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The problem of stabilization of Lurie networked control systems (NCSs) is investigated in this paper. The network-induced delays
in NCSs are assumed to be time-varying and bounded. By utilizing a reciprocally convex technique to consider the relationship
between the network-induced delay and its varying interval, a new absolute stability condition is derived in terms of linear matrix
inequalities (LMIs). Based on the obtained condition, an improved cone complementary linearisation (CCL) iteration algorithm is
presented to design a state feedback controller. The effectiveness of the proposed method is verified by a numerical example.

1. Introduction

The so-called networked control system (NCS) is a spa-
tially distributed system, wherein the control loop is closed
through a real-time network. Compared with the traditional
point-to-point feedback control system, NCS provides many
advantages, such as low cost, flexibility of operation, simple
diagnosis and maintenance, and high reliability. Thus, NCSs
have a wide application in practical systems during the
last decades. In an NCS, network-induced delays including
those produced in the signal transmission from controller to
actuator and sensor to controller cannot be avoided while
exchanging data among devices connected to the shared
networkmedium, which inevitably lead to the degradation of
the system performance and even destabilize the system [1–
10].Therefore, it is very important to design a valid controller
to assure the stability of NCS within a maximum allowable
delay bound (MADB) [11].

In [8], some stability conditions under an assumption
that the networked-induced delay is less than the sampling
period were derived based on sample-date method. A new
model that the networked-induced delay is larger than the
sampling period was presented in [12], where some new
conditions are derived to stabilize an NCS. The similar idea

is also employed to investigate the 𝐻
∞

control problem in
[13]. In addition, by considering the relationship between
the network-induced delay and its varying interval, some
improved results for networked control system are proposed
in [14]. Nevertheless, all the above literatures are focused
on the linear NCSs, while the nonlinear phenomenon is
essential and universal in practical system. Therefore, it is
more significant to investigate nonlinear NCSs. Recently, a
special nonlinear NCS, Lurie NCS, has been investigated in
[15]. By retaining a useful term ignored in the derivative of
Lyapunov-Krasovskii in [15] and employing free-weighting
matrix method, some improved conditions are proposed
in [16]. However, redundant free-weighting matrices are
introduced in [16], which inevitably increase the amount of
computation.

To get a networked state feedback controller gain, a
parameter-tuning method was presented in [12], in which
some scalars are introduced. Nevertheless, it is very difficult
to find the optimum parameters. In [15], an inequality
approachwas proposed, which is simple and convenient since
there is no need to adjust any parameters, but the obtained
result is considerably conservative. Based on the cone com-
plementary linearisation (CCL) algorithm [17], Moon et al.
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proposed an LMI-based iterative algorithm to design a delay-
dependent state feedback stabilization controller, while the
stopping conditions for iteration are very strict [18]. With
a new stopping condition, an improved (CCL) algorithm is
proposed in [14]. However, a great amount of computation is
needed in the iteration process in [14, 16]. This motivates the
present study.

In this paper, a new absolute stability criterion for Lurie
NCSs is firstly established by employing a reciprocally convex
technique to consider the relationship between network-
induced delay and its upper bound. Then, with a new
iteration condition, a state feedback controller designmethod
is presented based on the CCL algorithm, which needs
less number of iterations in computing the MADB and the
corresponding controller. The effectiveness of the proposed
method is verified by a numerical example.

Notation. Throughout this paper, 𝑃 > 0 means that the
matrix 𝑃 is positive definite; 𝐼 represents an appropriately
dimensioned identity matrix, the superscripts “−1” and “𝑇”
stand for the inverse and transpose of a matrix, respectively,
𝑅
𝑛 denotes the 𝑛-dimensional Euclidean space,𝑅𝑛×𝑚 is the set

of all 𝑛 × 𝑚 real matrices, diag{⋅ ⋅ ⋅ } denotes a block-diagonal
matrix, and the symmetric terms in a symmetric matrix are
denoted by ∗; for example, [𝑋 𝑌

∗ 𝑍
] = [

𝑋 𝑌

𝑌
𝑇
𝑍
].

2. Problem Statement

Consider the following Lurie control system:

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑤 (𝑡) = −𝜑 (𝑡, 𝑧 (𝑡)) ,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛 is the state vector and 𝑢(𝑡) ∈ 𝑅

𝑚 is
the controlled input vector. 𝑧(𝑡) ∈ 𝑅

𝑝 is the measured
output.𝐴, 𝐵,𝐶, and𝐷 are constant matrices with appropriate
dimensions. 𝜑(𝑡, 𝑧(𝑡)) is a memoryless, nonlinear function
that is piecewise continuous in 𝑡, is globally Lipschitz in
𝑧(𝑡), 𝜑(𝑡, 0) = 0, and satisfies the following condition for all
𝑡 ≥ 0 and for all 𝑧(𝑡) ∈ 𝑅

𝑝:

𝜑
𝑇

(𝑡, 𝑧 (𝑡)) [𝜑 (𝑡, 𝑧 (𝑡)) − Θ𝑧 (𝑡)] ≤ 0, (2)

where Θ is a real diagonal matrix. The set of all functions
satisfying the above sector condition is denoted by 𝜑(⋅) ∈

𝐹[0, Θ].
For the convenience of investigation, the following

assumption is introduced [13–15].

Assumption 1. (i) The considered NCS consists of a time-
driven sensor, event-driven controller, and event-driven actu-
ator, which are all connected through a control network. The
calculated time-delay is viewed as a part of the network-
induced delay yielded from controller to actuator.

(ii) The controller always uses the most recent data and
discards the old data. When old data arrive at the controller,
it is treated as packet loss.

(iii)The real input realized through a zeroth order holding
in (1) is a piecewise constant function.

Under Assumption 1, following the similar technique
employed in [13–15], the closed-loop systemwithmemoryless
state feedback controller can be represented as

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝐾𝑥 (𝑡 − 𝜏
𝑘
(𝑡)) + 𝐷𝑤 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ (𝑡
0
− 𝜂, 𝑡
0
) ,

(3)

where 0 ≤ 𝜏
𝑘
(𝑡) ≤ 𝜂 and 𝜙(𝑡) is the initial condition function,

which is a continuous and differentiable vector-valued one.
In the sequel, we introduce two lemmas, which are

indispensable in deriving our main results.

Lemma 2 (see [19]). Let𝑀 = 𝑀
𝑇

> 0 be a constant real 𝑛× 𝑛

matrix, and suppose �̇� : [−ℎ, 0] → 𝑅
𝑛 with ℎ > 0 such that the

subsequent integration is well defined. Then, one has

−ℎ∫

𝑡

𝑡−ℎ

�̇�
𝑇

(𝑠)𝑀�̇� (𝑠) 𝑑𝑠 ≤ 𝜁
𝑇

(𝑡) [
−𝑀 𝑀

∗ −𝑀
]𝜁 (𝑡) , (4)

where 𝜁(𝑡) = col {𝑥(𝑡), 𝑥(𝑡 − ℎ)}.

Lemma 3 (see [20]). Let 𝐻
1
, 𝐻
2
, . . . , 𝐻

𝑁
: 𝑅
𝑛

→ 𝑅 be given
finite functions, and they have positive values for arbitrary
value of independent variable in an open subset 𝑀 of 𝑅𝑛. The
reciprocally convex combination of 𝐻

𝑖
(𝑖 = 1, 2, . . . , 𝑁) in 𝑀

satisfies

min
𝑁

∑

𝑖=1

1

𝜆
𝑖

𝐻
𝑖
(𝑡) =

𝑁

∑

𝑖=1

𝐻
𝑖
(𝑡) + max

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1, 𝑗 ̸= 𝑖

𝐺
𝑖,𝑗

(𝑡)

subject to {𝜆
𝑖
> 0,

𝑁

∑

𝑖=1

𝜆
𝑖
= 1, 𝐺

𝑖,𝑗
(𝑡) : 𝑅

𝑛

→ 𝑅,

𝐺
𝑗,𝑖

(𝑡) = 𝐺
𝑖,𝑗

(𝑡) , [
𝐻
𝑖
(𝑡) 𝐺

𝑖,𝑗
(𝑡)

𝐺
𝑖,𝑗

(𝑡) 𝐻
𝑗
(𝑡)

] ≥ 0} .

(5)

3. Main Results

In this section, we first discuss the case of Lurie NCS (3) with
a given gain 𝐾. By using Lyapunov-Krasovskii method, the
following stability criterion is obtained.

Theorem 4. Given a scalar 𝜂 > 0 and a controller gain
matrix 𝐾, the closed-loop system (3) with nonlinear function
𝜑(⋅) ∈ 𝐹[0, Θ] is absolutely stable if there exist matrices
𝑃 = 𝑃

𝑇

> 0, 𝑄 = 𝑄
𝑇

> 0, and 𝑍 = 𝑍
𝑇

> 0 and
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an appropriately dimensional matrix𝐺, such that the following
matrix inequalities hold:

Φ
1
=

[
[
[
[
[
[
[
[
[

[

Φ
11

Φ
12

𝐺 𝑃𝐷 − 𝐶
𝑇

Θ
𝑇

𝜂𝐴
𝑇

𝑍

∗ Φ
22

𝑍 − 𝐺 0 𝜂𝐾
𝑇

𝐵
𝑇

𝑍

∗ ∗ −𝑄 − 𝑍 0 0

∗ ∗ ∗ −2𝐼 𝜂𝐷
𝑇

𝑍

∗ ∗ ∗ ∗ −𝑍

]
]
]
]
]
]
]
]
]

]

< 0,

(6)

Φ
2
= [

𝑍 𝐺

∗ 𝑍
] > 0, (7)

where

Φ
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄 − 𝑍

Φ
12

= 𝑃𝐵𝐾 + 𝑍 − 𝐺

Φ
22

= − 2𝑍 + 𝐺 + 𝐺
𝑇

.

(8)

Proof. Choose a Lyapunov-Krasovskii functional candidate
to be

𝑉 (𝑥
𝑡
) = 𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + ∫

𝑡

𝑡−𝜂

𝑥
𝑇

(𝑠) 𝑄𝑥 (𝑠) 𝑑𝑠

+ 𝜂∫

0

−𝜂

∫

𝑡

𝑡+𝜃

�̇�
𝑇

(𝑠) 𝑍�̇� (𝑠) 𝑑𝑠 𝑑𝜃,

(9)

where 𝑃 = 𝑃
𝑇

> 0, 𝑄 = 𝑄
𝑇

> 0, and 𝑍 = 𝑍
𝑇

> 0 are to be
determined.

Calculating the derivative of 𝑉(𝑥
𝑡
) along the solutions of

system (3) yields

�̇� (𝑥
𝑡
) = 2𝑥

𝑇

(𝑡) 𝑃�̇� (𝑡) + 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜂)𝑄𝑥 (𝑡 − 𝜂)

+ 𝜂
2

�̇�
𝑇

(𝑡) 𝑍�̇� (𝑡) − 𝜂∫

𝑡

𝑡−𝜂

�̇�
𝑇

(𝑠) 𝑍�̇� (𝑠) 𝑑𝑠.

(10)

According to Lemmas 2 and 3, it can be deduced that

− 𝜂∫

𝑡

𝑡−𝜂

�̇�
𝑇

(𝑠) 𝑍�̇� (𝑠) 𝑑𝑠

= −𝜂∫

𝑡

𝑡−𝜏𝑘(𝑡)

�̇�
𝑇

(𝑠) 𝑍�̇� (𝑠) 𝑑𝑠

− 𝜂∫

𝑡−𝜏𝑘(𝑡)

𝑡−𝜂

�̇�
𝑇

(𝑠) 𝑍�̇� (𝑠) 𝑑𝑠

≤ −
𝜂

𝜏
𝑘
(𝑡)

[
𝑥 (𝑡)

𝑥 (𝑡 − 𝜏
𝑘
(𝑡))

]

𝑇

× [
𝑍 −𝑍

∗ 𝑍
][

𝑥 (𝑡)

𝑥 (𝑡 − 𝜏
𝑘
(𝑡))

]

−
𝜂

𝜂 − 𝜏
𝑘
(𝑡)

[
𝑥 (𝑡 − 𝜏

𝑘
(𝑡))

𝑥 (𝑡 − 𝜂)
]

𝑇

× [
𝑍 −𝑍

∗ 𝑍
][

𝑥 (𝑡 − 𝜏
𝑘
(𝑡))

𝑥 (𝑡 − 𝜂)
]

≤ −[
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

𝑘
(𝑡))

𝑥 (𝑡 − 𝜏
𝑘
(𝑡)) − 𝑥 (𝑡 − 𝜂)

]

𝑇

[
𝑍 𝐺

∗ 𝑍
]

× [
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏

𝑘
(𝑡))

𝑥 (𝑡 − 𝜏
𝑘
(𝑡)) − 𝑥 (𝑡 − 𝜂)

]

= 𝜉
𝑇

1
(𝑡) [

[

−𝑍 𝑍 − 𝐺 𝐺

∗ −2𝑍 + 𝐺 + 𝐺
𝑇

𝑍 − 𝐺

∗ ∗ −𝑍

]

]

𝜉
1
(𝑡)

(11)

for [ 𝑍 𝐺
∗ 𝑍

] > 0, where 𝜉
𝑇

1
(𝑡) = [𝑥(𝑡)

𝑇

𝑥(𝑡 − 𝜏
𝑘
(𝑡))
𝑇

𝑥(𝑡 − 𝜂)
𝑇].

From (2), we have

0 ≤ −2𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝑤
𝑇

(𝑡) Θ𝐶𝑥 (𝑡) . (12)

Adding the right sides of (12) into (10) and applying (11)
yield

�̇� (𝑥
𝑡
) ≤ 2𝑥

𝑇

(𝑡) 𝑃�̇� (𝑡) + 𝑥
𝑇

(𝑡) 𝑄𝑥 (𝑡) − 𝑥
𝑇

(𝑡 − 𝜂)𝑄𝑥 (𝑡 − 𝜂)

+ 𝜂
2

�̇�
𝑇

(𝑡) 𝑍�̇� (𝑡) − 𝜂∫

𝑡

𝑡−𝜂

�̇�
𝑇

(𝑠) 𝑍�̇� (𝑠) 𝑑𝑠

− 2𝑤
𝑇

(𝑡) 𝑤 (𝑡) − 2𝑤
𝑇

(𝑡) Θ𝐶𝑥 (𝑡)

≤ 𝜉
𝑇

2
(𝑡) [Φ

1
+ 𝜂
2

Φ
𝑇

2
𝑍Φ
2
] 𝜉
2
(𝑡) ,

(13)

where

Φ
1
=

[
[
[

[

Φ
11

Φ
12

𝐺 𝑃𝐷 − 𝐶
𝑇

Θ
𝑇

∗ Φ
22

𝑍 − 𝐺 0

∗ ∗ −𝑄 − 𝑍 0

∗ ∗ ∗ −2𝐼

]
]
]

]

Φ
2
= [𝐴 𝐵𝐾 0 𝐷]

𝜉
2
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑡 − 𝜏
𝑘
(𝑡)) 𝑥

𝑇

(𝑡 − 𝜂) 𝑤
𝑇

(𝑡)]
𝑇

.

(14)

Thus, if Φ
1
+ 𝜂
2

Φ
𝑇

2
𝑍Φ
2

< 0, which is equivalent to (6)
by virtue of Schur complements [21], �̇�(𝑥

𝑡
) < −𝜀‖𝑥(𝑡)‖

2 for a
sufficiently small 𝜀 > 0. Hence, system (3) is absolutely stable.
This completes the proof.

Remark 5. In the proof in [15], the term −∫
𝑡

𝑡−𝜂

�̇�
𝑇

(𝛼)𝑅�̇�(𝛼)𝑑𝛼

is enlarged to −∫
𝑡

𝑡−𝜏𝑘(𝑡)

�̇�
𝑇

(𝛼)𝑅�̇�(𝛼)𝑑𝛼. In contrast, in
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the proof of Theorem 4, −𝜂∫
𝑡

𝑡−𝜂

�̇�
𝑇

(𝛼)𝑍�̇�(𝛼)𝑑𝛼 is taken to be

−𝜂 ∫
𝑡

𝑡−𝜏𝑘(𝑡)

�̇�
𝑇

(𝑠)𝑍�̇�(𝑠)𝑑𝑠 − 𝜂 ∫
𝑡−𝜏𝑘(𝑡)

𝑡−𝜂

�̇�
𝑇

(𝑠)𝑍�̇�(𝑠)𝑑𝑠. Also, the
relationship between 𝜂/𝜏

𝑘
(𝑡) and 𝜂/(𝜂 − 𝜏

𝑘
(𝑡)) has been taken

into account by utilizing a reciprocally convex technique.
In addition, compared with the results obtained in [16], less
free-weighting matrices are introduced in Theorem 4, which
will reduce the amount of computation.

Next, Theorem 4 is extended to design a stabilization
controller 𝐾 for system (3).

Theorem 6. Given a scalar 𝜂 > 0, the closed-loop system (3)
with nonlinear function 𝜑(⋅) ∈ 𝐹[0, Θ] is absolutely stable if
there existmatrices𝐿 = 𝐿

𝑇

> 0,𝑊 = 𝑊
𝑇

> 0, and𝑅 = 𝑅
𝑇

> 0

and any appropriately dimensionalmatrices𝐺 and𝑉, such that
the following matrix inequalities hold:

Ξ
1
=

[
[
[
[
[

[

Ξ
11

Ξ
12

𝑆 𝐷 − 𝐿𝐶
𝑇

Θ
𝑇

𝜂𝐿𝐴
𝑇

∗ Ξ
22

𝑅 − 𝑆 0 𝜂𝑉
𝑇

𝐵
𝑇

∗ ∗ −𝑊 − 𝑅 0 0

∗ ∗ ∗ −2𝐼 𝜂𝐷
𝑇

∗ ∗ ∗ ∗ −𝐿𝑅
−1

𝐿

]
]
]
]
]

]

< 0,

(15)

Ξ
2
= [

𝑅 𝑆

∗ 𝑅
] > 0, (16)

where
Ξ
11

= 𝐴𝐿 + 𝐿𝐴
𝑇

+ 𝑊 − 𝑅,

Ξ
12

= 𝐵𝑉 + 𝑅 − 𝑆,

Ξ
22

= − 2𝑅 + 𝑆 + 𝑆
𝑇

.

(17)

Moreover, a stabilizing controller gain is given by 𝐾 = 𝑉𝐿
−1.

Proof. Pre- and postmultiply Φ
1
in (6) by diag{𝑃−1, 𝑃−1, 𝑃−1,

𝐼, 𝑍
−1

} and pre- and postmultiplyΦ
2
in (7) by diag{𝑃−1, 𝑃−1},

respectively, andmake the following changes to the variables:

𝐿 := 𝑃
−1

, 𝑅 := 𝑃
−1

𝑍𝑃
−1

, 𝑉 := 𝐾𝑃
−1

,

𝑊 := 𝑃
−1

𝑄𝑃
−1

, 𝑆 := 𝑃
−1

𝐺𝑃
−1

.

(18)

Matrix inequalities (15) and (16) are derived. This completes
the proof.

Note that the condition in Theorem 6 cannot be imple-
mented directly by utilizing numerical software due to the
existence of the nonlinear term 𝐿𝑅

−1

𝐿 in (15). To get a
networked state feedback controller gain, the following CCL
algorithm is employed to solve this nonconvex problem.

Define a new variable𝑈 such that𝑈 ≤ 𝐿𝑅
−1

𝐿, and replace
the condition (15) with

Ξ
1
=

[
[
[
[
[

[

Ξ
11

Ξ
12

𝑆 𝐷 − 𝐿𝐶
𝑇

Θ
𝑇

𝜂𝐿𝐴
𝑇

∗ Ξ
22

𝑅 − 𝑆 0 𝜂𝑉
𝑇

𝐵
𝑇

∗ ∗ −𝑊 − 𝑅 0 0

∗ ∗ ∗ −2𝐼 𝜂𝐷
𝑇

∗ ∗ ∗ ∗ −𝑈

]
]
]
]
]

]

< 0, (19)

𝑈 ≤ 𝐿𝑅
−1

𝐿. (20)

Inequality (20) is equivalent to𝑈
−1

−𝐿
−1

𝑅𝐿
−1

≥ 0, which can
be expressed as

[
𝑈
−1

𝐿
−1

𝐿
−1

𝑅
−1

] ≥ 0 (21)

by virtue of Schur complements. Thus, by introducing new
variables 𝑃,𝐻,𝑍, the original condition (15) is represented as
(19) and

[
𝐻 𝑃

𝑃 𝑍
] ≥ 0, 𝐻 = 𝑈

−1

, 𝑃 = 𝐿
−1

, 𝑍 = 𝑅
−1

.

(22)

Then, this nonconvex problem is converted to the following
LMI-based nonlinear minimization problem:

Minimize tr{𝐿𝑃 + 𝑈𝐻 + 𝑅𝑍}

subject to (16), (19) and

[
𝐻 𝑃

𝑃 𝑍
] ≥ 0, [

𝐿 𝐼

𝐼 𝑃
] ≥ 0, [

𝑈 𝐼

𝐼 𝐻
] ≥ 0,

[
𝑅 𝐼

𝐼 𝑍
] ≥ 0.

(23)

Then, the following algorithm is presented to get themax-
imum 𝜂max.

Algorithm 7.

Step 1. Choose a sufficiently small initial 𝜂 > 0 such that there
exists a feasible solution to (16), (19), and (23). Set 𝜂max = 𝜂.

Step 2. Find a feasible set (𝑃
0
, 𝐿
0
,𝑊
0
, 𝑆
0
, 𝑍
0
, 𝑅
0
, 𝑈
0
, 𝐻
0
, 𝑉)

satisfying (16), (19), and (23).

Step 3. Solve the following LMI problem for the variables
(𝑃, 𝐿,𝑊, 𝑆, 𝑍, 𝑅, 𝑈,𝐻,𝑉):

Minimize tr{𝐿𝑃
𝑘
+ 𝐿
𝑘
𝑃 + 𝑈𝐻

𝑘
+ 𝑈
𝑘
𝐻 + 𝑅𝑍

𝑘
+ 𝑅
𝑘
𝑍}

subject to (16), (19) and (23).

Set 𝑃
𝑘+1

= 𝐿
−1, 𝐿
𝑘+1

= 𝐿, 𝑈
𝑘+1

= 𝑈, 𝐻
𝑘+1

= 𝑈
−1, 𝑅
𝑘+1

= 𝑅,
and 𝑍

𝑘+1
= 𝑅
−1.

Step 4. If LMIs (6) and (7) are feasible with a given𝐾 derived
in Step 3 for the variables (𝑃,𝑄, 𝑍, 𝐺), then set 𝜂max = 𝜂 and
return to Step 2 after increasing 𝜂 to some extent. If LMIs (6)
and (7) are infeasible within a specified number of iterations,
then exit. Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 3.

Remark 8. In [14, 16], the iteration condition is 𝑃
𝑘+1

= 𝑃,
𝐿
𝑘+1

= 𝐿,𝑈
𝑘+1

= 𝑈,𝐻
𝑘+1

= 𝐻,𝑅
𝑘+1

= 𝑅, and𝑍
𝑘+1

= 𝑍. Note
that step 3 in Algorithm 7 is different from those in [14, 16].
Considering that 𝐻 = 𝑈

−1, 𝑃 = 𝐿
−1, 𝑍 = 𝑅

−1, we replace
the above iteration condition with 𝑃

𝑘+1
= 𝐿
−1, 𝐿
𝑘+1

= 𝐿,
𝑈
𝑘+1

= 𝑈, 𝐻
𝑘+1

= 𝑈
−1, 𝑅
𝑘+1

= 𝑅, and 𝑍
𝑘+1

= 𝑅
−1. The

new iteration condition will help in reducing the iteration
number and the amount of computations, which is verified
by the numerical example in the next section.
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4. Numerical Example

In this section, we give the following numerical example to
illustrate the effectiveness of the proposed method.

Example 1. Consider system (1) with

𝐴 = [
0 1

1 −2
] , 𝐵 = [

1

0
] , 𝐶 = [1 −0.5] ,

𝐷 = [
0

1
] , 𝜑 (⋅) ∈ 𝐹 [0, 1] .

(24)

This example has been discussed in [15, 16]. It is reported
that the closed-loop system (3) is stable for 𝜂 = 1.2841 with
𝐾 = [−0.5324 − 0.2419] in [15] and 𝜂 = 1.5250 with 𝐾 =

[−0.5347 − 0.2469] after 84 iterations in [16]. By applying
Algorithm 7, the MADB is 𝜂 = 1.5279 with𝐾 = [−0.5296 −

0.2532] after 39 iterations. Clearly, the method proposed in
this paper is better than those in [15, 16].

5. Conclusion

This paper has investigated the problem of absolute stability
and stabilization of Lurie NCSs. A new absolute stability
condition of networked closed-loop system with a given
controller gainmatrix has been first established by employing
a reciprocally convex technique to consider the relationship
between the network-induced delay and its varying interval.
Then, based on the resulting condition, a networked state
feedback controller has been proposed by employing an
improved CCL algorithm with a new iteration condition.
Finally, a numerical example has been given to show the
improvement of the proposed method.
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