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Abstract

Background: Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological
conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to
investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and
syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes.

Methods: Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the
following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration.
Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to
quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day
groups to correlate the observed mRNA changes to the protein expression.

Results: In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic
dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT)
indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in
syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein
levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower
than that in the control group. The same results were obtained from immunohistochemistry analysis.

Conclusion: Our data suggest that membrane proteoglycans participate in the sequence of events triggered by
diabetes and inflicted on cardiac and skeletal muscles.
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Background
Diabetes mellitus is a complex disorder resulting in large-
and small-vessel disease and impaired organ function. It
is characterized by hyperglycemia and by a variety of
end-organ damage [1].
One of the major causes of morbidity and mortality in

diabetic patients is the cardiovascular disease related to
the myocardial contractile system [2], with diastolic dys-
function being an early event of diabetic cardiomyopathy,
preceded by a change in cardiac metabolism [3,4].

Diabetic cardiomyopathy remains a poorly understood
disease. Its development results in myocardial fibrosis
and collagen deposition, which may lead to altered myo-
cardial relaxation and diastolic dysfunction [5]. Several
mechanisms were proposed to explain the installation of
the disease, but the main changes are promoted by
hyperglycemia, and represent an adaptive or maladaptive
response that culminates in the installation of this clinical
entity [5].
Furthermore, endothelial dysfunction may contribute

to the development of cardiopathy through the under- or
overproduction of growth factors [6].
In animal models of Type 1 diabetes induced by strep-

tozotocin (STZ), the cardiac contractile dysfunction
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appears to be related to prolonged hypoinsulinemia and
hyperglycemia [7].
Heparan sulfate proteoglycans (HSPGs) are highly

charged macromolecules found on the surface of virtually
every cell type. The main cell surface proteoglycans carry-
ing heparan sulfate in mammalian cells are syndecans and
glypicans. They interact with a wide variety of molecules,
including extracellular matrix components (ECM),
enzymes, and growth factors, participating as regulators of
biological processes, ranging from embryogenesis to
hemostasis [8,9]. As a consequence, they are involved in
different pathological conditions, such as wound repair,
cancer, atherosclerosis, and thromboembolic disorders
[8-10]. Moreover, studies in diabetes have correlated
nephropathy and retinopathy microvascular disease with
lower amounts of HSPGs in the endothelial basement
membrane [11-14]. A reduction in heparan sulfate (HS)
and proteoglycan synthesis in cultured epithelial cells in
the presence of high-glucose medium has been shown [15].
However, a gap exists in our understanding of HSPG

alterations in other tissues during diabetes. Considering
the changes in some HSPGs’ expression in renal and
vascular tissues, we hypothesized that similar changes
may happen in the skeletal and cardiac muscles.
The aim of this study was to investigate whether altera-

tions in myocardial function during hyperglycemia by
insulin depletion are accompanied by changes in the
expression of HSPGs in cardiac muscle and, if so, whether
the change is muscle specific or a general response to the
disease. For this purpose, we examined the mRNA expres-
sion and the amount of 2 key cell surface heparan sulfate
chain-carrying core proteins, syndecan-4 and glypican-1,
after 24 hours, 10 days, and 30 days of STZ-induced
experimental diabetes in 2 muscles, cardiac and skeletal.
HSPGs expression was evaluated in skeletal muscle,
because it is the major organ responsible for glucose
uptake under insulin-stimulated conditions and it is
affected by the metabolic deregulation observed in dia-
betes. As happens in cardiac muscle, the contractile dys-
function could be detected in skeletal muscle caused by
degeneration and necrosis of myofibers together with type
II atrophy [16,17].

Methods
Animals
This work was performed in compliance with the ARRIVE
guidelines on animal research [18]. All experimental proce-
dures were performed in accordance with the Guidelines
for Ethical Care and Use of Experimental Animals and
approved by the institution’s ethics committee. Diabetes
was induced in overnight-fasted rats by a single intravenous
injection of 50 mg/kg of STZ in citrate buffer (Sigma Che-
mical Co., St. Louis, MO, USA). Diabetes induction by STZ

injection is a well-characterized model of experimental
Type 1 diabetes, where the selective destruction of beta-
cells of pancreatic islets promotes a permanent hyperglyce-
mic state and consequently diabetes complication [19].
After STZ injection, all animals were returned to their
cages and kept in a ventilated shelf under a controlled
12-hour light/dark cycle and temperature (21-24°C).
Sixteen male Wistar rats obtained from the central

animal facility of the University of São Paulo Medical
School weighing 200-300 g were randomly divided into
4 groups of 4 animals each according to time of diabetes
induction: control (sham injection with saline), 24 hours,
10 days, and 30 days after STZ injection.
All animals were sacrificed with a lethal dose of sodium

pentobarbital (60 mg/kg i.p.) and had the heart and the
gastrocnemius muscles immediately removed, washed in
ice-cold 0.9% NaCl solution, weighed, frozen in liquid
nitrogen, and stored at -80°C.

Echocardiography
High-resolution echocardiography was performed in 4
diabetic rats after 10 days of induction and in 4 rats of
the same age and sex from the control group just before
sacrifice. Transthoracic echocardiography was performed
after anesthesia with pentobarbital (40 mg/kg; i.p.) using
a Sequoia 512 machine (Acuson, Mountain View, CA)
equipped with a 13-MHz linear-array transducer. Images
were stored digitally on magneto-optical discs [20].
Left ventricular end-systolic (LVESD) and end-diastolic

dimension (LVEDD), interventricular septal thickness
(IVST), and posterior wall thickness (PWT), both in dia-
stole, were measured at the level of the papillary muscles
on the short-axis view using 2-D guided M-mode imaging
[20,21]. All measurements were obtained according to
American Society of Echocardiography recommendations
[22]. Three representative cardiac cycles were analyzed
and averaged for each measurement. Fractional shortening
was calculated from the M-mode recordings, as previously
described [23]. Left ventricle (LV) mass was calculated
from M-mode recordings by using the uncorrected cube
formula, assuming spherical LV geometry [20]. The LV
mass index was determined as the ratio of LV mass in
grams to body weight in grams.
The peak velocity of early (E) and late (A) diastolic

filling and E/A ratio, deceleration time of the E wave
(DT), and isovolumic relaxation time (IVRT) were
obtained from the mitral inflow recordings, as previously
described [20]. DT and IVRT were obtained in animals
when the E and A waves were not fused. We also mea-
sured systolic (S’), early (E’), and late (A’) diastolic peak
velocities of Doppler tissue imaging with a sample
volume placed at the septal side of the mitral annulus in
the apical 4-chamber view.
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Western blot
Proteoglycans (PGs) were extracted from the cardiac or
skeletal muscle pool obtained from all 4 animals of each
experimental group according to the protocol described
elsewhere [24]. After extraction, the supernatants were
dialyzed and purified in DEAE Sephacel (Sigma) and
protein concentration determined using Bradford’s
method [25]. Samples underwent digestion with a mix-
ture of 0.06 unit of chondroitinase ABC and 1 unit of
heparitinases (Sigma) at 37°C for 4 hours to remove gly-
cosaminoglycans from the protein core [26].
Ten μg of PGs underwent 7.5% SDS-PAGE, followed by

electrotransfer to an Immobilon-P membrane (Millipore,
Belford, MA, USA). Membranes were blocked and incu-
bated with the primary antibody, either antiglypican-1 C-
18 or antisyndecan-4 N-19 (1:1000; Santa Cruz Biotech-
nology, Inc., Santa Cruz, CA, USA), followed by the sec-
ondary antibody, goat anti-rat IgG-HRP (1:5000; Santa
Cruz Biotechnology, Inc). The blots were developed
using a chemiluminescent reagent (Western Blotting
Chemiluminescence Luminol reagent; Santa Cruz Bio-
technology) and exposed to Kodak MGX/Plus film (East-
man Kodak, Rochester, NY, USA). The PGs were
quantified with the Eagle Eye analyzer system (Strata-
gene, La Jolla, CA, USA). Mean and SE were calculated
using 4 independent experiments. The results were
expressed as arbitrary optical density units (OD).

RNA isolation from cardiac and skeletal muscles
Total RNA was isolated from the heart apical region and
skeletal muscle by using TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA) as described in the manufacturer’s
protocol. RNA integrity was determined by agarose gel
electrophoresis [27].

RT-PCR assays
cDNA was synthesized using total RNA from cardiac and
skeletal muscles by the Superscript Pre-amplification Sys-
tem (Invitrogen) and amplified by PCR using the manufac-
turer’s protocol. PCR primers used in this study are listed
in Table 1 and were designed using previously published
sequences [28-30]. The samples were amplified for 35
cycles (denaturation at 94°C for 45 seconds; annealing at
58°C for 1.5 minutes, extension at 72°C for 1.5 minutes).
All amplifications were carried out using a thermal cycler
(MJ Research Inc. Watertown, MA, USA). b-actin was
used as a control.

Cloning and sequencing of PCR products
The PCR products were purified with a Concert Rapid
Gel Extraction System (Invitrogen) and cloned with a
pGEM-Easy cloning vector (Promega, Madison, WI,
USA.). The clones were identified by blue/white selec-
tion, processed for plasmid purification with the Wizard

Plus kit (Promega), and sequenced (ABI PRISM- 377
DNA Sequencer- Perkin Elmer, Foster City, CA, USA) by
using DNA prepared according to the protocol of the
sequencing kit DNA Big Dye Terminator (Applied Bio-
system- Perkin Elmer, Norwalk, CT, USA). The identity
of the products was verified by using the basic local align-
ment search tool (BLAST) on the GenBank database.

Northern blot
Total tissue RNA (10 μg) from 4 animals of each group
(control, 24-hour, 10-day, and 30-day) was fractionated in
1% agarose-formaldehyde gel [31]. The RNA was trans-
ferred to a positively charged membrane (Duralon-UV
Stratagene) and prehybridized in a Stratagene hybridization
solution and hybridized with digoxigenin (Dig)-labeled
probes, syndecan-4 and glypican, prepared according to
instructions of the Dig DNA labeling kit (Roche Molecular
Biochemicals, Mannheim, Germany). The blots were
revealed with a Dig luminescent detection kit (Roche) and
exposed to Kodak MXG/Plus film. The hybridization sig-
nals were quantified with the Eagle Eye system, and nor-
malized to the amount of 28S rRNA in the samples.
Results are presented as mean ± SE of the relative density
(optical density of proteoglycan/optical density of 28S
rRNA * 100) of samples from 4 rats in each group. The
experiment was run in duplicate.

Immunohistochemistry
For histological analysis, 5-μm sections were obtained
from formalin-fixed paraffin-embedded samples of car-
diac and skeletal muscle from control rats and the 30-day
group and routinely stained with hematoxylin-eosin.
Three-micrometer sections from these specimens were

deparaffinized, rehydrated, and underwent antigen retrie-
val in 0.5% pepsin pH 1.8 for 30 minutes at 37°C. The
specimens were then incubated in 3% aqueous hydrogen
peroxide for 30 minutes to quench endogenous peroxi-
dase activity. Incubation with 1% BSA and 5% fetal calf
serum in Tris-HCl, pH 7.4 for 60 minutes at room tem-
perature was performed to suppress nonspecific binding
of subsequent reagents. The sections were then incubated
with the primary antiglypican-1 C-18 and antisyndecan-4
N-19 (Santa Cruz Biotechnology Inc.) diluted 1:200. The
Catalyzed Signal Amplification system (CSA system,
HRP, Dako, Carointeria, CA, USA) was used and con-
sisted of 15-minute sequential incubations with a biotiny-
lated link, streptavidin complex, amplification reagent,
and streptavidin peroxidase. Each of these 15-minute
incubation steps was preceded by a 5-minute rinse with
1% Tween 20 Tris-HCl, pH 7.4. Staining was completed
by 3-minute incubation with 3’ -3 -diaminobenzidine tet-
rachloride (DAB; Sigma, St Louis, MO, USA), which
resulted in a brown colored precipitate at the antigen
sites. The specimens were then lightly counterstained
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with Mayer’s hematoxylin, dehydrated, and xylene-based
mounted under glass cover slips. Negative controls were
treated as above, but a solution of 1% BSA in Tris-HCl,
pH 7.4 replaced the primary antibody. Epithelium and
blood vessels were considered internal positive controls.

Statistical analysis
The results are expressed as mean ± SE. Data were
compared using analysis of variance (ANOVA) followed
by the Tukey Multiple Comparison Test using Graf Pad
Prism for Windows software (Graft Pad Software Inc.,
San Diego, CA, USA). The t test was applied for echo-
cardiographic results. P < 0.05 was considered statisti-
cally significant.

Results
Animal characteristics
All STZ-treated animals developed severe hyperglycemia
(> 27.0 mmol/L), including the 24-hour group, compared
with the control (nondiabetic) group (< 7.5 mmol/L).
Body weight was significantly lower in 10-day and 30-day
groups compared with control animals according to
ANOVA followed by the Tukey Multiple Comparison
Test: 217.4 ± 3.9 g and 222.4 ± 9.53 g vs 265.8 ± 10.9 g,
P < 0.05.

Echocardiographic indices show impaired relaxation
Left atrium dimension, LVESD and LVEDD, IVST, and
PWT, LV fractional shortening, and LV mass index
were not statistically different in the control and 10-day
groups (Table 2). Although LV fractional shortening was
normal, S’ peak velocity was decreased in the diabetic
group (Table 2). This finding shows that Doppler tissue
imaging is a useful tool for the assessment of systolic
function in this model of diabetic myocardial disease
and is altered earlier than the standard indices of global
systolic function.
Diastolic function indices allowed the differentiation

between groups, because E peak velocity was decreased in
the diabetic group, and IVRT was increased in the same
group. No difference occurred between diabetic and nor-
mal groups for E/E’ ratio (Table 2). Taken together, the
diastolic function indices reflect an impaired relaxation
with normal LV end-diastolic pressure.

Membrane HSPGs’ mRNA is present in normal cardiac
and skeletal muscle
We detected the presence of glypican-1 and syndecan-4
mRNA in normal cardiac and skeletal muscles by RT-
PCR. The identity of the HSPGs cDNA was confirmed
by sequence comparison with published sequences for
these molecules [GeneBank accession n° L02896and
M81786].

Glypican-1 concentration increases in cardiac muscle and
decreases in skeletal muscle
A single mRNA band was detected for glypican in each
tissue: 5.01 kb in heart tissue (Figure 1A) and 5.36 kb in
skeletal muscle (not shown). Glypican mRNA expression
in cardiac muscle revealed, in comparison to normal tis-
sue, decreased values in the 10-day group (relative density:
30.40% ± 1.08% vs 44.90% ± 4.02%; P < 0.05) followed by a
significant increase, almost 100%, in the 30-day group
(83.80% ± 5.07% vs 44.90% ± 4.02%; P < 0.001). STZ treat-
ment did not change mRNA levels in skeletal muscle
(Figure 1B).
Protein analysis showed the presence of 2 bands of

molecular mass (Mr) of 50 and 57 kDa in cardiac and ske-
letal muscles. The bands obtained in our study are prob-
ably related to the presence of reduced and nonreduced
glypican core proteins. Similar data were reported for gly-
pican extracted from tumor cell lines in an immunoblot
analysis that had a band of 48 kDa at nonreducing condi-
tions and 55 kDa at reducing, quite similar to the molecu-
lar masses obtained in our study [32,33].
As for the mRNA expression, an increase was noted in

the amount of glypican core protein in cardiac muscle
accompanying the development of diabetes, although this
elevation could be detected not only in the 30-day group
but also in the 10-day group, OD: 2.219 ± 0.06 and 1.520
± 0.031, respectively, vs OD: 0.742 ± 0.0422; P < 0.001
(Figure 2A and 2B). On the other hand, our results
obtained from skeletal muscle showed a small increase in
the 24 hour-group (OD: 0.618 ± 0.023 vs 0.517 ± 0.030; P
< 0.05) followed by a decrease of this PG in the 10- and
30-day groups (OD: 0.333 ± 0.020 and 0.178 ± 0.011),
respectively, compared with the control, OD: 0.517 ±
0.030; P < 0.05 (Figure 2A and 2B). The immunohisto-
chemistry qualitative analysis confirmed the higher level

Table 1 Oligonucleotide sequences and expected PCR product sizes

Oligonucleotide sequence Product length (bp)

Glypican [28] sense: 5’ TTG GCA GTG TGC ATA TGT G 3’ 700

anti sense: 5’ GTG AAC AGG AAG AGC AGA AAG 3’

Syndecan-4 [29] sense: 5’ CGA GAG ACT GAG GTC ATA G 3’ 471

anti sense: 5’ TCG TAA CTG CCT TCA TCC 3’

ß-actin [30] sense: 5’ ATC ATG TTT GAG ACC TTC AAC AC 3’ 890

anti sense: 5’ TCT GCG CAA GTT AGG TTT TGT C 3’
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of glypican in cardiac muscle of the 30-day group com-
pared with the control group (Figure 2C). For skeletal
muscle, as expected, the analysis of the sections showed
the presence of a few spots of colored precipitate in the

control and the absence of them in the 30-day group,
likely because of the lack of sensitivity of this method for
such a low amount of PG (Figure 2D).

Syndecan-4 amounts increase in cardiac and skeletal
muscles during experimental diabetes progression
RNA blot filters hybridized with a rat syndecan-4 speci-
fic DNA probe revealed the presence of 2 bands (6.57
and 3.34 kb, not shown) for adult cardiac and one band
for skeletal muscle, 6.37 kb (Figure 3A). Quantification
of syndecan-4 mRNA expression in skeletal muscle
revealed an increase of almost 50% in the 30-day group
(relative density: 125.00% ± 10.60% vs 84.80% ± 5.98%;
P < 0.01) compared to controls. On the other hand, for
cardiac tissue we did not detect any changes between
the samples tested (Figure 3B).
The protein analysis revealed a band of Mr 59 kDa,

with a similar pattern for cardiac and skeletal muscles
(Figure 4A and 4B). This molecular mass may represent
a homo- or heterooligomerization of the protein core,
quite similar to that observed by Hamon et al. (Mr 56
kDa) [34]. Although the mean optical density value
obtained for syndecan from heart muscle in the 30-day
group almost doubled compared to that in control, it
was not statistically significant, probably because of the
high variability of the results in this group. On the other
hand, for the 10-day group the increase was significant
(OD: 2.971 ± 0.666 vs 1.435 ± 0.072; P < 0.01). The
same pattern was detected for skeletal muscle with an
increase in protein level in the 10- and 30-day groups,
OD: 2.160 ± 0.433 and 2.845 ± 0.643, respectively, com-
pared with the control group, OD: 0.011 ± 0.005, P <
0.001. It must be emphasized that, in skeletal samples,
the amount of this PG was low not only in the control
but also in the 24-hour group (Figure 4A and 4B). The
qualitative analysis of immunohistochemistry (control
and 30 days after induction) confirmed the increase

Table 2 Echocardiographic variables for control and diabetic groups after 10 days of induction

Variables Control group (n = 4) Diabetic group (n = 4) P value

Left atrium dimension (mm) 2.8 ± 0.3 3.0 ± 0.7 NS

Interventricular septum thickness (mm) 1.9 ± 0.2 1.9 ± 0.3 NS

Posterior wall thickness (mm) 1.8 ± 0.2 1.8 ± 0.4 NS

LV end-diastolic dimension (mm) 5.3 ± 0.1 5.0 ± 0.1 NS

LV end-systolic dimension (mm) 2.8 ± 0.1 3.1 ± 0.1 NS

LV fractional shortening 0.48 ± 0.1 0.37 ± 0.2 NS

LV mass index (g/body weight) 2.4 ± 0.5 2.1 ± 0.2 NS

Isovolumic relaxation time (ms) 28 ± 2 59 ± 9 < 0.001

E peak velocity (cm/s) 80 ± 10 50 ± 14 < 0.05

S’ peak velocity (cm/s) 3.8 ± 0.5 2.5 ± 0.5 < 0.05

E/E’ 13 ± 2 14 ± 5 NS

LV = left ventricular; S’ = systolic septal mitral annulus peak velocity.

t test, NS = nonsignificant; P < 0.05.

Figure 1 Northern blot analysis of glypican-1 from cardiac
muscle (CM) and skeletal muscle (SM). Membrane of glypican
mRNA from CM (A) stained with ethidium bromide (upper) and
hybridized with glypican labeled probe (lower). B. Bars represent the
mean values ( ± SE) of relative density (optical density of
proteoglycan/optical density of 28S rRNA * 100) from CM and SM in
the 4 groups. *P < 0.05; ***P < 0.001 compared with control.
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observed in the Western blot for the 2 muscles analyzed
(Figure 4C and 4D).

ß-actin expression is not altered in cardiac and skeletal
muscles
HSPG mRNAs changes induced by STZ treatment were
not paralleled by alterations in ß-actin mRNA from
heart and skeletal muscle (not shown).

Discussion
In the present study, the echocardiography obtained
from diabetic male rats after 10 days of induction
pointed to signs of diastolic dysfunction with delayed
LV relaxation but normal LV end-diastolic pressure.
The same results were observed by Braga et al. [35] for
chronic type 2 diabetes mellitus normotensive patients
who had higher values of IVRT and lower E values com-
pared with nondiabetic patients.
Other studies of early diabetic cardiomyopathy using

experimental models of diabetes demonstrated echocar-
diographic systolic and diastolic functional impairment
in a group of 14-week-old Zucker diabetic fatty rats
(ZDF) [36,37]. As in our case, prolonged IVRT and
decreased E peak velocity indicating an impaired LV

relaxation were observed by them [36]. They established
the relation between changes in right ventricle (RV) and
LV insulin-stimulated glucose utilization and systolic
dysfunction suggesting that diabetes affects both ventri-
cles [37].
We did not observe the presence of global systolic

dysfunction, probably due to the experimental diabetic
rat model we used, type 1 diabetes (SZT-induced rats)
versus type 2 (ZDF). Also, as an effort to demonstrate
the earlier heart changes, our model of acute diabetes
induction led us to perform the echocardiographic tests
in rats after only 10 days of induction, which probably is
too early to find the alterations registered for the
14-week-old chronically diabetic rats.
On the other hand, considering the review by Pulinilk-

unnil & Rodrigues [38] and the study of Zhong et al.
[39], for whom the evidence of cardiac malfunction was
detected after 4-6 weeks, the impairment in cardiac
function observed by us after 10 days could be consid-
ered too precocious. Besides the methodological differ-
ences between the studies, we must take into account
that this dysfunction could be caused by the direct
action of STZ towards the myocytes as suggested else-
where [40].

Figure 2 Expression of glypican-1 in CM (cardiac muscle) and SM (skeletal muscle). A. Typical Western blot of 7.5% SDS-PAGE using
antiglypican antibodies in extracts of muscles of control, 24-hour, 10-day, and 30-day induced rats. B. Bars represent the mean values ( ± SE) of
arbitrary optical density units (OD) of 4 independent blots (*P < 0.05; ***P < 0.001 compared with control). C and D. Immunohistochemistry from
CM and SM for control and 30-day specimens. Arrows indicate the brown-colored precipitates.
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Our data confirm the presence of syndecan-4 and gly-
pican-1 mRNAs in cardiac and skeletal muscle in con-
trol rats, which is in agreement with other findings in
the literature [41-45]. Concerning the protein core, syn-
decan-4 is abundant in cardiac muscle but could barely
be detected in skeletal muscle from control animals
under our experimental conditions as shown by Wes-
tern blot and immunohistochemistry analysis, differently
from its mRNA expression.
In our study, after diabetes induction, an increase

occurred in syndecan-4 mRNA and protein expression
in skeletal muscle. The initial low abundance of this PG
in normal adult tissue is in agreement with reports in
the literature [44] that describe its presence only in ske-
letal satellite cells. The observed increase in syndecan-4
expression after induction may be related to muscle
breakdown and repair.
Temporal and spatial increases in the expression of

syndecans during wound-healing processes, including

skin and arterial injuries, and myocardial infarction have
been demonstrated [8,46]. The biological activity of
HSPGs is thought to be largely due to the presence of
attached heparan sulfate chains capable of binding
growth factors, like basic fibroblast growth factor
(b-FGF) [8]. In hyperglycemia, the b-FGF glycation is
enhanced, which reduces its mitogenic activity and may
explain the impaired wound healing, angiogenesis, and
microangiopathies that occur in diabetes [47,48]. Data
from the literature show that HSPG-bound b-FGF is
resistant to nonenzymic glycation-induced loss of activity
[15]. So, the increased expression of HSPGs in diabetes
would protect b-FGF from inactivation, which would
confer on these molecules a regulatory role in the control
of biological processes in which FGFs are involved [49].
b-FGF that is localized in the cytoplasm of myofibers

is accurately targeted, both in time and space, to sites of
mechanical injuries [50,51], which could explain altera-
tions in expression and/or the amount of a particular
HSPG regarding its spatial distribution.
No difference was found between control and diabetic

rats in glypican-1 mRNA extracted from skeletal muscle.
On the other hand, the data obtained from protein analy-
sis pointed to the presence of lower levels of glypican-1
in diabetic rats compared with controls. Lower amounts
of this membrane-bound proteoglycan, as happens to
other HSPGs from extracellular matrix, could promote a
change in charge barrier densities, because of the loss of
anionic sites [11-14] and may be involved in plasma
membrane wounding.
Glypican and syndecan-4 are both present on the sur-

face of myotubes [38,41,52], so if the variation observed
for some HSPGs obeys a spatial model, we would expect
the same pattern for these 2 PGs, which did not happen.
Liu et al. [53] showed that glypican and syndecans could
have distinct functions, even when expressed by the same
cell type. Different functions could explain our results,
considering that syndecan-4 appears to be a requirement
for a functional response for proliferation that may be
mediated by FGFs, being coexpressed with this growth
factor in satellite cells [44].
So, probably, different patterns of expression triggered

by the development of diabetes with a lower level for
glypican and a higher level for syndecan, would reflect
distinct functions.
In cardiac muscle from normal rats, the presence of

glypican-1 and syndecan-4 detected in our study is in
agreement with reports in the literature, which localized
them in cardiomyocyte plasma membranes [43,45].
The increased level of syndecan-4 specific protein after

diabetes induction was not paralleled by the mRNA
expression in cardiac cells. The same happened for glypi-
can-1, whose pattern for mRNA, with a relative density
in the 10-day group lower than that in the control, was

Figure 3 Northern blot analysis of syndecan-4 from cardiac
muscle (CM) and skeletal muscle (SM). Membrane of syndecan
mRNA from CM (A) stained with ethidium bromide (upper) and
hybridized with syndecan labeled probe (lower). B. Bars represent
the mean values ( ± SE) of relative density (optical density of
proteoglycan/optical density of 28S rRNA * 100) from CM and SM in
the 4 groups. **P < 0.01 compared with control.
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not followed by protein analysis, which had raised levels
after STZ-induction. One possible mechanism for these
conflicting results could be a decrease in the rate of
degradation of these HSPGs or the stabilization of their
transcripts. Syndecan expression can also be controlled
posttranscriptionally as happens to syndecan-3, the tran-
script of which is abundant in rat heart tissue, whereas
the protein molecule is hardly detectable [54].
Data in the literature establish the relationship

between increased levels of b-FGF, cardiac hypertrophy,
and reversion of muscle structural mRNA to the fetal
isoforms, conferring to FGF a crucial role in the cardiac
hypertrophy process [55,56].
The increased amount in diabetes of glypican-1 and

syndecan-4 is somewhat expected, because these proteo-
glycans modulate the interaction of FGF, augmented in
diabetes, with different receptors and protect it against
inactivation, as explained earlier [57]. Moreover, the pre-
sence of glypican-1 expression corresponds in most
cases to locations of high mitotic activity, where HS-
dependent and heparin binding growth factors are
known to play important developmental roles [58].
Concerning syndecan-4, it is present in the costamere,

a unique cytoskeletal adhesion complex present in

striated muscle, and in focal adhesion in adult cardio-
myocytes [45]. Likewise, b-FGF receptor was localized in
costameres, bestowing on syndecan 4 a possible role as a
regulator of b-FGF co-receptor interactions with cardio-
myocytes [59]. In addition, it has been suggested that this
proteoglycan participates in the transmission of contrac-
tile force to the collagenous extracellular matrix [45]. As
discussed earlier, contractile dysfunction is an important
event in diabetic cardiomyopathy, so alterations in mole-
cules involved in the transmission of myocyte contraction
to ECM might be expected.
In our investigation, we did not include female rats,

because of the potential cardiovascular protective influ-
ence of estrogen. Recently, it was shown that in ovariec-
tomized mRen2. Lewis female rats, an after menopause
model, the estrogen depletion promotes the worsening
of the diastolic dysfunction with impaired LV relaxation
and an increase of myocardial collagen deposition [60].
The small number of animals investigated must be

registered as a limitation of this study.

Conclusion
The results obtained for glypican in cardiac and skeletal
muscle samples pointed to a muscle-specific response of

Figure 4 Expression of syndecan-4 in CM (cardiac muscle) and SM (skeletal muscle). A. Typical Western blot of 7.5% SDS-PAGE using
antisyndecan-4 antibodies in muscles of control, 24-hour, 10-day, and 30-day induced rats. B. Bars represent the mean values (± SE) of arbitrary
optical density units (OD) of 4 independent blots (**P < 0.01; ***P < 0.001 compared with control). C and D. Immunohistochemistry from CM
and SM for control and 30-day specimens. Arrows indicate the brown-colored precipitates.
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this proteoglycan related to development of diabetes.
Our data did not allow us to determine a causative rela-
tionship between the alterations observed in both pro-
teoglycan expression and the in vivo functional changes
observed. However, it is clear that the diastolic dysfunc-
tion, an early sign of cardiac involvement, and the
change in these cell surface sulfated proteins occur, at
least, as parallel events.
Because the processes involved in the disease are not

mutually exclusive, the identification of any event linked
to the development of diabetic cardiomyopathy will help
the understanding of the pathophysiology of the disease
and may contribute to a future clinical approach.
This is the context of this study: to help in the identi-

fication of molecules that with a reasonable amount of
certainty participate in the sequence of events that cul-
minate in the myocardial insult inflicted by diabetes. So
determining the trigger of this clinical entity should be a
goal for researchers, because it would lead us to the
possibility of intervening through specific therapies.
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