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Recent improvements in the mass accuracy and resolution of mass spectrometers have led to renewed interest in label-free
quantification using data from the primary mass spectrum (MS1) acquired from data-dependent proteomics experiments. The
capacity for higher specificity quantification of peptides from samples enriched for proteins of biological interest offers distinct
advantages for hypothesis generating experiments relative to immunoassay detection methods or prespecified peptide ions
measured by multiple reaction monitoring (MRM) approaches. Here we describe an evaluation of different methods to post-
process peptide level quantification information to support protein level inference. We characterize the methods by examining
their ability to recover a known dilution of a standard protein in background matrices of varying complexity. Additionally, the
MS1 quantification results are compared to a standard, targeted, MRM approach on the same samples under equivalent instrument
conditions.We show the existence ofmultiple peptideswithMS1 quantification sensitivity similar to the bestMRMpeptides for each
of the background matrices studied. Based on these results we provide recommendations on preferred approaches to leveraging
quantitative measurements of multiple peptides to improve protein level inference.

1. Introduction

The ability to identify and quantify hundreds or even thou-
sands of peptides in a single data dependent LC/MS analysis
of a proteolytic digest from a complex mixture such as serum
or plasma established mass spectrometry-based proteomics
as a tool of choice for biomarker discovery research. These
are the ultimate hypothesis-neutral experiments that have
the promise of finding solutions for major gaps in drug
discovery and other biological inquiries. In the past sev-
eral years, remarkable advances have been made to better
support these efforts on multiple fronts, including sample
preparation, instrumentation, and data processing. Proteins
and peptides that are part of specific biological pathways tend
to exist in low nanomolar or lower concentrations, while the
abundant proteins in human serum reach concentrations in

the hundreds of micromolar range. For example, a typical
concentration of apolipoprotein A1 in human serum is
around 30 𝜇M while that of ghrelin is around 100 pM. This
five-plus log difference in dynamic range is well beyond the
current capabilities of analytical mass spectrometrymethods.
In order to measure peptides of such low abundance, enrich-
ment of the target analyte using antibodies or other methods
before analysis by mass spectrometry is required.

When mass spectrometric measurements require prior
enrichment, the advantage mass spectrometry provides over
immunoassay-based detection methods might be in ques-
tion. We propose that for hypothesis generation applications,
there are multiple reasons to employ a broader proteomics
approach. Immunoassay-based detection methods cannot
distinguish many post-translational modifications or can
be completely blind to any unexpected modifications on
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the target proteins or peptides, whereas a nonbiased mass
spectrometry-based proteomics approach with prior enrich-
ment has the potential to detect and quantify multiple differ-
ent forms of the target proteins and their interacting partners.
The ability to detect and quantify multiple different forms
of the target protein(s) is particularly important in the early
stages of biomarker hypothesis generation and drug devel-
opment (e.g., chemiproteomics, detailed profiling of post-
translational modifications or proteolytic cleavage events
using immunoprecipitation mass spectrometry, quantitative
profiling of protein-protein interactions, and quantitative
analysis of enriched classes of proteins). While methods for
some of the known modifications or interacting proteins can
be incorporated into multiple reaction monitoring (MRM)
based methods, these methods will be blind to unexpected
modifications or interacting proteins without prior specifica-
tion. In some cases, it is also practically impossible to pre-
specify MRM transitions for a large set of known modifica-
tions. Combinations of acetylation, methylation, phosphory-
lation, ubiquitination, and citrullination on histone proteins
is a good example that is practically impossible to approach
using MRMmethods but has been an approachable problem
with a targeted proteomics method.

Label-free quantification of MS1 spectra has the most
flexibility among the different mass spectrometry based
proteomics methods that have been developed. In this
method, data-dependent MS2 spectra provide identification
of peptides while the peak height or area of the extracted
ion chromatogram (XIC) of the MS1 for the peptide parent
ion provides quantitative information. Label-free MS1 quan-
tification was originally described by Higgs et al. [1] and
numerous variations of the approach have subsequently been
described, including MSQuant [2], MaxQuant [3], MASIC
[4], Census [5], SpectrumMill [6], SuperHirn [7], and Skyline
[8]. Spectral counting methods to quantify relative protein
levels have also been described but suffer from a small
quantitative range, are not able to quantify at the peptide level,
and while easier to implement, are not generally competitive
with the MS1 quantification methods [9]. Several of the MS1
quantification methods, including the method described in
this report, are also compatible with stable isotope labeling by
amino acids in cell culture (SILAC) for experimental designs
that require a labeled internal standard to reduce variability
or metabolic (i.e., pulse chase) experiments [10]. Isobaric
labeling approaches, like iTRAQ, where quantification is
done using MS2 fragment intensities have been used for the
applications we describe though their cost, complexity, and
lack of apparent advantages relative to MS1 quantification in
our experience and in comparative studies have led many
groups to focus on MS1 quantification [11, 12].

When protein samples are digested with a protease and
subject to a proteomics mass spectrometric analysis, most
proteins generate multiple peptides, and the question of how
best to combine the information from multiple peptides to
infer changes in concentration at the protein level between
different treatment groups naturally arises. An arithmetic
average of peak areas will be dominated by high intensity
peptides, whereas a geometric mean of the peak areas (or
average value of the log of the peak intensities) will result

in treating high intensity peptides (often with high signal to
noise ratio) and low intensity peptides (often with low signal
to noise ratio) more equally. Chang et al. have proposed a
linear mixed model based approach as a principled approach
to modeling multiple peptide measurements from a protein
[13], but other approaches need to be explored to best utilize
the information-rich proteomics data. For example, evenwith
prior enrichment of the target protein(s), most samples carry
different degrees of nonspecific proteins or contamination.
Under these circumstances, it is common to find peptides of
interest that are heavily contaminated by interferences and,
thus, providemisleading information.Therefore, anymethod
of quantification at the protein level from the digested pep-
tides needs to systematically address how to handle signals of
varying quality from the corresponding peptides.

The applications of interest motivating this work include
discovery mode and hypothesis generation experiments in
which some form of sample preparation is done in order
to enrich for the protein(s) of interest. This enrichment
step is critical to identifying and quantifying the lower
concentration proteins that are generally of most biolog-
ical interest. Specific examples of the applications we are
addressing include: characterization of post-translational
modifications, in vivo proteolytic cleavage events, and co-
precipitating proteins using immunoprecipitation; chemipro-
teomics applications to identify which proteins specifically
interact with small molecules; and enrichment of specific
classes of proteins (e.g., phospho tyrosine, acetylated, etc.) for
profiling changes tied to the biology under investigation.

Clearly, inference should always be done at the peptide
level in order to screen for biological events specific to
a peptide (e.g., post-translational modification). However,
how to best combine information from multiple peptide
measurements from a protein in order to improve protein-
level inference remains an open question. In this report
we propose and characterize several methods to summa-
rize quantitative peptide information for inference at the
protein level. We characterize these methods using serial
dilutions of a standard protein digest in backgroundmatrices
of varying complexity. Additionally, the relative strengths
and weaknesses of discovery-mode MS1 quantification are
compared to MRMs on the same sample set and similar
analytical systems. From these analyses we propose a rel-
atively simple yet powerful method for mass spectrometry
proteomics quantification that can be implemented in a
relatively straightforward manner.

2. Materials and Methods

2.1. Materials. Six bovine protein tryptic digest exponen-
tial mix (PTD/00001/64), which is a mixture of tryptic
digests from six bovine proteins in descending log con-
centrations (“sixlog mix”) and yeast enolase tryptic digest
(PTD/00001/46) were purchased from Bruker Michrom.The
Universal Proteomics Standard Set (UPS1) was purchased
from Sigma Aldrich. Modified sequencing-grade trypsin was
purchased from Promega. One milliliter ampoules of triflu-
oroacetic acid (TFA) were purchased from Thermo Pierce.
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Water, 0.1% formic acid in water, and acetonitrile (ACN) was
purchased from Thermo Fisher, optima grade. Ammonium
bicarbonate, sodium carbonate, urea, iodoethanol, and tri-
ethylphosphine were analytical grade. The HeLa cell lysate
was produced in house from suspension culture of the cells.

2.2. Sample Preparation. One vial of yeast enolase digest
containing 500 picomoles was dissolved in 33 𝜇L of 50%
acetonitrile, 0.1% trifluoroacetic acid to make a stock solu-
tion of 15 picomoles per microliter concentration. For each
backgroundmatrix tested, the yeast enolase stock was diluted
tenfold in the background matrix by adding 5 𝜇L of the
enolase stock solution to 45𝜇L of the background solution
to make the dilution stock, which was subsequently used to
generate dilution series in eachmatrix bymaking 3-fold serial
dilutions in each matrix.

2.3. Preparation of Background Matrices. For sixlog mix, one
vial was dissolved in 50𝜇L of 50%ACN, 0.1% TFA, and 20 𝜇L
of this solution was diluted with 1980 𝜇L of 0.1% TFA in water
to yield a dilutionmatrix solution containing 100 femtomoles
of total protein per 𝜇L.

For the UPS1 matrix, one vial with 5 picomoles each
of 48 human proteins with a total protein content of 6𝜇g
was reconstituted with 10 𝜇L of 8M urea, 50mM sodium
carbonate, 1% iodoethanol, and 0.25% triethylphosphine.The
solutionwas incubated at 37∘C for 1 hour and taken to dryness
in a vacuum concentrator. The dried contents were dissolved
initially in 10𝜇L of 50mM ammonium bicarbonate (pH 9)
before an additional 87 𝜇L of 50mM ammonium bicarbonate
were added to dilute the urea concentration before addition
of trypsin (60 ng of modified Promega trypsin in 3 𝜇L of
50mM ammonium bicarbonate) and incubation at 37∘C for
48 hrs. The digested sample was concentrated and desalted
by passing through 3 Ziptips (Millipore) in series, with 3
passages each time. Each tip was washed ten times with
200𝜇L of 0.1% TFA in water before eluting the peptides with
10 𝜇L of 50% acetonitrile by slowly aspirating and dispensing
5 times. The eluted materials were combined and diluted to
1mL with 0.1% TFA in water.

For preparation of theHeLa cell lysatematrix, 10 𝜇L of the
cell lysate with total protein concentration of 6mg/mL was
mixed with 90𝜇L of 8M urea, 50mM sodium carbonate (pH
11), 1% iodoethanol, 0.25% triethylphosphine, incubated at
37∘C for 1 hour and dried in a vacuum concentrator.The dried
sample was first dissolved in 100 𝜇L of 50mM ammonium
bicarbonate before addition of 870𝜇L of 50mM ammonium
bicarbonate and 30 uL of trypsin (600 ng Trypsin Gold from
Promega in the same buffer) and incubation at 37∘C for
48 hrs.The sample was concentrated and desalted with a Sep-
Pak tC18 Plus Light cartridge (Waters, Cat. No.WAT036805).
The sample was passed over a prewetted cartridge twice with
a 1mL all-plastic syringe, washed two times with 1mL of
0.1% TFA in water, then eluted from the cartridge with three
100 𝜇L volumes of 50% acetonitrile, 0.1% TFA in water. The
eluted material was dried and redissolved in 50𝜇L of 50%
acetonitrile, 0.1% TFA in water and diluted to 2mL with 0.1%
TFA in water.

2.4. Data-Dependent LC/MS. A Thermo Easy nLC capillary
HPLC system was used in line with a Thermo LTQ-Orbitrap
Velos mass spectrometer for data acquisition. Solvent A was
0.1% formic acid in water and solvent B was 0.1% formic acid
in acetonitrile. A Picofrit Capillary column of 75𝜇m I.D. ×
7 cm with a 15 𝜇m spray tip packed with YMC ODSgel was
conditioned for 10 minutes at 1 𝜇L/min with 100% solvent
A before 5 𝜇L of the sample was injected and washed for
15 minutes at 1 𝜇L/min with 100% solvent A, followed by
a gradient of 0 to 45% solvent B over 33 minutes and 2
minutes of 80% solvent B at a flow rate of 250 nL/min. The
outlet of the column was placed inside a modified Michrom
ADVANCE source coupled to the mass spectrometer’s inlet
with an ESI voltage of +1200 volts. Data acquisition consisted
of one parent MS scan in the orbitrap from 350 to 2000m/z
with 60,000 resolution and 6 data-dependent MS/MS scans
collected in the LTQ ion trap at 35 relative collision energy
units. A charge state of +1 was rejected in the parent scan for
analysis.

2.5. Multiple Reaction Monitoring. Multiple reaction mon-
itoring experiments of yeast enolase tryptic peptides were
performed using a TSQ Vantage triple quadrupole mass
spectrometer (Thermo Scientific) coupled to an Easy-nLCII
capillary HPLC (Thermo Scientific). Tryptic digest of the
yeast enolase standard was utilized for selection of the most
intense and reproducible transitions through a few rounds of
injections among the collection of transitions predicted from
a theoretical digest of the protein, allowing one missed cleav-
age, using Pinpoint software (Thermo Scientific). Collision
energies were optimized for each transition, resulting in a
methodmonitoring 16 peptides using a total of 54 transitions.
Analytical method details as well as the MS/MS transitions
monitored are contained in the Supplementary Tables avail-
able online at http://dx.doi.org/10.1155/2013/674282.

2.6. Peptide Identification. Peptide identification from the
data-dependent LC/MS experiment was conducted using a
statistical wrapper to post-process the outputs of theOMSSA
[14],X! Tandem [15], and Protein Pilot [16] software programs
with a decoy database strategy of reversed protein sequences
to limit false positive identifications. The approach is similar
to the so-called “percolator” algorithm originally described
by Käll et al. [17, 18], in which we used a random forest model
to construct a classifier for correct peptide identifications
using the search engine outputs in combination with other
features such as delta mass, charge state, and so forth. Peptide
identifications with 𝑞-values (false discovery rate estimates)
less than 0.10 in a sample were retained for further analysis.
Protein sequences from the UniProt Bovidae [19] family were
combined with the sequences for yeast enolase and the 48
UPS1 proteins for all identifications. To maximize the cover-
age of proteins identified in a study, peptide identifications
from all samples in the study were combined to create a
list of peptides to quantify in each sample regardless of
whether the particular peptide was identified in the sample.
The rationale for this approach is that due to the random
nature of triggering the data-dependent MS/MS scan, many
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peptides with low abundance fail to be identified in any given
sample even though their concentrations are above the lowest
detectable level in MS1, resulting in identification of the
peptide in somebut not all samples. By utilizing the combined
list of peptides for quantification, a confident identification
only needs to be made once out of any sample in order
for the associated peptide ion current to be quantified in
all study samples. This method significantly increased the
number of quantifiable peptides and eliminated the problem
of missing values commonly encountered in label-free MS1
quantification methods.

3. Results

3.1. Discovery Profiling—Quantification Algorithm. Relative
quantification was accomplished by integrating the peak area
of extracted ion chromatograms (XICs) from the primary
(MS1) mass spectra. To fully leverage the specificity in high
resolution MS data, XICs were constructed by summing
together the ion current ±4 ppm around individual theo-
retical isotope peaks. In order to balance the increase in
sensitivity by summing ion current from multiple isotopes
with the chances for nonspecific interference by including
more isotopes, only the ion currents from the minimum
number of consecutive isotope peaks that gave at least 75% of
the total ion current from the isotope profile were included.
Selection of these isotope peaks was made by calculating the
theoretical isotope distribution from the identified peptide
sequence. Alternatively, in the absence of an identified pep-
tide sequence or for computational speed considerations, we
provide heuristics derived by surveying the computed isotope
envelop of 32,100 peptides (Supplementary Table) that can
be used to select the isotopes to include for XIC generation
based only on themeasuredmass of the peptide. For example,
a peptide with a monoisotopic molecular weight of 3700Da
would have an XIC generated by summing the ion current
in 4 ppm m/z windows around the 13C isotope and the next
heavier three isotopes.

Quantification of a protein began by assembling a list of
all peptide ions identified in a study and the corresponding
sample(s) in which the identifications were made. A peptide
ion is defined by an amino acid sequence, charge state, and
modifications. Since there can be multiple identifications
of the same peptide ion within a sample (e.g., peptide
elutes again at a high organic phase of the gradient), the
retention time associated with the identification having the
most intense MS/MS spectrum (as defined by the base peak
in the MS/MS spectrum) was recorded. An extracted ion
chromatogram for the peptide ion was then constructed
and the centroid in a −0.25min to +0.5min retention time
window around theMS/MS identification retention time was
recorded for the peptide ion in the sample. The median of
all centroid retention times for all samples containing the
peptide ion identification was retained as the time at which to
integrate the peptide ion. XICs around this median retention
time are then generated and integrated for each sample in
the study using the median retention time ±0.5 minutes

irrespective of whether the particular peptide was identi-
fied in an individual sample. This method of consistently
defined numerical integration of all peptides in each sample
addressed one important frequently-encountered problem in
MS1 quantification: missing data due to samples not contain-
ing an identification of a peptide. A local linear estimate for
the baseline XIC ion current can optionally be subtracted
prior to integration though we find this is generally not
necessary for high resolution MS data. Peak picking of the
XIC was not done, but rather, a straightforward numerical
integration (trapezoid rule) was used to estimate the peak
area within a defined retention time window. This approach
requires reproducible chromatography so that the XIC peak
is contained within the integrated retention time zone. For
the results presented here, the nano-LC chromatography met
this requirement. For cases when the chromatography is less
reproducible, we have found chromatographic alignment as
described in Higgs et al. has worked well as a pre-processing
step to XIC integration [1].

3.2. Discovery Profiling—Protein Level Inference Model-Based
(Concordant) Selection of Peptides. Three different methods
for combining peptide level quantification information about
a protein were evaluated: overall average of all peptide ions,
average of model based selection of peptides, and the average
of optimal dilution peptide selection. The overall average
method simply averages the log

2
transformed peptide ion

peak areas for each peptide ion attributed to a protein.
This method is simple but is adversely affected by including
problematic peptide ions in the overall average. The model
based peptide selection method accounts for the fact that not
all peptide ions from a protein are informative for protein-
level quantification. For example, peptides that are corrupted
by background matrix, false positive identifications, or pep-
tides from a low abundance post-translational modification
will be discordant relative to peptides that do not suffer
from interference or concentration limitations. The aim of
model based peptide selection is to identify the largest set
of concordant peptides from a protein and then average the
log
2
transformed peak areas from those selected peptide ions.

Model based selection of peptides is based on fitting a simple
linear model of the form

log
2

(AUC
𝑖𝑗
) = 𝜇 + 𝑃

𝑖
+ 𝑆
𝑗
+ 𝜀
𝑖𝑗

(1)

in order to decompose the observed peptide ion peak areas
for a protein into a peptide ion term 𝑃

𝑖
and a sample term 𝑆

𝑗
,

where AUC
𝑖𝑗
is the peptide ion peak area for the 𝑖th peptide

ion of the protein in the 𝑗th sample, 𝜇 is the overall mean
(intercept), 𝑃

𝑖
is the effect attributed to the 𝑖th peptide ion

(reflects different ionization efficiencies of peptides), 𝑆
𝑗
is

the effect attributed to the 𝑗th sample (reflects varying levels
of the protein in the study samples), and 𝑒

𝑖𝑗
is the residual

error. This additive model on log
2

transformed peak areas is
motivated from the assumption that electrospray XIC peak
areas are proportional to the product of a peptide ion specific
constant and sample concentration of the peptide (AUC

𝑖𝑗
∼

𝑃
𝑖
𝑆
𝑗
). Peptide ions that are discordant with this linear model

are candidates for exclusion (or down weighting) when
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estimating overall relative protein abundance from individual
peptides. Discordance of peptide ions was estimated by
examining the residuals from the regression described in
(1). Discordant peptide ions will have residuals (𝑒

𝑖.
) that

have higher variance than the typical (median) peptide ion
used in the regression. The proposed model based selection
procedure is an iterative procedure described in the following
4 steps.

(1) For all peptide ions remaining in the data set for a
protein, fit a linear model

log
2

(AUC
𝑖𝑗
) = 𝜇 + 𝑃

𝑖
+ 𝑆
𝑗
+ 𝜀
𝑖𝑗
. (2)

(2) Calculate the sample variance of the residuals for each
peptide ion: Var(𝑒

𝑖.
).

(3) Using a standard chi-squared test, compare the pep-
tide ionwith the highest residual variance to twice the
median of the residual variance of all peptide ions fit
in the model.

(4) If the test in step (3) is significant (𝑃 < 0.05), then
remove the highest residual variance peptide ion from
the data set and go to step (1), otherwise go to step (5).

(5) Repeat steps (1)–(4) for each protein identified in the
study.

Additionally, a minimum and maximum number of
peptide ions retained from this algorithm can be enforced,
irrespective of the chi-squared test, by amending the stopping
rule in step (4). For the work presented here we have adopted
a simple, hard weighting, scheme where individual peptides
are either retained or not for averaging (0/1 weighting). A
maximum of the 20 most concordant peptide ions were
retained for averaging in lieu of a more complex weighting
scheme for peptides meeting the chi-squared test criterion.
It is a natural extension of this work to perform a weighted
average of the individual quantitative values for a peptide but
that was not pursued at this time.

3.3. Identification of Dilution Optimal Peptides. While the
model based peptide ion selection is intended to identify
the largest subset of concordant peptide ions from a protein,
we were also interested in a systematic method to assess the
existence of peptide ions that were optimal given a serial
dilution. To accomplish this, we used a similar regression
technique to identify a dilution optimal set of peptide ions. A
regression model of the form log

2

(AUC
𝑗
) = 𝜇 + log

2

(𝐶
𝑗
) +

𝑒
𝑗
was fit for each peptide ion associated with a protein,

where AUC
𝑗
is the peptide ion peak area for the 𝑗th sample,

𝜇 is the intercept, 𝐶
𝑗
is the amount of analyte spiked into

the sample, and 𝑒
𝑗
is the residual error. Peptide ions with

a high coefficient of determination (𝑅2) value were selected
as being dilution optimal. For the results presented here,
peptide ions with 𝑅2 values greater than 0.85 were defined
as dilution optimal. If more than 20 peptide ions resulted in
𝑅
2

> 0.85 then the peptide ions corresponding to the twenty
highest 𝑅2 measures were retained. All statistical analyses

were conducted in the 𝑅 statistical computing environment
[20].

As a first step in evaluating the proposedmethods, fifteen
replicate injections of the sixlog mix were evaluated on an
LTQ-Orbi/Velos and an LTQ-Orbi/Elite mass spectrometer.
Coefficients of variation (CV) valueswere estimated using the
log
2
transformed peak areas using the identity

CV (%) = 100√𝑒(ln(2)𝜎)2 − 1, (3)

where 𝜎̂ is the sample standard deviation calculated from
the 15 replicates. The median CV of all detected peptide ions
for a protein along with the CV from taking a mean of all
peptide ion log

2
AUCs and a mean of all model selected

(concordant) peptide ions indicate that the model based
selection of peptide results in substantially lower CVs for
the proteins in the sixlog mix (Table 1). This reduction in
technical variation is significant with CVs generally twofold
lower for the model selected peptides and not surprising
given the nature of the iterative method to identify the most
concordant (least variable) peptides.

In order to characterize the relative quantification per-
formance in different background matrices, fourteen 3x
dilutions of yeast enolase from 500 fmoles down to 313.6
zmoles were spiked into matrices consisting of TFA/water,
sixlog mix, UPS1 proteomics standard, and a trypsin digest of
a HeLa cell lysate (see Supplementary Tables for the enolase
concentrations used). These matrices represent progressively
more complex backgrounds that can interfere with or sup-
press the spiked enolase (Figure 1). The dilution curves for
TFA/water using all peptides and using the model selected
(concordant) peptides indicate dilution curves with slopes
steeper than the spiked concentrations (Figure 2).This is pre-
sumably due to nonspecific binding (losses) of the peptides
due to the lack of any other proteins in the matrix.Themodel
selected (concordant) peptide average was not substantially
different than just using the mean of all peptides. In order to
determine if therewere any peptides detected in the study that
did not suffer from the nonspecific binding in the TFA/water
matrix, we used the dilution optimal model selection to
identify twenty peptides that fit the known dilution series
with an 𝑅2 greater than 0.85 (Figure 2, blue line). Presumably
these peptides that are consistent with the known dilution
of yeast enolase are more hydrophilic and less likely to bind
to plastic and other surfaces with this simple background
matrix. Indeed that was what was observed as the highest 𝑅2
peptides were associated with the most hydrophilic peptides
detected in the study (Supplementary Figure).

Next, a backgroundmatrix derived from a 500 fmol max-
imum concentration of the sixlog mixture was used for the
yeast enolase dilution. In addition to the discoverymodeMS1
quantification, these samples were also analyzed in an MRM
mode to better understand the relative performance between
these approaches (Figure 3). The average of the model based
(concordant) peptides was not substantially different than
just taking the average of all peptides, with quantification fea-
sible from approximately 1 fmole and higher. However, using
the dilution optimal model to screen for peptides that follow
the known dilutions, we found that a number of peptides
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Table 1: Reproducibility estimates from fifteen repeated injections of sixlog mix. Top row are results from an LTQ-Orbi/Velos and bottom
row are results from an identical experiment conducted on an LTQ-Orbi/Elite. Peptide selections were done using the model based approach.
While 𝛼-casein is reported here we question the absolute amount in the sixlog mix (50 amol) based on the large number of peptides identified
and the possibility of copurification from the more abundant components.

Protein
Number selected/
number of total

peptides

Median peptide
CV (%)

Mean of all peptides
CV (%)

Mean of model based
selected peptides CV (%)

𝛽-Lactoglobulin (500 fmol) 20/725 42.7 23.4 4.9
20/1033 19.0 8.2 3.1

Lactoperoxidase (50 fmol) 20/248 21.2 13.9 4.2
20/482 21.2 9.6 4.0

Carbonic anhydrase (5 fmol) 20/49 15.6 16.1 5.5
20/84 20.2 12.3 3.4

Glutamate dehydrogenase (500 amol) 11/27 42.1 29.1 11.3
6/26 50.3 63.5 3.4

𝛼-casein (50 amol) 17/32 26.4 22.7 10.4
29/42 18.7 13.5 7.3

were identified that follow the known concentrations down to
approximately 1 amole. For the MRM data, the average of all
transition peak areas as well as the model based (concordant)
and dilution optimal transitions performed similarly to each
other and provided superior sensitivity relative to the average
of all MS1 peptide quantifications and the model selected
(concordant) MS1 peptides.

Titration of yeast enolase into a matrix comprised of 48
equimolar human proteins was conducted to complement
the sixlog mix matrix as a more complex background that
may be found from less specific enrichment protocols. The
MS1 quantification results were similar to the sixlog mix
matrix with the average of all peptides and the average of the
model selected (concordant) peptides showing quantitative
signal responses from 1 fmole and higher (Figure 4). Again,
there were a number [20] of MS1 quantified peptides that
were identified using the dilution optimal model that showed
quantitative performance down to approximately 1 amole.

Lastly, yeast enolase was diluted into a highly complex
HeLa cell lysate digest (Figure 5). The average of all MS1
quantified peptides performed similarly to themodel selected
(concordant) peptides. With this more complex matrix the
MRM quantifications outperformed the MS1 quantification
counterparts for the average of all peptides as well as the
average of model selected (concordant) peptides. Interest-
ingly, there were still a number of MS1 quantified peptides
that performed as well as the best set of MRM transitions
with quantification possible down to concentrations around
25 amoles. The association between peptide hydrophobicity
and dilution optimalmodel R2was not observed for theHeLa
matrix as it was for the TFA/water matrix (Supplementary
Figure). This is likely due to the fact that high R2dilution
optimal peptides derive from MS1m/z values that are not
contaminated with any interfering signals from the back-
ground HeLa matrix which should not necessarily show any
association with hydrophobicity of the peptides.

4. Discussion

This report serves as an extension to our previously described
approach [1] to label-free relative peptide and protein quan-
tification for discovery, hypothesis generating, experiments
using previous generation of nominal mass accuracy hard-
ware. This extension includes the following aspects which we
have found to have significant improvement over the first
generation of label free quantification.

(1) Since quantification is performed using an overall list
of peptides identified from any sample in a study, if
possible, it is advantageous to include a sample con-
taining the target protein(s) at a high concentration
in order to “seed” the analysis to quantify a maximum
number of peptides. Many peptides can be quantified
in a sample from their MS1 signal even if an MS2
event was never triggered in that particular sample
due to low abundance, eliminating the problem of
how to handle missing data in the earlier generation
experiments.

(2) The high mass accuracy and resolution possible with
current generation mass spectrometers has dramati-
cally increased the specificity of quantification using
MS1 signals. In fact, for all of our different back-
ground matrices we were able to identify numerous
peptides with MS1 signals unaffected by matrix ions
that performed as well as MRM transitions using a
triple quadrupole instrument. Identifying the small-
est number of isotope peaks accounting for amajority
(>75%) of the signal in the isotope distribution
provides a good balance between increasing sensi-
tivity while limiting exposure to interfering signals
from the matrix. We also provide a heuristic table
(SupplementaryTables) that can guide selection of the
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(c) UPS1 matrix TIC
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(d) HeLa lysate matrix TIC

Figure 1: Total ion MS1 chromatograms for the background matrices used for yeast enolase dilutions. TFA/water (a), sixlog mix (b), UPS1
proteomics standard (c), and HeLa cell lysate (d).

isotopes for those who do not have an easy access to
calculation of theoretical isotope envelope.

(3) We provide improvedmethods to estimate the elution
time of a peptide for quantification. Often times there
are multiple data-dependent MS2 scans of the same
peptide ion within a sample. MS1 quantification relies
on a good estimate of the retention time of the peptide
ion. We have found that using the MS2 scan time
corresponding to the maximum MS2 fragment ion
intensity provides a reliable estimate for the retention
time of the maximum peptide ion signal within a

sample. Using a robust estimator like the median
of the peptide ion retention times for a peptide ion
across multiple samples in a study generally produces
high quality estimates for peptide ion quantification.

Using these improvements, we evaluated multiple meth-
ods to improve measurement of protein level from measure-
ments of multiple peptides derived from the same protein.
While we certainly advocate performing hypothesis tests at
both the peptide ion level as well as the protein level, the
optimal approach to protein level inference from multiple
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Figure 2: Dilutional linearity of yeast enolase titrated into a
TFA/water background. Enolase quantification using the average of
all peptides (black), average ofmodel selected peptides (orange), and
average of dilution optimal selected peptides (blue). Deviation from
the theoretical dilution line for the model selected and all peptide
curves is attributed to nonspecific binding with a TFA/water matrix.
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Figure 3: Dilutional linearity of yeast enolase titrated into a sixlog
background. Global profiling results shown in solid lines and MRM
results shown in dashed lines. Enolase quantification using the
average of all peptides (black), average of model selected peptides
(orange), and average of dilution optimal selected peptides (blue).

peptide quantifications was not apparent. Acknowledging
that MS1 quantification may be more susceptible to back-
ground matrix interference than an MRM method, we were
motivated to identify a simple, iterative algorithm using a
linear model to find the largest set of concordant peptides
within a study. The rationale for this investigation was that
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Figure 4: Dilutional linearity of yeast enolase titrated into a UPS1
background. Enolase quantification using the average of all peptides
(black), average of model selected peptides (orange), and average of
dilution optimal selected peptides (blue).

an average using this concordant set of peptides would
represent an optimal estimate for the relative levels of the
protein in the samples. Overall we found this method worked
well at reducing technical variability for the protein but, by
design, could not correct for situations where the majority
of peptides were affected by interference or ion suppression.
Interestingly, we were able to identify at least twenty peptide
ions in each of our four matrices that provided similar
quality quantitative responses as the best MRM transitions.
This observation motivates an alternative view to relative
protein quantification using MS1 signals. Specifically, our
results suggest that it is optimal to employ meta-analysis
techniques to summarize the inference results from the
peptides rather than combining the peptide quantifications
and then performing the protein level inference [21, 22]. For
example, consider a study in which a protein of interest is
in the 0.1–1 fmole range in a background similar to a HeLa
lysate (Figure 5). Using an average of all peptides or themodel
selected (concordant) peptides in this example would not
enable detection of different protein levels between groups
due to the flat instrument response in this concentration
range (Figure 5, solid black and orange curves). However,
we know that a number of peptides exist in this concen-
tration range that would allow the discovery of differential
protein levels (Figure 5, solid blue curve). A meta-analysis
of the peptide ion inference results would likely be the most
powerful test of the protein in this example as we clearly
showed the existence of a number of peptides that showed
a linear response well below the quantification limits from
the average of all peptides or concordant peptides. That is,
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Figure 5: Dilutional linearity of yeast enolase titrated into a HeLa
lysate background. Global profiling results shown in solid lines and
MRM results shown in dashed lines. Enolase quantification using
the average of all peptides (black), average ofmodel selected peptides
(orange), and average of dilution optimal selected peptides (blue).

with the knowledge that low level proteins can have pep-
tides with useful quantitative information, the existence of
multiple peptides from a protein showing similar magnitude,
direction, and statistical significance would warrant further
investigation into the protein. Alternatively, performing a
standard addition analysis using the protein of interest and
the relevant matrix would enable the use of the dilution
optimal model as a means to identify an optimal set of
peptides for the highest sensitivity. While the model-based
(concordant) peptide selection approach turned out to be
not very useful in the MS1 quantification, we found that
this method may be most useful for post-processing a set of
MRM transitions for a protein. Similar toMS1 quantification,
the question of how an investigator should combine the
information frommultiple MRM transitions for protein level
inference needs to be addressed, particularly when these
transitions can be corrupted by interfering matrix signals,
differences in sensitivity, and so forth. Arithmetic mean,
geometric mean, averaging transitions to peptides and then
peptides to the protein level, as well as linear mixed models
have been proposed [13]. To our knowledge, none of these
methods provide an objective, and automatedmechanism for
eliminating problematic transitions. If a dilution series of the
protein of interest into a relevant matrix devoid of the protein
of interest is available, then the dilution optimal model
selection described here provides a simple, yet powerful,
approach to objectively identify a small set of transitions to
monitor. In the absence of a dilution series, the model based
(concordant) selection method can be used to select MRM
transitions. Our results indicate that, in both simple and

complex backgrounds, both approaches yield similar results
for identifying a quality set of MRM transitions.

We have reported here an MS1 relative quantification
method that leverages the high mass accuracy and reso-
lution of modern mass spectrometers, approaches to post-
processing individual peptide ion peak areas, and a com-
parison of this approach to targeted MRMs in four different
background matrices. Overall, we have found significant
improvements over the first generation of MS1 relative
quantification approaches with sensitivity and specificity
results approaching that of targeted MRM methods. These
improvements in data analysis methodologies in combina-
tion with the new generation high mass accuracy hardware
should benefit researchers working in multiple hypothesis-
generating settings such as chemiproteomics, immunopre-
cipitation mass spectrometry, protein-protein interaction
mapping, and profiling of specific classes of proteins (e.g.,
acylated, phosphorylated, etc.).
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