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Abstract

Coarse-grained (CG) methods for sampling protein conformational space have the potential to increase computational
efficiency by reducing the degrees of freedom. The gain in computational efficiency of CG methods often comes at the
expense of non-protein like local conformational features. This could cause problems when transitioning to full atom
models in a hierarchical framework. Here, a CG potential energy function was validated by applying it to the problem of
loop prediction. A novel method to sample the conformational space of backbone atoms was benchmarked using a
standard test set consisting of 351 distinct loops. This method used a sequence-independent CG potential energy function
representing the protein using a-carbon positions only and sampling conformations with a Monte Carlo simulated
annealing based protocol. Backbone atoms were added using a method previously described and then gradient minimised
in the Rosetta force field. Despite the CG potential energy function being sequence-independent, the method performed
similarly to methods that explicitly use either fragments of known protein backbones with similar sequences or residue-
specific w/y-maps to restrict the search space. The method was also able to predict with sub-Angstrom accuracy two out of
seven loops from recently solved crystal structures of proteins with low sequence and structure similarity to previously
deposited structures in the PDB. The ability to sample realistic loop conformations directly from a potential energy function
enables the incorporation of additional geometric restraints and the use of more advanced sampling methods in a way that
is not possible to do easily with fragment replacement methods and also enable multi-scale simulations for protein design
and protein structure prediction. These restraints could be derived from experimental data or could be design restraints in
the case of computational protein design. C++ source code is available for download from http://www.sbg.bio.ic.ac.uk/
phyre2/PD2/.
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Introduction

The prediction of protein structure to atomic level resolution

and the design of de novo proteins with large scale backbone

sampling are largely unsolved problems although there has been a

great deal of progress in recent years. Both problems require the

ability to rapidly sample a large number of backbone conforma-

tions. Sampling protein conformational space using full atom

models can be prohibitively computationally expensive so a variety

of different approaches have been developed to reduce the search

space. This can be achieved by using coarse-grained (CG) protein

models, by assembling backbone models from short fragments

taken from known protein structures or by a combination of both

of these methods.

Coarse-grained models have been increasingly used for

modelling large biomolecules over long time scales due to the

computational efficiency provided by these methods [1–3]. These

models vary in the degree of coarse-graining with some models

representing multiple amino acid residues with one interaction

centre [4], some representing each amino acid residue with a small

number of interaction centres [5–13], and others that are

intermediate between minimal and full atom models [14–16].

Potential energy functions for CG models have been most

commonly derived using statistics from from the Protein Data

Bank (PDB) together with a suitable reference state [2]. Potential

energy functions derived this way are known as knowledge-based

or statistical potentials. It is also possible to derive CG potential

energy functions from physical principles [17].

While CG models in the past were mostly used as toy models to

study the general principles of protein folding [18,19] they are now

becoming sufficiently accurate and transferable to be used for

more directly useful applications. For example, CG models are

widely and successfully used in protein structure prediction

methods with both lattice models [6,8] and off-lattice methods

[20–22]. CG models coupled with fragment replacement methods

have been particularly successful. Backbone fragments are

generally assembled in a Monte Carlo based procedure to

assemble a new overall fold. As well as reducing the search space,

these methods also have the advantage of guaranteeing models

that have protein-like local conformational features. When these

techniques are used for modelling loops, a loop closure method is

required to ensure that the end of the loops connect the anchor

residues in a geometrically correct way. Another disadvantage is

that it is not easy to sample conformations using fragment

replacement with additional restraints that could come from
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experimental information or for protein design applications.

Fragment replacements are inherently non-local and highly

disruptive moves so acceptance rates can be very low with

additional restraints. It is also harder to use more advanced

sampling techniques such as metadynamics [23] or umbrella

sampling [24] as fragment replacement violates detailed balance in

most common implementations [25] and this would be even more

difficult when coupled with loop closure methods as is necessary in

loop modelling. The ability to sample loop conformations with

protein-like local structural features directly from a CG potential

energy function could be one way of avoiding these problems.

The accuracy of full-atom reconstruction depends on the level

of coarse-graining [16]. A number of methods have been

developed to rapidly reconstruct mainchain atoms from Ca atoms

[26–29]. Sidechains can then be added to the mainchain using fast

rotamer-based methods [30,31]. When transitioning between CG

and full atom models it is important to retain good model structure

quality. However, even in many full atom molecular mechanics

force fields the modelling of backbone torsion angles has been

problematic but recently efforts have been made to address this

[32,33]. A key feature of the Ca CG potential used in this study is

its emphasis on protein-like local structure [11].

For most protein sequences, experimentally determined struc-

tures of homologous sequences are available and can be used as

templates for accurate modelling [34,35]. These homology models

often have missing sections of the peptide chain where new

residues have been inserted during the course of evolution. In

these cases these loops will need to be predicted using de novo

methods. Loop modelling is also important for computational

protein design applications where the backbone structure needs to

be redesigned in order to satify some functional constraints [36–

38]. Loop modelling presents a rigorous and stringent test of de novo

structure prediction methods due to their high degree of structural

variability and a weaker sequence-structure relationship compared

to secondary structure elements. While many loop prediction

methods have been previously described [39–50], there is only one

study on the use of Ca CG models for loop prediction without the

use of backbone fragments from known protein structures [51].

In this paper we validate a previously developed sequence-

independent CG potential energy function [11] by comparing its

performance to some existing fragment and loop closure based

methods. Full atom models are constructed from the sampled CG

models, gradient minimised in a full atom potential energy

function. The lowest energy structures were found to predict loop

Figure 1. Loop sampling RMSDs by loop length. (A) mean lowest RMSD-G where the error bars represent 95% confidence intervals estimated
by boostrapping. (B) Ensemble mean RMSD-G. Ensemble fraction (C) below 2 Angstrom and (D) 1 Angstrom RMSD-G. PD2 refers to loop decoys prior
to minimisation in the Rosetta potential energy function, while PD2_rmin refers to loops decoys after Rosetta minimisation. Control refers to loops
generated using a minimal Ca potential energy function (see text).
doi:10.1371/journal.pone.0065770.g001
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conformations surprisingly well with a high proportion of sub-

Angstrom RMSD predictions.

Results

The method presented here was compared to RAPPER [41]

and FALCm4 [52] as the use of the same test set enables a direct

comparison using the same metrics presented in those papers.

RAPPER was taken as representative of methods that use a

dihedral angle build-up method while FALCm4 was taken as

representative of fragment replacement methods. The aim of this

work was to determine whether it was possible to sample loops

within the radius of convergence of full-atom refinement methods

using a coarse-grained Ca model.

Loop Conformational Sampling
The loop prediction benchmark test proposed by Fiser et al [39]

and filtered by DePristo et al [41] was used to assess the

performance of the loop modelling methodology. This set contains

loop targets of two to twelve residues in length. For each target,

4000 backbone loop conformations were sampled using a

simulated annealing protocol (see Methods) using the potential

energy function described in equation (1). As an additional control

a further set of 4000 backbone loop conformations were sampled

for each target where only the Ebond (Ca – Ca pseudo-bond term)

and Ebump (Ca – Ca steric repulsive term) terms were included.

This was carried out in order to determine the degree to which the

other terms in the potential energy function were enhancing

conformational sampling and is referred to as the ‘‘control’’ in the

following text. The PD2 method introduced in this paper ensures

that loops are always fully closed and the anchor residues are never

moved. This is not always the case with the other loop sampling

methods [50].

The RAPPER [41] and FALCm4 [52] methods were bench-

marked using the same test set used in this paper. In both of these

methods 1000 loop conformations were sampled rather than 4000

in this paper. In order to allow direct comparison with the results

produced by RAPPER and FALCm4, 1000 loop conformations

were resampled from the 4000 generated loops to estimate

comparable statistics using the R statistical package ‘‘boot’’ to

carry out a stratified bootstrap with 1000 replicates (Figure 1A). All

RMSD-G values were calculated using the backbone heavy atoms

N, CA, C, and O without superposition as defined by DePristo

et al [41]. The best RMSD-G values were comparable to the

RAPPER and FALCm4 methods and significantly better than the

control (Figure 1A and Table S1 in File S1). Ensemble RMSD-G

values were similar to FALCm4 but lower than for RAPPER

(Figure 1B and Table S2 in File S1). Interestingly, a higher

proportion of the PD2 loop ensemble lay below the 1 Å and 2 Å

RMSD-G than both RAPPER and the control (Figure 1C and 1D,

Tables S3 and S4 in File S1). This shows that near native loops

were frequently sampled and could enhance the chance of

selecting the correct conformation. At this stage no sequence

information was incorporated into the PD2 loop sampling method

but it still appeared competitive with methods that did include this

information. RAPPER samples residue dependent discrete

Ramachandran angles while FALCm4 is a fragment replace-

ment-based method that selects fragments based on sequence

similarity.

All-atom Structure Refinement and Model Selection
Sidechains were added to the generated backbone loops using

the default Rosetta simulated annealing repacking algorithm and

the whole loop (including the backbone) was then gradient

minimised in a iterative manner as described in the Methods. The

lowest energy loop was taken as the prediction. The results were

comparable to existing methods and in some cases better (Table 1).

Overall the method successfully predicted to sub-Angstrom

accuracy 196 out of 351 loops in the test set (examples shown in

Figures 2 and 3). In comparison, the control sampling method

predicted 91 out of 351 loops in the test set to sub-Angstom

accuracy and most of these were the short loops. Of the 174 loops

of 8 residues or longer, 48 were predicted to sub-Angstom

accuracy but none in the control. This indicates that while

sequence independent coarse-grained statistical potential was

significantly improving conformational sampling, the control

method can successfully sample sub-Angstrom conformations only

in the short loops where extensive search is possible. Previous

studies have shown that exhaustive conformational searching

taking into account crystal contacts together with a good all atom

energy function can produce extremely good results [42].

However, this approach does not scale well, can take days of

computational time to run and does not seem to work well on all

loop test sets [50].

As a measure of backbone structure quality, the Ramachandran

distribution was calculated for all generated loop decoys (Figure 4).

Most features of the Ramachandran were reproduced in the loop

decoys however there is still room for improvement. The dihedral

angle distribution of the generated backbones is a function of both

the Ca atom positions and of the method used to rebuild the

mainchain atoms from the Ca positions.

Loops from Recently Deposited Structures
Predictions were carried out on a new loop set taken from

recently desposited structures with low sequence or structural

similarity to solved structures deposited in the PDB before April

2012 (see Methods; Tables 2 and S5 in File S1; Figure 5). Of these

seven loops, sub-Angstom conformations were sampled for 5 loops

but no sub-Angstom conformations were sampled by the control.

Two sub-Angstrom predictions were made but none were made

for the control method. The CG potential energy function appears

to be consistently sampling lower RMSD and lower energy loop

conformations for both the original test set and the new test set.

Discussion

We have shown that CG sampling techniques have the potential

to be viable methods for atomic resolution loop prediction. This

could be further improved with more advanced sampling

techniques such as metadynamics [23] and incorporating

sequence-dependent terms in the CG potential energy function.

As loops are sampled from a potential energy function it would be

possible to include extra restraints from experimental data or from

contact prediction [53]. The CG potential energy function used in

this work was initially developed as a method for the design of de

novo backbone scaffolds [11]. The results of the paper confirms that

it is sampling protein-like loop conformations more frequently

than the control and that it works surprisingly well despite the

sequence-independent nature of the energy function. It would be

possible to incorporate functional geometric constraints as part of

a computational protein design pipeline with large scale backbone

sampling.

A high proportion of the sampled loop ensemble appears to be

close to the native conformation (Figure 1 and Table S4 in File

S1). This suggests that CG loops could be clustered prior to full-

atom refinement in order to save time. It is also notable that the

minimised native loop almost always has the lowest Rosetta energy

(Figures S1 to S10 in File S1). This supports a previous observation

Coarse-Grained Protein Loop Modelling
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that the main bottleneck in de novo protein structure prediction

appears to be conformational sampling [54]. This work suggests

that CG models of protein structures as part of a hierarchical

approach can achieve atomic level accuracy.

Table 1. Mean loop prediction accuracy for published methods and the method described in this work (PD2_rmin).

backbone RMSD (Å)

loop length RAPPER LOOPY Rosetta FALCm4 FREAD CABS PD2_rmin control_rmin

2 0.35

3 0.37 0.32 0.23

4 0.47 0.54 1.29 1.5 0.30 0.80

5 0.90 0.85 0.92 2.19 2.0 0.68 1.54

6 0.95 0.92 1.36 1.79 2.0 1.07 1.81

7 1.37 1.23 1.17 2.53 3.0 1.39 2.94

8 2.28 1.45 1.45 1.87 2.88 3.5 1.85 3.66

9 2.41 2.68 2.08 3.08 3.8 2.01 3.87

10 3.48 2.21 3.09 4.25 3.8 2.81 4.88

11 4.94 3.52 3.62 3.43 4.55 5.9 3.88 6.43

12 4.99 3.42 3.84 3.99 6.0 4.24 6.87

Values for RAPPER were taken from de Bakker et al [64], for LOOPY from Xiang et al [40], Rosetta from Rohl et al [43], FALCm4 from Lee et al [52], FREAD from Choi et al
[50], CABS results were estimated from Figure 1 of Jamroz et al [51]. It must be noted that these results do not all come from the same test sets so are not directly
comparable. Other methodological differences also make comparison difficult. For example, the Rosetta method repacks all sidechains. The results presented in this
table for RAPPER, FALCm4, PD2_rmin and control_rmin are directly comparable as these are predictions based on the Fiser test set [39].
doi:10.1371/journal.pone.0065770.t001

Figure 2. Example sub-Angstrom PD2_rmin loop predictions (pink) compared with the crystal structures (cyan), for loops of length
(A) 12 (PDB: 2cpl 145–146), (B) 12 (PDB: 1arp 201–212), (C) 12 (PDB: 2pgd 361–372), (D) 11 (PDB: 1aaj 91–101), (E) 11 (PDB: 1plc 5–
15) and (F) 11 (PDB: 1knb 521–511) residues.
doi:10.1371/journal.pone.0065770.g002
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Materials and Methods

Ca Potential Energy Function
The a-carbon potential energy function used a sub-set of terms

from a previously described potential energy function [11] that is

derived using a 27-‘‘letter’’ structural alphabet [55]. This was

composed of 5 terms (1).

Eca~ElocalzEbondzEbumpzEradgyrzEhbond ð1Þ

Where Elocal was composed of harmonic pseudo bond angle,

dihedral terms and reference energies which vary as a function of

their structural alphabet classification, Ebond was a pseudo bond

term, Ebump was a soft steric repulsive term, and Ehbond was a

pseudo hydrogen bonding statistical potential term using pseudo N

and O atoms as defined by Levitt [5]. The Elocal reference energy

Figure 3. Backbone RMSD-G vs. Rosetta energy scatter plots for the loops shown in Figure 2. The red point indicates the energy
minimised crystal structure loop and the blue point indicates the lowest energy PD2_rmin decoy loop conformation. The black points correspond to
PD2_rmin loop decoys while the purple points correspond to the control_rmin loop decoys. Scatter plots for all loops are shown in File S1.
doi:10.1371/journal.pone.0065770.g003

Figure 4. Ramachandran plot distribution of non-proline trans-conformation (A) PD2 decoy loop residues, (B) all SCOP40 residues,
and (C) native loop conformations in the Fiser test set.
doi:10.1371/journal.pone.0065770.g004
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terms are parameterised such that the equilibrium distributions of

each structural alphabet ‘‘letter’’ and each pair of consecutive

‘‘letters’’ reproduces that observed in the PDB (protein data bank)

[11].

Table 2. Loops predictions for newly deposited structures with low sequence and structure similarity to previous structures.

lowest RMSD loop sampled (Å) lowest energy loop RMSD (Å)

PDB residues length PD2 PD2_rmin control control_rmin PD2_rmin control_rmin

3zbd 76A–83A 8 1.23 0.93 1.69 1.43 1.92 (2140) 4.94 (2127)

4f55 202A–209A 8 0.86 0.30 1.48 1.29 0.98 (2152) 7.32 (2139)

4f55 222A–230A 9 2.84 1.77 1.94 1.58 3.99 (2132) 3.57 (2128)

4fc9 553A–563A 11 2.65 1.97 1.94 1.59 4.98 (2209) 4.35 (2196)

4fch 186A–194A 9 1.56 0.86 2.03 2.15 2.70 (2306) 3.52 (2299)

4fch 303A–313A 11 0.90 0.45 2.01 1.76 0.59 (2307) 4.88 (2295)

4fch 350A–357A 8 1.38 0.78 0.99 1.14 3.32 (2301) 1.51 (2297)

Values in brackets are corresponding Rosetta energies.
doi:10.1371/journal.pone.0065770.t002

Figure 5. Backbone RMSD-G vs. Rosetta energy scatter plots for loops taken from a newly deposited set of structures (Table 2). The
red point indicates the energy minimised crystal structure loop and the blue point indicates the lowest energy PD2_rmin decoy loop conformation.
The black points correspond to PD2_rmin loop decoys while the purple points correspond to the control_rmin loop decoys.
doi:10.1371/journal.pone.0065770.g005
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Ca Monte Carlo Move Set
The move set consists of crankshaft moves (analogous to

backbone backrub moves), bond moves where two a-carbon atoms

are moved by equal amounts in opposite directions along the bond

vector and angle moves where two outside a-carbon atoms are

rotated by equal and opposite amounts such that the bond angle is

changed and the rotation axis is normal to the plane defined by the

three a-carbon atoms. All three of these move types are local

moves that do not propagate along the whole chain.

Backbone Potential Energy Function
A backbone potential energy function was used for conjugate

gradient minimisation after rough backbone atom positions were

added to a-carbon models using a previously described method

[27] in order to regularise the backbone stereochemistry. This

included bond angle, bond length, torsion, improper torsion, 1–4

Lennard-Jones and 1–5 Lennard-Jones terms taken directly from

the OPLS-UA force field [56], a soft steric repulsive term to

prevent backbone clashes (as described in [11]) and reimplemen-

tation of the Rosetta backbone-backbone hydrogen bonding

statistical potential [57].

Ebb~EangzEbondzEtorzEimpr torzELJ1{4

zELJ1{5
zEbumpzEbb hb

ð2Þ

Ensemble Generation
Initial loop a-carbon positions were generated by linear

interpolation between the fixed anchor a-carbon with the addition

of a small random vector displacement followed by conjugate

gradient minimisation using only the Ebond and Ebump terms from

(1). The initial positions were then relaxed in the full a-carbon

potential using Monte Carlo simulated annealing for a total of

12000 steps. Conformations were generated by an inner cycle of

400 simulated annealing steps at the a-carbon level followed by the

addition of initial backbone positions by a fast look-up method

[27]. The annealing schedule consisted of 50 steps with b~0:2,

100 steps with b linearly increasing from b~0:2 to b~1:2 and

finally 250 steps with b~1:2 (where b~ 1
kBT

). These conforma-

tions were accepted and then minimised in the backbone potential

energy function if the number of residues in the loop with w/y
dihedral angles that lay in strictly forbidden regions of the non-

residue specific Ramachandran plot, nforb, was

ƒmaxf0:1|length,nlowestforb g, where nlowestforb was the lowest previ-

ously accepted value of nforb. This was designed to prevent the

algorithm getting stuck with no acceptable loops. At this stage 47%

of generated loops were rejected.

Gradient Minimisation and Selection with the Rosetta
Energy Function

Sidechains were added using the default Rosetta simulated

annealing repacking algorithm and the loop atoms gradient

minimised in the Rosetta all atom potential energy function using

a PyRosetta [58] script consisting of 15 outer cycles and 4 inner

cycles. Each of the 4 inner cycles consisted of sidechain repacking

followed by gradient minimisation. The weight of the repulsive

term of the Lennard-Jones energy was gradually ramped up

during the 4 inner cycles in the order 0.02, 0.25, 0.550 and finally

1.0. This was designed to replicate the Rosetta Fast Relax protocol

[59]. The backbone and sidechains of the rest of the protein were

kept fixed in their experimentally observed positions and the

lowest energy structure generated during the protocol was

retained. The lowest energy loop decoy was selected as the final

prediction.

Selection of New Loops from Recently Deposited
Structures

Protein structures solved after April 2012 with novel folds were

determined using a hierarchical approach based first on sequence

similarity and then on structural similarity. First, the sequences of

all structures solved after this date and greater than 20 amino acids

in length (10,239) were BLASTed [60] against all PDB sequences

deposited before this date. Any matches with a reported BLAST

E-value v10{4 were removed as clear homologues leaving 1350

sequences. The corresponding structures of these 1350 sequences

were then structurally compared to a representative set (pairwise

sequence identity v30%) of the PDB taken from the PISCES [61]

server with a date before April 2012 using MAMMOTH [62].

Any protein with a MAMMOTH hit with an E-value v10{2

were discarded as structurally similar to an earlier deposited

structure, leaving 361 proteins with potentially new folds. Many of

these proteins were short (v100 residues) suggesting that they may

not constitute a genuine fold. After removing any structures v100
residues, this left 24 potential structures. Finally, of these 24

structures, any that were not high resolution crystal structures

(ƒ2:1Å), contained chain breaks/missing residues, or had no loops

in the range 8–12 were removed leaving a final set of 4 structures

and 7 loops (Table 2). Loops were determined as contiguous

sections of coil or turn as defined by STRIDE [63].

Supporting Information

File S1 Supporting figures and tables.

(PDF)
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