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The research shows that subjective feelings of people, such as emotions and fatigue, can

be objectively reflected by electroencephalography (EEG) physiological signals Thus, an

evaluation method based on EEG, which is used to explore auditory brain cognition laws,

is introduced in this study. The brain cognition laws are summarized by analyzing the

EEG power topographic map under the stimulation of three kinds of automobile sound,

namely, quality of comfort, powerfulness, and acceleration. Then, the EEG features of the

subjects are classified through a machine learning algorithm, by which the recognition of

diversified automobile sound is realized. In addition, the Kalman smoothing and minimal

redundancy maximal relevance (mRMR) algorithm is used to improve the recognition

accuracy. The results show that there are differences in the neural characteristics of

diversified automobile sound quality, with a positive correlation between EEG energy and

sound intensity. Furthermore, by using the Kalman smoothing and mRMR algorithm,

recognition accuracy is improved, and the amount of calculation is reduced. The novel

idea and method to explore the cognitive laws of automobile sound quality from the field

of brain-computer interface technology are provided in this study.

Keywords: automobile sound quality, EEG, brain cognition laws, Kalman smoothing, mRMR

INTRODUCTION

Methods that are applied to evaluate automobile sound quality mainly rely on the psychological
feelings of people and cannot guarantee the universality of evaluation results (Tan and Tan,
2012). Methods of ranking, semantic differentiation (Guo et al., 2017), grade score, pairing
comparison (Parizet, 2002; Ellermeier et al., 2004) are commonly used for subjective evaluation.
However, when the sound qualities with similar semantics (such as “comfort,” “powerfulness,” and
“acceleration”) are designed under the dominance of sound forward design, and the traditional
subjective evaluation methods are difficult to reflect the true feelings of the evaluator. In addition
to inherent physical parameter characteristics of sounds, the evaluation of an evaluator for the
sound is also related to their cognition, experience, and emotional state (Genuit, 2004). Therefore,
it is necessary to introduce a new automobile sound quality evaluation method for evaluating the
diversified automobile sound.

Related Works
In recent years, with the research on physiological signals in emotional computing, it has become
possible to use physiological signals to evaluate automobile sound. EEG signals with high time and
spatial resolution are widely used (Lin et al., 2010; Bhatti et al., 2016; Geethanjali et al., 2018).
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The analysis of EEG signals is challenging, and the analysis
of EEG signals in the field of emotion recognition relies on data
pre-processing, feature extraction (Tsang et al., 2010; Kai et al.,
2016; Poikonen et al., 2016), and feature classification. Feature
extraction is crucial to ensure recognition performance. Only by
selecting EEG features closely related to the purpose of research
can effectively meet the performance of recognition (Nishimura
and Mitsukura, 2013; Sheykhivand et al., 2020). Some studies
indicated that rhythm characteristic of EEG can reflect human
brain activities, which are δ (1–4Hz), θ (4–8Hz), α (8–12Hz),
β (12–30Hz), and γ (>30Hz) (Knyazev, 2012; Zheng and Lu,
2015). Chen et al. (2021) proposed an EEG physiological acoustic
index to evaluate subjective annoyance by comparing EEG
rhythm characteristics and the change in the trend of subjective

FIGURE 1 | Flow chart for the new evaluation method of car sound quality based on brain signals.

annoyance index data. Li et al. (2014) used white noise and pure
tone as stimulus sources to study the relationship between EEG
characteristic signals and subjective annoyance, and it is found
that the average power of θ waves has two peaks in each brain
area during steady stimulation. Ali et al. (2013) studied EEG
signals under different sound pressure levels and stimulation
intervals, and the study found that the θ wave voltage increased
significantly because of high sound pressure level stimulation. Di
and Wu (2015) showed that the average α wave power in the left
frontal lobe was significantly lower than that in the right frontal
lobe under the stimulation of pleasant sounds.

In the study of automotive sound quality and EEG signals,
Lee and Lee (2014) introduced a new method to study human
sound perception by means of EEGs, where EEG analysis and
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measurement were performed to demonstrate human cerebral
response to car acceleration sounds and concluded that the
α-wave power could serve as an objective evaluation index
of automobile acceleration sounds. Lee et al. (2013) selected
the α-wave to calculate the correlation between subjective
evaluations of passenger car sounds and their results indicate
that the intensity of the correlation between the cerebral α-
wave and subjective evaluations can be determined based on
the size of the correlation. Nishimura and Mitsukura (2013)
put forward a group method of data handling (GMDH) to
analyze the sound quality of EERs utilizing neural networks.
Compared with the result efficiency of the principal component
analysis (PCA), the GMDH neural network resulted in a higher
recognition of the target sound quality. The above studies showed
that the distinct physiological response of the human brain to
sound stimuli authentically exists.

Contribution
It is difficult to distinguish automobile sounds with similar
semantics by means of traditional subjective evaluations. In
contrast to the application of EEG signals for emotion
recognition, the study of automobile sound quality based on
EEG is in infancy, the relationship between EEG feature signals
and automobile sound quality is still unclear, and there is less
relevant literature. However, there are related research studies on
actively playing music based on EEG to improve the subjective
emotions of people (Bajaj and Pachori, 2015; Kalaganis et al.,
2016). Therefore, a method for mapping EEGs and diversified
sound quality for decoding automobile sounds is proposed to
reveal the feasibility of using EEG signals as a method of
automobile sound quality evaluation, which can avoid language
description. The study on decoding automobile sound types can
lay the foundation of neuroscience for realizing active playback
of automobile sounds based on EEGs in the future.

The auditory brain cognition laws refer to the rhythmic
activities of the brain under the stimulation of the automobile
sound. At present, there are no unified standards for the
selection of EEG features, and it requires relevant guidance in
selecting EEG features. Thus, changing the law of EEG under
the stimulation of automobile sound is studied here, so as to
guide the selection of EEG features. By defining three subjective
evaluation indices of automobile sound quality (namely, comfort,
powerfulness, and acceleration), sounds that matched with the
three subjective evaluation indices are collected, The EEGs
of the subjects are measured under the stimulation of three
automobile sounds, respectively, in a suitable temperature and
quiet environment, and the analysis of EEG data contribute
to explore the cognition laws of the brain. The differential
asymmetry (DASM) and rational asymmetry (RASM) features
of subjects are extracted based on cognition laws, and use
classification models to identify differences in automobile sound.
The flow chart is shown in Figure 1.

Study Outline
The layout of this study is as follows: the design of the
experiment is introduced in section Experiment Design. Section
Methodology systematically describes the analysis methods of

TABLE 1 | Details of the sound clips used in the EEG experiment.

No. Labels Sound sample sources #Samples

1 Comfort obtain the acceleration sound in

the car under the WOT of Audi

Q5, Audi A8, and FAW Toyota

Prada by test

3

2 Powerfulness obtain the acceleration sound in

the car under the WOT of Lexus

nx, Alfa Romeo by test; Gets the

acceleration audio of Maserati

president’s car by video website

or car game software

3

3 Acceleration Get comfort car acceleration

game simulation audio by video

website and car game software

3

TABLE 2 | Characteristic distribution of evaluators.

Category Constituent Quantity Percentage

Gender Male 27 70%

Female 12 30%

Occupation Teacher 5 13%

Automotive engineer 24 61%

Postgraduate 10 26%

Age 20–29 years 26 67%

30–39 years 5 13%

40 years or more 8 20%

Driving experience Yes 30 77%

No 9 23%

brain signal feature extraction, selection, and classifier. The
results of data analysis are shown in section Experiment Result,
including the cognitive laws of the brain under three types of
automobile sounds, the use of classification models to compare
the recognition accuracy differences of different features, and the
optimization of model accuracy using the Kalman smoothing
andmRMR algorithm. Section Discussion discusses the results of
Section Experiment Result and describes the research significance
of this study. Section Conclusions shows the summary and
prospects of this study.

EXPERIMENT DESIGN

The three types of automobile acceleration sounds are selected
(namely, comfort, powerfulness, and acceleration) as inducing
materials for EEG tests. These sounds that cause strong subjective
and physiological changes in the subjects are mainly obtained
by means of vehicle measurements, online research (such as
collect acceleration sound samples of high-end automobile on
website sites or from car game software), etc. Table 1 lists the
three types of automobile sounds used in the experiment. It is
of significance to emphasize that these automobile sounds are
divided into three parts, namely, comfort, powerfulness, and
acceleration, by 39 engineers with experience in sound quality
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analysis, and the characteristic distribution of the 39 evaluators
is shown in Table 2. The aim of this study is to identify three
types of automobile sounds based on EEG signals. Assuming that
comfort is−1, powerfulness is 0, and acceleration is 1 here, these
data labels make sense when training a classifier.

Based on the experimental design and selection of subjects by
Zheng and Lu (2015), a total of 15 healthy subjects are recruited,
who are different from the 39 engineers. All the subjects included
11 males and four females (aged: 22.4 ± 2.53 years) who are
professors or graduate students from the Wuhan University
of Technology. They all have experience in automobile sound
quality evaluation and ensure their optimal mental health.

Before the experiment started, the test operation procedures
and specifications were relayed to all the subjects in advance, and
they were instructed to properly wear high-fidelity headphones
and press buttons combined with the interface prompts. Making
sure that the subjects concentrate on listening to sounds and
avoid obvious limb movements during the experiment is of great
importance. A 64-channel AgCl electrode cap is used to collect
EEG at a sampling rate of 1,000Hz. The EEG lead distribution
and electrode cap test are shown in Figure 2.

The three automobile sounds in each type are played
randomly, and each sound is played 27 times repeatedly.
There is a 5 s start prompt before each sound is played, and
10 s rest feedback after playing. A questionnaire format that
the computer interface will pop up the type selection item
during the 10 s rest feedback period is used, and the subjects
judge which type the sound belongs to (namely, comfort,
powerfulness, or acceleration). The playback process is shown
in Figure 3.

METHODOLOGY

Feature Extraction
Combining the effective features in the field of emotion
recognition, the power spectral density (PSD) (Thammasan
et al., 2016), Hjorth (Jorth, 1970), and differential entropy (DE)
(García-Martínez et al., 2016) are extracted as the basic EEG
features in this study.

The Welch algorithm is used to set a 1-s long rectangular
window with an overlap rate of 50% and obtain the PSD
corresponding to different frequency bands. The Hjorth
parameters, such as activity, mobility, and complexity (Vidaurre
et al., 2009; Kaboli et al., 2015) are defined as

Activity = var(X(t)) (1)

Mobility =

√

var( dX(t)
dt

)

var(X(t))
(2)

Complexity =
Mobility( dX(t)

dt
)

Mobility(X(t))
(3)

where var denotes the variance of the calculated X(t) signal.

The DE that satisfies the Gaussian distribution is defined as
(García-Martínez et al., 2016).

H(X) =
∫ ∞

−∞

1
√
2πσ 2

exp
(x− µ)2

2σ 2
log

1
√
2πσ 2

exp
(x− µ)2

2σ 2
dx =

1

2
log 2πeσ 2 (4)

where X means a continuous source, Gaussian distribution
satisfies N(µ, σ 2), and π and e are a constant.

There are also several pieces of evidence that asymmetry
features can well represent the cognitive laws of the human brain
(Zheng et al., 2017). In this study, the DASM and RASM of 26
pairs of asymmetric electrodes are calculated, and there are six
type features, which are expressed as

DASM_PSD = PSD(Xleft)− PSD(Xright) (5)

DASM_Hjorth = Hjorth(Xleft)−Hjorth(Xright) (6)

DASM_DE = DE(Xleft)− DE(Xright) (7)

and

RASM_PSD = PSD(Xleft)/PSD(Xright) (8)

RASM_Hjorth = Hjorth(Xleft)/Hjorth(Xright) (9)

RASM_DE = DE(Xleft)/DE(Xright) (10)

The frequency is divided into five segments based on the EEG
rhythm, as shown in Figure 4. The dimensions of DASM_PSD,
DASM_Hjorth, DASM_DE, RASM_PSD, RASM_Hjorth,
and RASM_DE are 130 (26 electrodes∗5 rhythms), 390 (26
electrodes∗ 5∗ 3 rhythms), 130 (26 electrodes∗ 5 rhythms), 130
(26 electrodes∗ 5 rhythms), 390 (27 electrodes∗ 5 ∗3 rhythms),
and 130 (27 electrodes∗5 rhythms), respectively.

Feature Selection
Herein, the Kalman smoothing algorithm is used to filter out EEG
components that are not associated with sounds. The purpose
of Kalman smoothing is to calculate the smoothed value of the
system stateXk at moment k after obtaining all observations up to
time T (Cheng Y and, 2018), smoothing formula is expressed as

p(Xk|y1 :T) = N(Xk|m8
k, P

8
k) (11)

where T > k, y1 :T denotes all observations in the 1∼T time
period and N(X|µ, σ ) denotes the random variable X satisfying
a Gaussian distribution with mean µ and variance σ . T times
forward recursion is completed from the initial time 1 to the
time T, and then perform T times backward recursion from
the time T to complete the Kalman smoothing process. The
forward recursion process is Kalman filtering, and the state
estimatemT and covariance matrix PT at the last time T obtained
by the forward recursion are the initial state estimate m8

T and
covariance matrix P8T of the backward recursion process, namely,
mT =m8

T , PT = P8T .
In addition, the most common problem that is “curse of

dimensionality” for pattern recognitions leads to the rapid
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FIGURE 2 | EEG test setup: (A) distribution of EEG leads for 62 channels and (B) electrode cap test.

FIGURE 3 | The protocol used in the experiment for sound quality evaluation.

FIGURE 4 | Distribution map of EEG rhythm frequency band.

increase in computation with the increase in feature dimensions
(Zheng et al., 2017). It is necessary to select EEG features after
smoothing the EEG data with the target of avoiding feature
redundancy, and the principal component analysis (PCA) and
minimal redundancy maximal relevance (mRMR) algorithm are
compared in this study.

The original domain information cannot be preserved by
means of the PCA (Nakanishi et al., 2011). Hence, the mRMR
algorithm is introduced to select a feature subset from EEG
data here. The mRMR algorithm finds a set of features in the
original feature set that is strongly correlated with the final output
result (Max-Relevance), but the smallest correlation between the
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FIGURE 5 | Classification flowchart of SVM.

features (Min-Redundancy) (Peng et al., 2005). “Max-Relevance”
and “Min-Redundancy” are defined as

maxD(S, c),D =
1

|S|
∑

xi∈S
I(xi; c) (12)

minR(S),R =
1

|S|2
∑

xi ,xi∈S
I(xi, xj) (13)

Combining “Max-Relevance” D with “Min-Redundancy” R,
we define 8(D,R) as

max8(D,R),8 = D− R (14)

The approximate optimal solution can be obtained by the
incremental search method, and the feature is selected
by maximizing 8(D,R).

Classifier
The reasonable design of the classifier affects the final result
(Ackermann et al., 2016; Jenke et al., 2017; Hernández et al.,
2018), and the linear discriminant analysis (LDA) and support
vector machine (SVM) are the most common and effective
classifiers. Thus, the performance differences between the LDA
and SVMmodels are compared in this study.

The common basic idea of LDA classification assumes that
every type of sample data can conform to the Gauss distribution.
While a new sample arrives, it can be projected to bring their
projected sample features into Gauss distribution probability
density function, and then calculate its category corresponding
to the peak probability.

The core idea of SVM is to find an optimal hyperplane to
achieve the classification effect, and the corresponding decision
function is

f (x)= sgn(

m
∑

i=1

αiyiK(xi, x)+ b) (15)

where xi represents the characteristics of the i-th sample, yi
represents the category of the i-th sample, and αi the b are the
calculation parameters in the SVM optimization process. The

mostly used kernel function for EEG signals is the radial basis
function (RBF), and the formula is as follows:

K(xi, x)=e
−‖x−xi‖2

2α2 (16)

A “one-to-one” method was used to solve the problems of multi-
classification, in which n types of training data are combined in
pairs to construct n (n-1)/2 SVM. In this study, the recognition
of three types of automobile sound quality is transformed
into three two-classification problems. The two important SVM
parameters [namely, penalty coefficient (C) and gamma] are
tuned by simulation to obtain the optimal SVMmodel. The three
sets of decision function judgment values are output, and the
category with the largest judgment value is the output category
of sound, namely, majority voting (Ang et al., 2012). The entire
classification process is shown in Figure 5.

EXPERIMENT RESULT

Since the signal-to-noise ratio of EEGs is low, the original data
that contain a large number of external interference noises and
artifacts are necessarily preprocessed; thus, pure EEG data are
extracted with the EEGLAB toolbox, mainly including EEGs
(0.1–100Hz) are captured by means of a band-pass filter, the
interference band of 50Hz is eliminated by a notch filter, the
sampling rate is reset to 200Hz, the artifacts are removed by
the method of Independent Component Correlation Algorithm
(ICA) and so on.

The data set input to the classification model is N∗26, where
26 refers to the number of channel pairs, and N is the number of
samples. There are a total of 27∗9∗5 = 1,215 samples (duration:
1 s) for each subject. After removal of some abnormal data, the
number of EEG samples stimulated may be <1,215.

Cognitive Laws Induced by Automobile
Sound
The EEG power topographic map shows the spatial distribution
of power of five frequency rhythms, thereby turning complex
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FIGURE 6 | Power topographic maps for the three types of car sounds in five rhythms.

TABLE 3 | The mean accuracy rates (%) of LDA and SVM classifiers for different features obtained from separate and total frequency bands.

Feature Classifier Delta Theta Alpha Beta Gamma Total

DASM_PSD LDA 50.63 40.03 44.34 65.17 66.17 75.01

SVM 59.48 40.68 44.37 66.33 68.27 74.83

DASM_DE LDA 47.56 46.78 49.33 69.71 83.74 84.83

SVM 54.98 52.28 52.98 73.35 87.43 86.26

DASM_ Hjorth LDA 46.83 45.30 51.19 74.05 84.24 81.47

SVM 49.58 46.45 51.10 75.39 86.08 81.02

RASM_PSD LDA 42.71 37.59 40.97 62.70 62.89 68.50

SVM 49.02 39.11 41.78 63.79 64.27 69.11

RASM_DE LDA 45.58 44.18 47.93 69.76 82.75 83.67

SVM 51.79 48.94 51.50 73.14 87.60 85.49

RASM_ Hjorth LDA 40.10 42.28 48.04 72.45 85.00 80.63

SVM 44.19 43.91 49.34 74.83 86.85 81.92

Bold values = highest and lowest accuracy.
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brain function changes into easy-to-follow graphs. The power
topographic maps of five frequency rhythms (δ, θ, α, β, and γ)
of the 15 subjects are drawled, as shown in Figure 6.

First, the spectrum power of the five bands under these two
kinds of sound stimulation is higher than that of comfort from
the perspective of a sense of powerfulness and acceleration. Based
on the stimulation of powerful automobile sounds, the energy
of the δ rhythm is mainly concentrated in the top and occipital
areas of the bottom-right, and the energy is also more prominent
in the frontal area of the upper left corner. The θ rhythm is
similar to the delta rhythm but lower than δ. The energy of the
α rhythm is mainly concentrated in the top area of the lower
left and the frontal area of the upper left, and the β rhythm is
mainly concentrated in the frontal area of the upper left, and the
γ rhythm is symmetrically distributed around the frontal area.

Under the stimulation of acceleration automobile sounds,
the δ rhythm energy of the entire brain is more prominent.
The energy of θ and α rhythm is symmetrical in the left
and right frontal regions, but the energy of θ in the central
region is obvious. The energy of α in the left lower occipital

region is prominent. The energy distribution of the β and
γ rhythms shows a symmetrical distribution in the left and
right frontal areas. As for the comfort sounds, the energy
of the five frequency rhythms is obvious in the upper left
frontal area.

In general, there are clear differences in the frequency
band characteristics of EEG rhythm under different quality of
sound stimulation.

Feature Selection
The frequency band energy of the symmetric electrode has
a significant difference under the stimulations of diversified
automobile sound quality; thus, the symmetrical EEG features
are used as input of classifiers in this study. The LDA and
SVM are used as classifiers to recognize the three types of
automobile sounds, a 5-fold cross-validation scheme is adopted,
and the accuracy of the classifier as an evaluation index of
classifier performance.

Table 3 shows the mean accuracy of LDA and SVM for
symmetrical EEG features (namely, DASM_PSD, DASM_Hjorth,

FIGURE 7 | The results of identifying the two types of automobile sounds (namely, powerfulness and acceleration) using SVM with DSAM_DE as the feature and the

test subjects in form of a questionnaire.

TABLE 4 | The accuracies (%) of unsmoothing and Kalman smoothing method with RASM_PSD features of 120 dimensions as inputs and SVM as a classifier from the

total frequency bands.

State Delta (%) Theta (%) Alpha (%) Beta (%) Gamma (%) Total (%)

Unsmoothing 49.02 39.11 41.78 63.79 64.27 69.11

Smooth 68.8 60.12 62.1 84.33 85.67 90.36

Difference 19.78 21.01 20.32 20.54 21.4 21.25
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FIGURE 8 | The average accuracies of SVM using RASM_ Hjorth obtained from total frequency bands base on PCA and mRMR for subject 12.

DASM_DE, RASM_PSD, RASM_Hjorth, and RASM_DE)
obtained from the five rhythms (δ, θ, α, β, and γ) and the total
frequency bands. The LDA average accuracies (%) are 75.01,
84.83, 81.47, 68.50, 83.67, and 80.63 for the six features from
the total frequency bands, respectively. For SVM, the average
accuracies (%) are 74.83, 86.26, 81.02, 69.11, 85.49, and 81.92.
In the total frequency band, the optimal and worst accuracies
(%) of the LDA classifier are 86.26 and 69.11, respectively, and
for the SVM classifier 84.83 and 68.50, respectively. In the total
frequency band, the best and worst accuracy results appear in
DASM_DE and RASM_PSD, respectively.

Further, from the classification results of the five rhythms, the
LDA classifier has the lowest accuracy with 40.1% in δ rhythms
with RASM_Hjorth as the feature. The accuracy up to 87.6% of
the SVM classifier is the highest in the γ rhythms with RASM_DE
as the feature.

The method of one-factor analysis of variance is used to study
the statistical significance of the data, where the results of DE
and Hjorth are better than those of PSD, and the difference in
classifier performance between LDA and SVM is not apparent (p
> 0.05). There is a significant difference in classification accuracy
(p < 0.05) in diverse rhythms, and the accuracies of β and γ

bands are significantly better than those of the three rhythms.
The classification accuracy of δ, θ, and α is not totally different
(p= 0.04462).

The powerfulness and acceleration are semantically similar.
It is difficult to distinguish the difference based on subjective
feelings during the experiment, which is susceptible to lead
to confusion. Figure 7 revealed that the semantic similarity

recognition effect of automobile sound based on EEG signals is
better than that of subjective questionnaire recognition method.
Figure 7 shows the results of identifying the two types of
automobile sounds (namely, powerfulness and acceleration)
using SVM with DSAM_DE as the feature and the test
subjects in form of a questionnaire. It is obvious that
the accuracy of the questionnaire is lower than machine
learning recognition, and the average accuracy of SVM
is about 11% higher than the questionnaire. It is worth
explaining that the subjective recognition rate of the two other
pairwise comparisons (comfort vs. powerfulness and comfort
vs. acceleration) is both high, and the average accuracy rate is
about 90%, which makes it difficult to reflect the advantages of
EEG recognition.

Optimization of Classifier Accuracy
Firstly, the Kalman smoothing algorithm introduced in section
Feature Selection is used here to remove noise that is not
related to the desired signal, and the RASM_PSD features of
120 dimensions as inputs, SVM as a classifier. Second, the PCA
and mRMR are compared with RASM_Hjorth features of 360
dimensions as inputs and SVM as a classifier.

Table 4 compares the accuracy of the algorithm using
Kalman smoothing and without any smoothing algorithm
in different rhythms. The accuracy (%) of the unsmoothing
method and the Kalman smoothing method in five rhythms
is 49.02/68.8, 39.11/60.12, 41.78/62.1, 63.79/84.33, 64.27/85.67,
and 69.11/90.36. It is obvious that the accuracy of the
Kalman smoothing algorithm method is significantly better than
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unsmoothing (p < 0.05), and the accuracy of the Kalman
smoothing method is improved by 19.78% in δ rhythms and
21.4% in γ rhythms. The above results showed that feature
smoothing can effectively improve the recognition accuracy.

Figure 8 compares the impact of dimension reduction using
PCA and MRMR algorithms on model precision performance,
in which the dimension of the model is reduced from 350 to
50 dimensions with 50 intervals. It is clear that the usage of
the PCA algorithm, which can reduce the dimensionality, does
not significantly improve the accuracy. The accuracy rate drops
from 64.8 to 49.8% when the dimensionality reduced to 50,
and it reaches 62.5% at 250 dimension, which is lower than the
original 360 dimension of 1.7%. However, the mRMR algorithm
can not only reduce the dimensionality, but also improve the
accuracy of the classifier, the accuracy using themRMR algorithm
reached the local maximum (72.00%) at 50 dimension, which
is 7.2% higher than the original 360 dimension. Moreover, the
accuracy improved significantly when the dimension is 50, 100,
and 150, and the dimensionality reduction is not obvious when
the dimension is >150.

DISCUSSION

This study demonstrates the feasibility of EEG-based recognition
of the diversified sound quality of the automobile. Several
important issues are explored.

Some studies showed that the brain waves in a certain
rhythm band are indeed aroused (Lee et al., 2013; Lee and Lee,
2014) under the stimulation of automobile sounds. As shown in
Figure 6, there are frequency band differences in brain cognition
under the stimulation of different sounds, which is specifically
reflected in positive the correlation between EEG energy and
sound energy intensity. The recognition of automobile sound
quality is improved based on frequency band characteristics,
which can well reflect the laws of brain cognition. Some literature
has proved that the frontal area is closely related to human brain
cognition (Saxe, 2006; Shamay-Tsoory and Aharon-Peretz, 2007),
and there is a large proportion of energy in the frontal area under
musical stimulation (Sammler et al., 2010; Di and Wu, 2015).
Therefore, the results shown in Figure 6 of this study provide
further evidence that the cognition laws in the frontal portion of
the human brain can indeed be aroused by automobile, so as to
guide the selection of EEG features.

The DASM has better classification accuracy than RASM,
which is consistent with the conclusion of the literature
(Lin et al., 2010). Among the three basic features (PSD,
Hjorth, DE), DE has the best classification performance,
and it is most suitable for the recognition of automobile
sounds. Although the classification accuracy of DASM_DE
and DASM_Hjorth is close, the dimension of DASM_DE
is 1/3 of DASM_Hjorth. Among the five rhythms, the
classification accuracy of the β and γ rhythms is better than
the other three rhythms, which proves that the correlation
between different sound quality and different rhythms of
brain waves is also different. The classification accuracy of

the SVM model is slightly better than LDA, but SVM has
the advantages of a small number of training sets, fast
training speed, and high accuracy. The best accuracy of
motion classification (82.29% ± 3.06%) is obtained by SVM,
as demonstrated in the literature in both Lin et al. (2010)
and Hadjidimitriou and Hadjileontiadis (2012), which are both
similar to our study.

The comfortable sound is light and natural, and the sound
pressure level is small. On the contrary, the other pairs are
powerful, booming, and exciting, and the topographic map
corresponding to the comfort as shown in Figure 6 differs
significantly from the other two types. For experienced
automotive engineers, it is easy to distinguish the sound
characteristic difference between comfort and powerfulness (or
acceleration), but it is difficult to distinguish the difference
between the powerfulness and acceleration sounds. In
Figure 7, compared with recognizing sounds based on
subjective feelings, using the classification model has higher
recognition accuracy based on EEG characteristics. The
literature (Nakanishi et al., 2011) verified the difference
of EEG between three kinds of acoustic quality by using
PCA and FDA in a similar way to this study. In which, the
result proved that they can obtain the information that they
cannot obtain from questionnaires by EEG. It is possible
that the change of subjective emotion is provoked by the
stimulation of the automobile sounds. However, it is not yet
clear which emotion it is related to and it is the next step in
the research.

As discussed in section Feature Selection, the Kalman
smoothing algorithm can effectively improve the recognition
accuracy and confirm that feature smoothing plays an
important role in EEG-based recognition. In Figure 8, it is
obvious that the mRMR algorithm is an effective method
to optimize the accuracy of recognition, which retains the
original information, such as electrode channels and frequency
bands, while reducing the complexity of calculations. In the
literature (Zheng et al., 2017), the mRMR algorithm was
also used to achieve dimensionality reduction for improving
recognition accuracy of emotion, which improves the accuracy
by 14.41%.

The main contributions of this study to sound quality
recognition from EEG can be summarized as follows: (1) an
EEG signal acquisition test paradigm is designed based on
automobile sounds, which provide experimental guidance for
studying the correlation between automobile sounds and EEG
signals; (2) it was systematically described the processing process
of EEG data from three aspects: feature extraction, feature
selection, and pattern recognition and proves that the selection
of EEG features, the smoothing and dimensionality reduction
of data, and the reasonable design of classifier are crucial for
the recognition of sounds; (3) this study confirms that the
neural characteristics of the three types of automobile sounds
do exist, and the SVM can effectively identify the three types
of automobile sounds through the input of the DASM_DE
of γ rhythm; and (4) this research takes the brain–computer
interface technology as the breakthrough point and introduces
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the physiological features of EEG to recognize the automobile
sound quality innovatively.

CONCLUSIONS

The objective of this research is to investigate the laws of
brain cognition under the stimulation of diverse automobile
sounds and propose an effective method to identify diversified
automobile sounds. The results show that the frequency band
features can well reflect the laws of brain cognition, which can
effectively realize the recognition of automobile sound quality by
constructing asymmetric EEG feature indices and using machine
learning models. The DASM_DE of the γ rhythm is used as
the input, and the accuracy of automobile sounds reached up
to 86.26% by SVM. Also, it proves that the Kalman smoothing
and mRMR algorithm can not only improve the recognition
accuracy but also reduce the amount of model calculation. In
summary, this study proposes a new method of automobile
sound quality recognition from the field of brain–computer
interface technology.

Future study will include further evaluation of the specific
relationship between EEG signals and the inherent characteristics
of automobile sounds, proposed indices that can quantify
automobile sound quality, and the usage of deep learning
algorithms that automatically extract the potential features
of EEGs.
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