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Abstract: Tubulin is a heterodimer of α and β subunits, both existing as isotypes differing in amino
acid sequence encoded by different genes. Specific isotypes of tubulin have associations with cancer
that are not well understood. Previous studies found that βII-tubulin is expressed in a number of
transformed cells and that this isotype is found in cell nuclei in non-microtubule form. The association
of βII expression and its nuclear localization with cancer progression has not previously been
addressed. We here used a monoclonal antibody to βII to examine patients with colorectal cancer
and found that patients whose tumors over-express βII have a greatly decreased life expectancy
which is even shorter in those patients with nuclear βII. Our results suggest that βII-tubulin may
facilitate cancer growth and metastasis and, to accomplish this, may not need to be in microtubule
form. Furthermore, βII expression and localization could be a useful prognostic marker. We also
found that βII appears in the nuclei of otherwise normal cells adjacent to the tumor. It is possible
therefore that cancer cells expressing βII influence nearby cells to do the same and to localize βII in
their nuclei by an as yet uncharacterized regulatory pathway.
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1. Introduction

Colorectal cancer (CRC) is the third most common cancer in men and the second in women in
the United States [1]. According to the World Health Organization statistics, CRC is the fourth most
common cause of death from cancer after female breast cancer, prostate cancer in men, and lung
cancer, with more than 1.4 million expected cases of incidence every year [2]. Expected morbidity
and mortality in 2035 are 2.4 and 1.3 million new cases, respectively [3]. Tubulin, the subunit protein
of microtubules [4,5], is an α/β heterodimer [6]. Both α and β exist as isotypes differing in amino
acid sequence and encoded by different genes [7,8]. Considerable evidence has accumulated that
tubulin can exist in cells in non-microtubule forms [9–14]. This is especially the case for the βII isotype,
which often occurs in cell nuclei, possibly in the form of a reticulum, but not as a microtubule [9].
Specific nuclear localization of βII-tubulin was demonstrated not only by immunohistochemistry
using a monoclonal antibody to βII [15], but also by immunoblotting of a purified nuclear fraction,
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and by the fact that fluorescently labeled αβII-tubulin when micro-injected into these cells, went into
the nuclei whereas fluorescently labeled, micro-injected αβIII and αβIV did not [9]. Nuclear βII is
particularly common in cancer cells, less common in cultured cells, and much less common in normal
cells in situ [16–18]. βII is commonly over-expressed in tumors where the normal cells express little or
no βII [18]. This is especially significant because βII is also the tubulin isotype with which some of the
most successful anti-tumor drugs, namely, paclitaxel and vinblastine, interact the best [19,20].

We previously showed that βII is expressed in cells excised from the tumors of patients with
CRC, both metastatic and non-metastatic [18]. Normal colon expresses little or no βII [21,22]. We also
showed that βII occurs in the nuclei of cells excised from the tumors of patients with CRC, as well
as many other cancers [18]. Although the previous study only examined samples from 15 patients
with CRC, no difference was observed in βII localization in metastatic and non-metastatic disease [18].
However, in some other cancers, it appeared that nuclear βII was most likely to occur in metastatic
tumors [18].

In this study, we used a monoclonal antibody to βII-tubulin [15] to examine surgical material from
patients with CRC and measured the life expectancies of the patients. We found that over-expression
of βII was correlated with a shorter life expectancy of patients with CRC. The life expectancy was even
shorter for patients in whose tumors βII was localized to the cell nuclei. We also found that otherwise
normal cells close to the tumor also expressed βII and localized it to their nuclei.

Our results have both cell biological and clinical implications. They suggest that there exists an
as yet uncharacterized pathway whereby βII is synthesized and localized to nuclei in both cancer
cells and in nearby normal cells, somehow influenced by the cancer, and that this pathway may be
correlated with increased aggressiveness of the cancer. Our findings also raise questions about the role
of βII tubulin in both normal and cancerous cells. From a clinical perspective, these results also have
implications about the possible prognostic utility for patients with CRC of βII expression and nuclear
localization. Furthermore, the current understanding of how anti-tubulin drugs operate in cancer is
that they freeze microtubule dynamics [23–25]. If tubulin, in non-microtubule form, is affecting cancer
progression then that understanding needs to be expanded. In other words, the fact that βII apparently
exists in advanced CRC in non-microtubule form raises the possibility that tubulin does not need to be
in a microtubule to promote cancer cell growth and proliferation and that non-microtubule tubulin
may constitute a novel and hitherto unexplored target for cancer chemotherapy, and may even have a
function in normal cells.

2. Materials and Methods

2.1. Source of Patients

Investigations were carried out following the rules of the Declaration of Helsinki of 1975,
revised in 2013. The research was approved by the Ethics Committee of the Belarusian State Medical
University prior to commencing the study. The study included 124 patients (55 male, 69 female,
median age 65.0 years old, q1–q3 57.0–73.0 years old) with CRC (See Table S1 in Supplementary
Material). All patients had had a bowel resection performed by the same surgeon in Minsk City
Clinical Oncological Dispensary in 2009–2011. Patients’ follow up was carried out according to the
national protocols. Progression was defined as tumor growth after radical resection of the bowel
segment. The median time of dynamic follow-up was 3.56 years (q1–q2 1.2–4.4 years, maximum
5.5 years). Medical examinations were conducted once every six months during the first two years
after operation and once a year after two years after operation. Only patients who signed the informed
consent were included. Results were not available to clinicians at the time of patients’ treatment
and follow-up.
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2.2. Tissue Samples

The tissue specimens were dissected from the edge of the tumors. Pathological analysis was
performed on resected specimens and staged according to the American Joint Committee on
Cancer [26]. For the purpose of the research the blocks containing the deepest invasive margin
were selected. Non-tumor colonic mucosa or mucosa at a distance of no less than 1 cm from the
tumor were used as a control group (60 cases). Features of the tumors are presented in Table S2 in the
Supplementary Material.

2.3. Immunohistochemistry

Paraffin-embedded tissues (4-µm-thick) were cut from tissue blocks and mounted on slides coated
with 3-aminopropylenetriethoxy-silane, then deparaffinized in xylene and rehydrated in alcohol.
Endogenous peroxidase activity was inhibited by 3% hydrogen peroxide for 20 min. After washing
twice in 0.05 M Tris buffered saline (TBS, Sigma Aldrich, Darmstadt, Germany) non-specific binding
was blocked using 1% bovine serum albumin in TBS for 30 min. Antigen retrieval was carried out
in a Pascal Pressure Cooker (Dako, Carpinteria, CA, USA) at 125 ◦C and 25 psi for 30 s with 0.01 M
citrate buffer (pH 6.0). At the next step slides were incubated with primary anti-mouse monoclonal
antibodies to βII-tubulin (clone JDR3B8, IgG2b-isotype, 1:40, BioGenex, Fremont, CA, USA) at 4 ◦C
overnight. This antibody does not distinguish between the different forms of βII-tubulin (βIIA, βIIB
and βIIC). Subsequently they were washed twice with TBS and then staining was detected by Super
SensitiveTM Polymer-HRP IHC Detection System (BioGenex, Fremont, CA, USA). Diaminobenzidine
(DAB, DAKO, Glostrup, Denmark) was used as a chromogen. Then slides were counter-stained with
hematoxylin and mounted in Cytoseal (ThermoScientific, Waltham, MA, USA). Nerve fibers and nerve
ganglia were used as a positive inner control due to their intense reactivity.

2.4. Immunohistochemistry Evaluation

Tissue samples were analyzed using a Leica DM5000 B microscope at ×200 magnification.
βII-tubulin expression was evaluated separately in the central regions of the tumor and in the
deepest invasive margin. The invasive front was defined as the deepest invasive margin of the tumor
within one field of vision (×200). Moreover, expression was assessed both in the nuclei and in the
cytoplasm. The nerve trunks served as an internal positive control. Positive immunoperoxidase
staining of nerves for βII has been previously reported for a variety of tissues [18,21]. Slides
stained by immunohistochemistry without using primary antibody served as a negative control.
Immunohistochemical staining was interpreted as either positive or negative and all cases were
classified in groups according to the absence or presence of βII-tubulin expression. Those cases in
which any number of cells showed positive nuclear or cytoplasmic staining were classified as positive
while those cases with absence of brown staining were classified as negative. Most of the cases (76%)
were negative for βII-tubulin. We did not observe any signs of non-specific staining as a “side effect”,
for example. Usually positive staining was clearly localized to the cytoplasm or nucleus or both. During
acquisition of the images the pathologist was blinded to any clinical or staging data. We previously
used the same immunohistochmical approach to examine the distribution of βIII-tubulin in CRC [27].

2.5. Statistical Analysis

Image analysis was performed using RStudio, v. 0.98.1103 (RStudio, Inc., Boston, MA, USA).
Groups were compared using the Wilcoxon test (pw). Survival curves for different groups were
obtained using the Kaplan-Meier estimator and then compared by a log-rank test (plr). Null hypothesis
was rejected at p < 0.05.



Cells 2019, 8, 25 4 of 9

2.6. Data Sharing

All the figures, original data, and protocols are available, although patient identifying information
is not. Please contact Dr. Portyanko for such information.

3. Results

βII-tubulin expression was detected in 30 cases of CRC (28.0%). Cell cytoplasm showed positive
staining in all the tumors (30 cases—28.0%). Furthermore, in 14 of these 30 cases βII-tubulin was
present in the nuclei (14 cases—11.2%). (Figure 1A). To highlight the difference in cytoplasmic staining
and nuclear staining for βII-tubulin, the samples are shown at higher magnification in Figure 2 to
illustrate both cytoplasmic (Figure 2A) and nuclear (Figure 2B) staining of βII-tubulin.
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adjacent to tumor complexes (right) showing appearance of positive nuclear βII staining (original 
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Figure 2. Immunohistochemical staining of βII-tubulin in CRC specimen detected by peroxidase-
mediated DAB-staining (brown) with arrows indicating epithelial compartment of CRC (1) and 
stroma (2). (A) Epithelial compartment of tumor cells showing moderate cytoplasmic βII-staining, 
(original magnification ×400). (B) Epithelial compartment of tumor cells showing strong focal nuclear 
βII-staining, (original magnification ×400). 

In most cases fewer than 5% of the tumor cells demonstrated unambiguous expression of βII-
tubulin; the intensity of this staining was variable but its presence was unambiguous. Positively 
stained cancer cells were either concentrated as small βII-positive foci or were diffusely scattered 
across the tumor (Figure 1B). No mitotic spindles containing βII-tubulin were observed. The averaged 
number of mitoses for every case varied from 0 to 11.3. The number of mitoses in the groups with or 
without βII-tubulin expression did not show a statistically significant difference either in the center 
(p = 0.64) or in the invasive front (p = 0.85). It was not clear if βII was forming microtubules. Both the 
area of the tumor center (30 tumors—24.0%) and the area of the tumor invasive front (19 tumors—
15.2%) exhibited positively stained regions. (Table 1).   

Figure 1. Immunohistochemical staining of βII-tubulin in colorectal cancer specimen detected by
peroxidase-mediated diaminobenzidine (DAB)-staining (brown) with arrows indicating epithelial
compartments of colorectal cancer (CRC) (1) and stroma (2). (A) Epithelial compartment of tumor
cells showing moderate cytoplasmic and more intense nuclear βII-tubulin staining. There are single
positive stromal cells (original magnification ×200). (B) Adenocarcinoma at lower magnification (original
magnification ×100). There are single positive stromal cells. (C) Normal colonic mucosa (left) adjacent to
tumor complexes (right) showing appearance of positive nuclear βII staining (original magnification ×200).
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Figure 2. Immunohistochemical staining of βII-tubulin in CRC specimen detected by peroxidase-mediated
DAB-staining (brown) with arrows indicating epithelial compartment of CRC (1) and stroma (2).
(A) Epithelial compartment of tumor cells showing moderate cytoplasmic βII-staining, (original
magnification ×400). (B) Epithelial compartment of tumor cells showing strong focal nuclear
βII-staining, (original magnification ×400).

In most cases fewer than 5% of the tumor cells demonstrated unambiguous expression of
βII-tubulin; the intensity of this staining was variable but its presence was unambiguous. Positively
stained cancer cells were either concentrated as small βII-positive foci or were diffusely scattered across
the tumor (Figure 1B). No mitotic spindles containing βII-tubulin were observed. The averaged number
of mitoses for every case varied from 0 to 11.3. The number of mitoses in the groups with or without
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βII-tubulin expression did not show a statistically significant difference either in the center (p = 0.64)
or in the invasive front (p = 0.85). It was not clear if βII was forming microtubules. Both the area of
the tumor center (30 tumors—24.0%) and the area of the tumor invasive front (19 tumors—15.2%)
exhibited positively stained regions. (Table 1).

Table 1. βII-tubulin expression in colorectal cancer (CRC).

Intensity of Staining

βII-Tubulin Expression

Tumor Center Invasive Front Normal Mucosa

N % N % N %

Negative 95 76.0 106 84.8 34 58.6
Positive 30 24.0 19 15.2 24 41.4

All 125 100 125 100 58 100

Malignant cells expressed βII-tubulin exclusively in the tumor center in 56.7% (17/30 tumors)
of all cases while in 20.0% (6/30 tumors) expression was detected only in the invasive front. In the
other cases both the center and the invasive front showed positive staining. The Wilcoxon matched
pairs test did not reveal a statistically significant difference between the expression of βII-tubulin
in the center and in the invasive front (pw = 0.1075). It should be noted that the expression of this
isotype in the invasive front was associated with higher probability of disease progression. The results
showed that the presence of βII was associated with decreased survival, a pattern that was even more
striking when βII was in the nuclei. This difference was revealed both for cytoplasmic (p = 0.0168) and
nuclear (p = 0.0000) patterns of immunostaining (Figure 3). The log rank test showed that there was no
difference in survival time between the groups with and without the expression of βII-tubulin either
in the cytoplasm (p = 0.452) or in the nuclei (p = 0.245) of cancer cells in the tumor center.

Cells 2019, 8, x FOR PEER REVIEW 5 of 9 

 

Table 1. βII-tubulin expression in colorectal cancer (CRC). 

Intensity of 
Staining 

βII-Tubulin Expression  
Tumor Center Invasive Front Normal Mucosa 

N % N % N % 
Negative  95 76.0 106 84.8 34 58.6 
Positive 30 24.0 19 15.2 24 41.4 

All 125 100 125 100 58 100 

Malignant cells expressed βII-tubulin exclusively in the tumor center in 56.7% (17/30 tumors) of 
all cases while in 20.0% (6/30 tumors) expression was detected only in the invasive front. In the other 
cases both the center and the invasive front showed positive staining. The Wilcoxon matched pairs 
test did not reveal a statistically significant difference between the expression of βII-tubulin in the 
center and in the invasive front (pw = 0.1075). It should be noted that the expression of this isotype in 
the invasive front was associated with higher probability of disease progression. The results showed 
that the presence of βII was associated with decreased survival, a pattern that was even more striking 
when βII was in the nuclei. This difference was revealed both for cytoplasmic (p = 0.0168) and nuclear 
(p = 0.0000) patterns of immunostaining (Figure 3). The log rank test showed that there was no 
difference in survival time between the groups with and without the expression of βII-tubulin either 
in the cytoplasm (p = 0.452) or in the nuclei (p = 0.245) of cancer cells in the tumor center. 

 

Figure 3. Progression-free survival in patients as a function of the presence of βII-positive staining in 
the invasive front. (A) The progression-free survival is decreased in patients with the presence of 
cytoplasmic βII-tubulin in the invasive front (plr = 0.0168). (B) Patients with the presence of nuclear 
βII tubulin staining in the invasive front demonstrate worse prognosis in comparison with patients 
without positive staining in the nuclei (plr < 0.001). 

One of the observations in our study was that 24 of 58 tumors containing adjacent normal 
mucosa also had positive nuclear βII-staining in this otherwise normal area. However, the resection 
margins, which are parts of apparently non-tumorous bowel mucosa after surgical resection of bowel 
segment with a tumor, did not reveal positive nuclear or cytoplasmic βII-staining (Figure 1C). 

4. Discussion 

The findings reported here raise questions of both clinical and biological significance. The data 
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expression and localization of βII in the nucleus, but after 400 days, survival drops off very steeply 
for the latter group, to the point where very few survive after 1200 days. Granted that there are other 

Figure 3. Progression-free survival in patients as a function of the presence of βII-positive staining
in the invasive front. (A) The progression-free survival is decreased in patients with the presence of
cytoplasmic βII-tubulin in the invasive front (plr = 0.0168). (B) Patients with the presence of nuclear
βII tubulin staining in the invasive front demonstrate worse prognosis in comparison with patients
without positive staining in the nuclei (plr < 0.001).

One of the observations in our study was that 24 of 58 tumors containing adjacent normal mucosa
also had positive nuclear βII-staining in this otherwise normal area. However, the resection margins,
which are parts of apparently non-tumorous bowel mucosa after surgical resection of bowel segment
with a tumor, did not reveal positive nuclear or cytoplasmic βII-staining (Figure 1C).
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4. Discussion

The findings reported here raise questions of both clinical and biological significance. The data
clearly show that over-expression of βII in CRC is associated with shortened survival and that this is
even more pronounced for patients with nuclear βII. It is interesting that the shapes of the two curves
are different (Figure 3). Survival for the first 400 days is not very different between βII over-expression
and localization of βII in the nucleus, but after 400 days, survival drops off very steeply for the latter
group, to the point where very few survive after 1200 days. Granted that there are other mechanisms
for prognosticating survival in patients with CRC [28,29], then, at the very least, observation of βII
may provide, if the test is further developed, another predictive tool, one requiring only a biopsy.
Furthermore, it is conceivable that the presence of nuclear βII may indicate somewhat poorer survival
overall with even poorer survival after 500 days; this kind of high-resolution prognostication may be
useful for patients.

At this point, it is worth mentioning that some studies have found that mRNA levels for the two
forms of βII-tubulin (βIIa and βIIb) are very low in certain colon cancer cell lines [30] and in some
cases of CRC [31,32]. However, there is also evidence for over-expression of βII-tubulin in other cases
of CRC and other cancers, sometimes associated with increased drug resistance [33–35]. In either
case, we must recall that mRNA expression and protein expression are not always correlated and that,
if we extrapolate from studies suggesting that expression of βII mRNA may be low in the cancers we
have studied, this putative discrepancy raises the possibility that the issue in these tumors is one of
decreased degradation of βII. Future studies may resolve this issue.

It is not yet clear what functions βII and nuclear βII serve for cancer cells. Some evidence in the
literature raises the possibility that βII-tubulin may be involved in membrane rearrangements [11,36,37],
some of which may involve microtubules [38]. Since cancer cells grow, divide, and migrate, it is
reasonable to speculate that new membrane is often being made or rearranged [39] and hence that
βII could be useful in this regard, perhaps mediating microtubule-membrane connections. This could
account for the over-expression of βII that has been observed in CRC and a large number of other
cancers [18]. The function of nuclear βII in cancer cells, however, remains a mystery. There is evidence,
however, that nuclear βII can interact with antitumor drugs, such as paclitaxel and vinblastine [17,40,41],
indicating that, if nuclear βII is indeed present in CRC and other tumors, then chemotherapeutic
strategies may need to take this into account.

The observation that otherwise normal cells adjacent to the tumor express βII, including nuclear
βII (Figure 1C), has been made before for a variety of tumors [18], but not in any quantitative manner,
as we have done here. There are three implications of this finding. First, if a tumor is searched for in a
biopsy, then if the probe misses the actual tumor, observation of cells containing βII and, even more
strikingly, nuclear βII, would imply the nearby presence of a tumor, which could powerfully augment
the utility of a biopsy. Second, the mechanism by which βII is made in otherwise normal cells adjacent
to the tumor and localized to the nuclei is unknown. Our observations imply the existence of a hitherto
unknown signaling pathway that affects tubulin biosynthesis and subcellular localization. Perhaps
the pathway involves production of a substance by the tumor that influences the nearby cells to
behave in this way. Third, the mechanism by which such a substance might enter the normal cells is
also unknown. It may require a nanotubule of some kind. Further exploration of these mechanisms
could not only add to our knowledge of basic cellular regulatory pathways, but also reveal hitherto
unsuspected targets for novel chemotherapies.
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