(Fig. 5(a)). In contrast, the neuronal culture on electrospun PS nanofiber-microbead scaffold exhibited several 
features of 3D-like neuronal culture, for instance, cell inclusion inside the scaffold and vertical neurite outgrowth 
(Fig. 5(b)), although the neuronal directionality along the fiber was not significantly different between fiber-only 
and nanofiber-microbead scaffolds (Fig. S4, Supporting Information). Note that in comparison with the electro-
spun fiber-only scaffold, the incorporation of microbeads into fibrillar mesh enables both enlarged free volume 
and enhanced vertical fiber orientation (Fig. 5(c)), resulting in cell body penetration inside scaffold and vertical 
neurite guidance (Fig. 5(d)) with large inter-fiber spacing, respectively. Finally, Fig. 5(e)–(g) shows the expression 
of synaptic proteins (e.g., synapsin) and the activity of neuronal firing (e.g., calcium signaling) on bead-nanofiber 
scaffold. Furthermore, the neurons on microbead-nanofiber scaffold showed the distinct functional activity com-
pared to those on PS dish (Fig. S5, Supporting Information)42–45. These results suggest the future potential of the 
3D-like neuronal culture for artificial neuronal network formation and other related studies.

Discussion
Due to the contact cue from electrospun fibers, the pathfinding process of the cultured neuron is significantly 
influenced by the supporting fiber geometry. However, as shown in our research, such a contact-derived guidance 
effect can be moderated by increasing the fiber density up to a certain degree because the spontaneous elonga-
tion of filopodium can induce the migration of grown cone, thus, neurite to another neighboring fiber. To our 
knowledge, we report the experimental verification of such through-space neurite migration for the first time. 
Therefore, neurite orientation is not only affected by scaffold geometry 46, 47, but also by its own active dynamics. 
This finding may be exploited for varying neurite outgrowth directions beyond the contacting fiber orientation 
and, thereby, enriching the morphology/connectivity of resultant artificial neuronal network, which is one of the 
most important factors to determine the neuronal network function. In the peripheral nervous system, direc-
tionality is one of the important factors for the effective propagation of nerve signal. In the case of CNS, however, 
network connectivity has been attributed to the origin of higher-order brain functions48. Therefore, a variety of 
in vitro 3D models emulating in vivo neuronal networks have been proposed by many researchers. As shown in 
Fig. 5(a), electrospun micro/nanofiber scaffolds typically confine the overall neuronal network within ~10 μm 
thick mesh from the top surface of culture because most of the fibers exhibit the horizontal orientation as well as 
low porosity (Fig. 1(c) and (f)). In contrast to the conventional fiber-only scaffolds with 2D-like network mor-
phology, the electrospun nanofiber-microbead scaffold not only contains more off-horizontal fiber orientations 
(Fig. 5(c)) but also exhibit substantially increased porosity (Fig. 1(f)) compared to fiber-only scaffolds. Indeed, 
microbead incorporation assisted the inclusion of neuronal bodies below the culture surface (Fig. 5(b)) and the 
enhanced vertical (z-axis) growth of neurite down to 44 μm from the top culture surface (Fig. 5(d)). Furthermore, 
it is noteworthy that the enlarged porosity permitted the co-culture of neurons and glia with larger number 
of cells inside the scaffold (see Fig. S6 and Movie S1–3, Supporting Information). Considering that in the real 

Figure 5.  3D reconstructed confocal microscopy images of neuronal culture (5 DIV) in (a) electrospun fiber-
only and (b) nanofiber-micro bead mesh (scale bar: 10 μm). (c) Normalized statistical distributions of off-
horizontal angle of fiber orientation in fiber-only (white) and nanofiber-microbead scaffolds (gray) (see also the 
inset scheme). (d) Averaged overall vertical growth of neurites on fiber-only (white) and nanofiber-microbead 
scaffolds (gray) (*p < 0.05). (e) Fluorescent images of immunostained neurons (14 DIV) on nanofiber-
microbead mesh scaffold. Red and green colors represent microtubule and synapsin, respectively (scale bar: 10 
μm). (f) A fluorescence image of neurons (14 DIV) cultured on the nanofiber-microbead scaffold after staining 
Oregon Green 488 BAPTA-1 AM (scale bar: 10 μm). (g) Representative traces of quantified calcium signaling 
(ΔF/F) from cells indicated by red circles in (f).
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brain tissue, there exist more supporter cells (i.e., glia) than neurons48, such a highly-packed neuronal co-culture 
could be beneficial for emulating the brain tissue environment, thus, addressing the fundamental neuroscience 
questions.

Conclusions
In this work, the investigation of neuronal pathfinding on geometry-defined fibrillar scaffolds revealed that top-
ographical factors of electrospun fibers significantly influence neuronal cell morphology and outgrowth pattern. 
We observed that neurites outgrowth followed the overall microfiber direction, but, the increase in fiber density 
reduced the neurite linearity, in which course growth cone promoted neurite migration to a spatially-separated 
fiber. Moreover, we discovered that neurons cultured on lower-diameter fibers exhibited higher expression of 
vinculin, implying that the geometrical parameters of fibers can be used for controlling the adhesion of neurites 
on underlying scaffolds. Finally, the artificial 3D neuronal network was successfully constructed using electro-
spun nanofiber-microbead scaffolds, which permitted substantially enhanced porosity, thus, cell body inclusion 
inside the scaffold and, simultaneously, noticeable neurite penetration in a vertical direction. Our results suggest 
that electrospun fibrillar scaffolds with well-defined fiber geometry and microbead inclusion may function as a 
versatile culture platform for various types of artificial 3D neuronal networks.

Materials and Methods
Fabrication and characterisation of polystyrene electrospun fibers.  Polystyrene (PS) at 20 wt%, 
30 wt%, 38 wt%, and 46 wt% (Sigma-Aldrich, Mw = 280,000) in DMF (Sigma-Aldrich, 99.8%) was stirred over-
night. Dissolved transparent PS precursor was loaded on 3 mL syringe and 21 G metal needle (BD) was retracted 
in front of the syringe. The syringe was fixed in a single syringe infusion pump (KD Scientific) and placed on 
top of collecting metal sheet. DC high voltage generator (Chungpa EMT) supplied voltage through sheathed 
conducting cable that was connected to the metal needle and collecting grid. The supplying voltage and infusion 
speeds were 18 kV and 0.1 mL, respectively. The distance between the metal needle and collecting metal grid was 
20 cm. After the spinning process, the PS electrospun fiber was treated with oxygen plasma treatment for 1 min 
to make the surface of electrospun PS fiber hydrophilic. The electrospun PS fibers were immersed into poly-
D-lysine (Sigma-Aldrich) solution (0.1 mg/mL), dissolved in 50 mM of boric acid hydroxide (Sigma-Aldrich) 
solution overnight, and then washed with distilled water intensively before cell seeding. Ethanol was used as a 
swelling liquid to measure the swelling ratio due to the amphiphilic property and low surface energy, which min-
imizes overestimation of swollen liquid. The diameter and surface morphology of PS fiber were characterized by 
a field-emission scanning electron microscope (FE-SEM, JEOL 6301 F, Japan). Platinum (Pt) coating was needed 
prior to SEM characterization to avoid image distortion.

Primary culture of rat hippocampal embryonic neurons.  Rat embryos (embryonic day 18, E18) 
was sacrificed and the hippocampal region was dissected in HBSS (Hank’s buffer salt solution, Sigma-Aldrich) 
medium under a stereomicroscope. The hippocampal tissue was then dipped into 140 μL of papain (Worthington 
Biochem, Corp) and 30 μL of DNase (30 units, Invitrogen) in 20 mL of HBSS. After 20 min of incubation, HBSS 
was removed and 10% (v/v) FBS containing HBSS was added to block enzymatic activity. The medium was 
replaced with HBSS and dissociated mechanically by pipetting in 30 μL DNase (30 units) in 2 mL HBSS. Pipetting 
was executed about 50 times until there was no visible supernatant. The dissociated hippocampal neuron was 
seeded on poly-D-lysine coated electrospun PS fiber with plating medium (Invitrogen) with 10% FBS. After 
1 hour of incubation, the medium was changed to neurobasal medium (Invitrogen). The culture medium was 
replaced every three days. All the animal experiments were and protocols were approved by the Institutional 
Animal Care Use Committee of the School of Life Sciences, Gwangju Institute of Science and Technology and 
carried out in accordance with their approved guidelines (IACUC GIST- 2014-06).

Immunocytochemistry and imaging.  Neurons cultured in vitro for 5 days (5 DIV), 7 days (7 DIV), 
and 14 days (14 DIV) on electrospun PS fiber were fixed using paraformaldehyde for 30 min and treated with 
Triton X-100 (Sigma-Aldrich) for 10 min. Bovine serum albumin (BSA, 10%) was used to block the non-specific 
binding for 40 min. Cellular proteins for β3-tubulin, axon, dendrite, vinculin, synaptophysin, and GFAP were 
stained with rabbit anti-tuj1 (1:40001, Abcam), mouse monoclonal anti-tau (1:200, SCBT), rabbit polyclonal 
anti-MAP2 (1:200, SCBT), mouse monoclonal anti-vinculin (1:200, SCBT), rabbit polyclonal anti-synaptophysin 
(1:1000, Abcam ab68851), and chicken polyclonal anti-GFAP (1:1000, Abcam ab4674) in 3% BSA, respectively. 
The samples were stored at 4 °C for 1 day and then washed with PBS three times for 15 min each. The follow-
ing secondary antibodies were used- anti-rabbit Alexa Fluor 405 (1:10001, Invitrogen), anti-mouse Alexa Fluor 
488 (1:1000, Invitrogen), anti-rabbit Alexa Fluor 488 (1:1000, Invitrogen), anti-mouse Alexa Fluor 543 (1:1000, 
Invitrogen), anti-rabbit Alexa Fluor 543 (1:1000, Invitrogen), anti-mouse Alexa Fluor 635 (1:1000, Invitrogen), 
and anti-chicken Alexa Fluor 635 (1:1000, Invitrogen). The actin filaments were stained with Alexa Fluor 488 - 
conjugated phalloidin (1:200, Lonza Group Ltd). The sample was stored at 4 °C for 12 hours and then washed with 
PBS three times for 15 min each. The nuclei were stained immediately before imaging with 0.1 μg/mL of DAPI 
(Invitrogen).

Imaging and data analysis.  Upright confocal microscope (Olympus BX61WI) was used to investigate 
the neuronal morphology and protein expression. Confocal reflection mode (CRM) revealed non-labelled elec-
trospun PS fiber by opening excitation filter. All confocal images were taken using 20× water dipping objective 
lens (XLUMPLFLN-W, Olympus). The synaptophysin was imaged by 60× water dipping lens (LUMFLN 60XW, 
Olympus). The fluorescence intensity was calculated by subtracting mean fluorescence of background reading 
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from integrated fluorescence intensity of the selected cell and then multiplying it with the area of selected cell. 
Measurement of actin distribution, fluorescence intensity, neuronal straightness, fiber diameter, and fiber cover-
age was performed using ImageJ (NIH). The fiber coverage for low density, middle density, and high density cor-
respond to 10~35%, 35~55% and 55~95%, respectively. The fiber density was calculated by measuring covering 
ratio of electrospun fiber from the CRM image. Statistical significance was evaluated by pairwise-t-test method 
built in statistical programming language R. All of the error bars denotes standard error of the mean.

Live cell imaging of rat hippocampal embryonic neurons on electrospun PS fiber.  To interro-
gate neuronal dynamics on PS fiber, hippocampal neurons from actin-GFP transgenic mice were employed. The 
primary culture protocol used was the same as that for rat hippocampal neuron culture. The live cell imaging for 
neuronal dynamics was performed under live cell imaging chamber (LCI, South Korea) installed on the upright 
confocal microscope.

Calcium imaging.  5 μg of Oregon Green™ 488 BAPTA-1 was dissolved in 20% (v/v) Pluronic F-127 con-
taining 1 μL of dimethyl sulfoxide (DMSO) solution and, then, mixed with neurobasal medium. Subsequently, 
the cell-seeded scaffold was transferred into the resultant solution. fter 10-min incubation, the calcium 
dye-containing medium was replaced by the original culture medium and incubated for 10 minutes before imag-
ing. The time-lapse calcium imaging was executed inside the live cell imaging chamber (LCI, South Korea). The 
frame rate of image recording was either 22 or 33 fps (frames-per-second) depending on the signal quality at 
minimum light intensity. The fluorescent calcium signals (ΔF/F) were calculated using the following equation.

∆ =
−

.F
F

current fluorescence intensity lowest fluorescence intensity
lowest fluorescence intentsity

Live/dead assay.  2 μL of ethidium homodimer-1 solution (Invitrogen) and 1 μL of calcein AM solution 
(Invitrogen) were mixed with 3 mL of PBS, and the final mixture was transferred to the culture dish containing 
the designated neuronal culture, immediately after the existing medium was removed.

Blebbistatin assay.  One day after cell seeding, the culture medium was replaced by the blebbistatin 
(Sigma-Aldrich)-containing medium (50 μM), and the control samples were treated with 1 μL amount of DMSO. 
The drug treatment was resumed until cell fixation.
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