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Abstract: Gulf War Illness (GWI) is a chronic, multisymptom disorder estimated to affect
approximately 25–32% of Gulf War veterans (GWVs). Cognitive dysfunction is a common symptom
of GWI. On the continuum of cognitive decline, mild cognitive impairment (MCI) is conceptualized
as a transitional phase between normal aging and dementia. Individuals with MCI exhibit cognitive
decline but have relatively spared activities of daily function and do not meet criteria for dementia.
The current study sought to investigate the prevalence of MCI in a convenience sample of 202 GWVs
(median age: 52 years; 18% female). Twelve percent of the sample (median age: 48 years) had MCI
according to an actuarial neuropsychological criterion, a rate materially higher than expected for this
age group. GWVs with MCI also had a smaller hippocampal volume and a thinner parietal cortex,
higher rates of current posttraumatic stress disorder and major depressive disorder compared to
GWVs without MCI. Because people with MCI are more likely to progress to dementia compared
to those with normal cognition, these results may portend future higher rates of dementia among
deployed GWVs.
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1. Introduction

An estimated 250,000 Gulf War veterans (GWVs) are afflicted by a chronic health condition known
as Gulf War Illness (GWI) or Chronic Multi-symptom Illness (CMI) [1,2]. GWI/CMI is associated with
several concomitant symptoms including persistent fatigue, musculoskeletal pain, gastrointestinal and
respiratory problems, skin rashes, and cognitive dysfunction [1]. Longitudinal studies suggest that
most GWVs with GWI/CMI have not improved with time [3–5]; instead, many are getting worse [2].
A recent study suggests that GWVs have more chronic medical conditions and are developing these
chronic medical conditions earlier than the general civilian population [6]. There have also been reports
of a higher than expected incidence of cognitive impairment among GWVs [7–10]. One study found
that at least half of the veterans from a population-based cohort of 1200 GWVs with and without GWI
reported symptoms of cognitive dysfunction [8]. A recent meta-analysis concluded that Gulf War (GW)
service is associated with impairment in three cognitive domains: attention and executive function,
visuospatial ability, and learning and memory [9].

On the continuum of cognitive decline, impairment greater than that expected for one’s age
but not severe enough to meet the criteria for dementia is classified as mild cognitive impairment
(MCI) [11,12]. Individuals with MCI exhibit objective cognitive impairment, typically in one or two
cognitive domains, but have relatively spared daily functioning abilities. Thus, they do not meet the
criteria for dementia [13]. Research suggests that individuals with MCI are 3 to 5 times more likely to
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progress to any form of dementia compared to those with normal cognition [14–17], with an annual
rate of progression of 12% in the general population and up to 20% in populations at higher risk [18].

Because memory is severely impaired in AD, historically MCI was characterized as an amnestic
disorder [14]. The original criteria for MCI, proposed in 1999, include subjective memory complaint,
objective memory impairment, preserved general cognitive function, intact activities of daily living,
and not meeting criteria for dementia [14]. Subsequently, broader classification schemes of MCI
were introduced that include non-amnestic forms of MCI and clinical subtypes that include single
and multiple cognitive domains [19–21]. The conventional MCI criteria have remained essentially
unchanged in the past 20 years, and some shortcomings with the original criteria have been noted.
For example, subjective reports of memory decline can sometimes be more strongly related to emotional
factors than to objective memory abilities [22]. In many large-scale research studies and clinical trials,
the conventional MCI criteria have been operationalized to rely on impaired performance on a single
measure of episodic memory (generally delayed memory for a one-paragraph story) to determine
impaired memory functioning [23], which can be unreliable [24]. It has also been common for
large-scale research studies and clinical trials to use performance on a screening measure of global
cognition (e.g., the Mini Mental State Exam) as an indication of intact abilities in other cognitive
domains, which can be insensitive for distinguishing MCI from cognitively normal individuals [25].
Reliance of the conventional MCI criteria on a clinician’s judgment of mild impairment based on a
semi-structured clinical interview [23] can introduce variability across clinicians, sites, and timepoints.
Finally, patients diagnosed with the conventional MCI criteria can sometimes revert back to normal
cognitive status [26–30] and have heterogenous neuropsychological [31] and AD biomarker profiles [32].

In an attempt to make the MCI diagnosis more consistent and reliable, an actuarial method for
diagnosing MCI was proposed in 2009 [33]. The actuarial method differs from the conventional method
in the following ways: first, cognitive impairment is defined as performance that is one standard
deviation (SD) below the age-adjusted norm on a neuropsychological test measure. In contrast,
the conventional MCI criteria defines cognitive impairment as performance that is 1.5 SDs below the
age-adjusted norm on a neuropsychological measure [14]. Second, the actuarial method requires two
impaired scores within a cognitive domain because neurologically normal older adults can have high
base rates of isolated low neuropsychological test scores [24]. In contrast, the conventional MCI criteria
requires only one impaired score. Research suggests that patients classified as MCI by the actuarial
neuropsychological criteria have stronger associations between cognitive function and hippocampal
volume [34], higher levels of AD biomarkers (i.e., beta-amyloid, Aβ, total and hyperphosphorylated
tau in cerebral spinal fluid, CSF), are more likely to possess the APOE ε4 allele, a genetic risk factor for
AD, and more likely to convert to dementia than patients classified as MCI by the conventional criteria [35].

Most MCI studies have focused on individuals in their 70s [36]; however, it has been argued that
MCI can be identified in adults before the age of 60 using neuropsychological assessments that do not
have ceiling effects and cover multiple cognitive domains [37]. We previously reported that GWVs
with subjective memory complaints have objective memory impairment [38]. Because this satisfies
two of the original Petersen criteria for MCI [14], and because there is suggestive evidence that GWVs
exhibit a higher than expected incidence of cognitive impairment [7–10] and may be experiencing
accelerated aging [6], the current study sought to investigate whether GWVs exhibit a higher than
expected prevalence of MCI. We also explored demographic, clinical, military, and deployment-related
differences between GWVs with and without MCI.

2. Materials and Methods

2.1. Human Subjects

The study participants were 202 consecutive GWVs recruited from 2014 to 2018 at the San Francisco
Veterans Affairs Health Care System (SFVAHCS). The parent study was approved by the Institutional
Review Boards of the University of California, San Francisco (UCSF) and the SFVAHCS. All participants
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provided written informed consent prior to enrollment in the parent study. Because this study consisted
of secondary analyses of pre-existing de-identified data, additional IRB approval was not required.

2.2. Measures

2.2.1. Clinical Interview Assessments

Participants in the parent study were clinically screened with the following instruments: the
Structured Clinical Interview for DSM-IV Diagnosis (SCID) [39], the Life Stressor Checklist-Revised [40],
the Clinician Administered Posttraumatic Stress Disorder (PTSD) Scale (CAPS) [41], and the Ohio State
University TBI Identification Method (OSU TBI-ID) Short Form [42]. See [43] for additional details
about the clinical screening of this sample.

2.2.2. Kansas Military History and Health Questionnaire

The Kansas Gulf War Military History and Health Questionnaire [44] was used to assess Kansas
Gulf War Illness (GWI) case status [44], the Centers for Disease Control and Prevention (CDC) Chronic
Multisymptom Illness (CMI) case status [45], and GW deployment-related experiences. See [43] for
additional details about classification of GWI and CMC cases in this sample.

2.3. Classification of MCI

The present study sought to examine the prevalence of MCI in deployed GWVs. Although we
previously reported evidence that GWVs with subjective memory complaints have objective memory
impairment [38], which meets two of the original Petersen criteria for MCI [14], we could not use
the conventional MCI criteria to classify GWVs because the parent study did not access activities
of daily living or the clinical presence/absence of dementia. However, all participants in the parent
study underwent neuropsychological assessment. Therefore, we used the actuarial neuropsychological
criteria [33,46] to determine MCI status in the GWVs. The neuropsychological measures used to classify
MCI are listed in Table 1.

Table 1. Neuropsychological measures used in the actuarial neuropsychological criteria for classifying MCI.

Domain Measures

Episodic Memory
California Verbal Learning Test-II [47] (CVLT) Trials
1–5 total recall
CVLT long-delay free recall

Executive Function

Trail Making Test [48] (TMT) Part B
Delis–Kaplan Executive Function System [49]
(D-KEFS) Color-Word Inference Test, color-word
inhibition condition

Attention
Weschler Adult Intelligence Scale-III [50] (WAIS-III)
Digit Span
TMT [48] Part A

Language Boston Naming Test [51]

Visuospatial Function WAIS-III [50] Block Design

In the original publication by Jak et al. describing the actuarial neuropsychological criteria [33],
three neuropsychological measures in five cognitive domains were used to classify MCI. A subject was
classified as MCI if s/he scored ≥1 SD below the age-adjusted norm on two measures in a cognitive
domain (i.e., a subject with ≥2 scores ≥1 SD below the age-adjusted norm in the memory domain was
classified as an amnestic MCI; a subject with ≥2 scores ≥1 SD below the age-adjusted norm in the
executive function domain was classified as an executive function MCI). In a subsequent publication,
Bondi et al. [35] used the actuarial neuropsychological criteria to classify subjects from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). Because ADNI did not have as extensive a neuropsychological
battery as that used in the original study by Jak et al. [33], the authors adapted the actuarial criteria



Int. J. Environ. Res. Public Health 2020, 17, 7158 4 of 20

to consider two neuropsychological measures in three cognitive domains for classifying MCI [35].
An ADNI subject was classified as MCI if s/he scored ≥1 SD below the age-adjusted norm on both
measures in a cognitive domain (i.e., memory, executive function, or attention) or if s/he scored ≥1 SD
below the age-adjusted norm on ≥1 measure in each of the three cognitive domains (i.e., a subject with
one score 1 SD below the age-adjusted norm in all three domains was classified as MCI).

In this study, we used the same five cognitive domains describe by Jak et al. [33].
However, because we did not have three separate neuropsychological measures for the visuospatial
and language domains, we employed a hybrid of the actuarial criteria described by Jak et al. [33]
and Bondi et al. [35]: we considered two neuropsychological measures in three cognitive domains
(i.e., episodic memory, executive function, and attention) and one neuropsychological measure in the
other two cognitive domains (i.e., language and visuospatial function). A GWV was classified as MCI
if s/he scored ≥1 SD below the age-adjusted norm on both measures in the episodic memory, executive
function, or attention domain. A GWV was also classified as MCI if s/he scored ≥1 SD below the
age-adjusted norm on ≥4 cognitive domains. A GWV was classified as having “intermediate” cognitive
impairment if s/he scored ≥1 SD below the age-adjusted norm on ≤3 cognitive domains. GWVs with
no score below the age-adjusted norm in any cognitive domain were classified as “cognitively normal”
(CN). See Table 2.

Table 2. Operationalization of MCI, intermediate, and cognitively normal status.

MCI

Score ≤ 1 SD Below the Norm on both Measures in
Episodic Memory Domain or Executive Function

Domain or Attention Domain or Score ≤ 1 SD Below
the Norm on ≥1 Measure in ≥4 Cognitive Domains

Intermediate cognitive impairment Score ≤ 1 SD below the norm on ≤3 cognitive domains

Cognitively normal No score < 1 SD below the norm in any cognitive
domains

2.4. Brain MRI

GWVs were scanned at the SFVSHCS on a 3 Tesla (T) Siemens Skyra MRI system equipped with a
32-channel receiver head coil. The MRI scan protocol included the following: T1-weighted 3D whole
brain gradient echo MRI TR/TE/TI = 2500/2.98/1100 ms, 1.0 × 1.0 × 1.0 mm3 resolution and T2-weighted
turbo spin echo MRI TR/TE 3200/11 ms, 0.9 × 0.9 × 3.0 mm3 resolution. The T2-weighted image was
used to estimate intracranial volume (ICV). One hundred and ninety-four GWVs in the sample had
artifact-free MRI data, from which we derived hippocampal volumes and measures of cortical thickness.

2.4.1. Image Processing

Freesurfer Version 5.1 was used to label cortical and subcortical tissue classes and derive
quantitative estimates of cortical thickness and regional brain volume [52–54]. To protect against type
I error, and because we had no a priori hypotheses about laterality, volumes of the right and left
hippocampus, and cortical thicknesses of the lobes of the brain and the insula were combined across
the hemispheres to reduce the number of measurements. To further reduce the number of measures,
we averaged across the Freesurfer parcels to examine cortical thickness of the frontal, temporal, parietal,
and occipital lobes of the brain and the insula, as described in [55].

2.4.2. Intracranial Volume (ICV) Measurement

After checking that all extracranial and skull structures were removed and all intracranial structures
were fully preserved in the skull stripped images, the BET program (FMRIB Image Analysis Group,
Oxford University, www.fmrib.ox.ac.uk/fsl) was used to determine intracranial volume (ICV) from the
T2-weighted scan.

www.fmrib.ox.ac.uk/fsl
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2.5. Statistical Analyses

Statistical analyses of the demographic, clinical, neuropsychological, and volumetric measures
were conducted using IBM SPSS Statistics for Windows, version 26 (IBM Corp, Armonk, NY, USA).
Demographic and descriptive characteristics were compared across three cognitive groups with
analysis of variance (ANOVA) for continuous variables and chi-square tests for categorical variables.
Because we previously reported significant effects of predicted exposure to the Khamisiyah plume on
hippocampal and total cortical gray matter volumes [56–58], Khamisiyah exposure status was included
as a covariate in analyses of the hippocampal volume and measures of cortical thickness. We also
accounted for apolipoprotein E (APOE) genotype in analyses of hippocampal volume and cortical
thickness. This is because the APOE ε4 allele is a genetic risk factor for sporadic AD [59–61], while the
APOE ε2 allele is considered protective against AD [62,63]. The APOE ε4 allele has been associated with
a smaller hippocampal volume [64,65] and thinner cortex [66] in cognitively normal individuals and in
patients with AD [67] while the APOE ε2 allele has been associated with thicker cortex in cognitively
intact individuals [68]. GWVs with APOE 3/4 or 4/4 genotype were classified as ε4 positive while GWVs
with APOE 2/3 or 2/4 genotype were classified as ε2 positive. Because the APOE ε2 allele is considered
protective against AD [62,63] GWVs with the 2/4 genotype were not classified as APOE ε4 positive.

2.5.1. Covariates

Age [69,70], sex [71], and years of education [72,73] were included as covariates in analyses of
hippocampal volume and cortical thickness because these variables have been shown to influence
measures of brain volume and thickness. We also accounted for the presence or absence of Kansas GWI
exclusionary condition (e.g., diabetes, heart disease other than hypertension, stroke, lupus, rheumatoid
arthritis, cancer, liver and/or kidney disease) as a proxy measure of general overall health. ICV was
included as a covariate in analysis of hippocampal volume to account for variations in head size
between subjects that could reduce reliability [74]. Finally, we included any demographic and clinical
variables that differed significantly between groups as covariates in the analyses.

2.5.2. Correction for Multiple Comparisons

Because the Bonferroni correction for multiple comparisons can be overly conservative when
applied to non-independent (i.e., correlated) measures, we adjusted the analyses of cortical thickness
of the four lobes of the brain and insula according to the number of regions analyzed (n = 5) and the
average intercorrelations among the regions [75]. With an average intercorrelation r = 0.58, a 2-sided
adjusted p = 0.03 was considered statistically significant. Similarly, analyses of GW deployment-related
exposures were adjusted for multiple comparisons according to the number of exposures analyzed
(n = 15) and the average intercorrelations among the exposures [75]. With an average intercorrelation
r = 0.21, a 2-sided adjusted p = 0.006 was considered statistically significant.

2.5.3. Post-Hoc Analyses

We used hierarchical linear regression to examine the ability of current PTSD, current MDD,
and history of alcohol abuse/dependence (independent variables entered in the last step of the
regression model) to predict MCI status (dependent variable) over and above demographic and
military characteristics that differed significantly between the groups (independent variables entered
into the first step of the regression model). We used also hierarchical linear regression to examine the
ability of MCI status (independent variable entered in the last step of the regression model) to predict
hippocampal volume (dependent variable in second post-hoc analysis) and parietal cortex thickness
(dependent variable in third post-hoc analysis) over and above demographic and clinical variables
(i.e., age, sex, years of education, current PTSD and MDD, history of alcohol abuse/dependence, ICV,
APOE ε4 and ε2 status, CDC CMI, and Khamisiyah plume exposure status, entered into the first step
of the regression models). In a final post-hoc stepwise linear regression analysis, we examined the
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ability of all the demographic, clinical, and deployment-related exposures that differed significantly
between the groups to predict MCI status (dependent variable).

3. Results

Twelve percent of the GWVs (n = 25) in the sample were classified as MCI according to the
actuarial neuropsychological method, while 39% (n = 79) were classified as “cognitively normal”
(CN, i.e., had no impaired scores in any cognitive domains). The rest of the GWVs (49%, n = 98) were
classified as “intermediate.” Five of the intermediate GWVs had impaired scores (i.e., >1 SD below the
age-corrected norm) in 3 cognitive domains; 25 had impaired scores in 2 cognitive domains; 68 had
impaired scores in 1 cognitive domain.

Table 3 summarizes the demographic and clinical characteristics of the three cognitive groups.
The MCI group tended to be younger (F2.201 = 2.49, p = 0.09) and have fewer years of formal education
(F2.201 = 2.49, p = 0.09) compared to the other two groups. Significantly more GWVs with MCI
were enlisted personnel during the GW (96%, χ2 = 13.32, df = 2, p = 0.003), had current PTSD (40%,
χ2 = 17.12, df = 2, p = 0.001) and current MDD (24%, χ2 = 7.30, df = 2, p = 0.03), and a history of
alcohol abuse/dependence (44%, χ2 = 6.73, df = 2, p = 0.04) compared to the other groups. There were
significantly more CDC CMI cases, both mild–moderate (80%, χ2 = 6.52, df = 2, p = 0.04) and severe
(40%, χ2 = 12.89, df = 2, p = 0.002), in the MCI than the other groups. There were no differences in
Kansas GWI cases or in the number of GWVs with Kansas GWI exclusionary conditions. The CN group
had fewer African Americans compared to the other two groups (1% versus 11% in the intermediate
and 24% in the MCI, χ2 = 16.10, df = 2, p = 0.001).

In post-hoc analysis, we used hierarchical linear regression to examine the ability of the clinical
variables (i.e., current PTSD, current MDD, and history of alcohol abuse/dependence, independent
variables entered in the last step of the regression model) to predict MCI status (dependent variable)
over and above demographic and military characteristics that differed significantly between the
groups (i.e., race and rank during the GW, entered as independent variables in Step 1 of the model).
The post-hoc regression models were significant (p’s ≤ 0.03, 0.08 ≤ R2

≤ 0.11). In the first step of the
model, rank (i.e., enlisted, standardized coefficient β = 0.21, t = 2.99, p = 0.003) and race (i.e., non-white,
standardized coefficient β = 0.21, t = 3.04, p = 0.003) were significantly associated with MCI status. Even
after accounting for rank and race in the first step of the model, current PTSD status (standardized coefficient
β= 0.17, t = 2.47, p = 0.01) was significantly associated with MCI status in the second step of the model.
Current MDD and history of alcohol abuse/dependence were not significantly associated with MCI status.

Table 4 summarizes the neuroimaging results. The MCI group had a smaller hippocampal volume
compared to the other groups, even after accounting for ICV, age, sex, education, rank during the GW,
current PTSD and MDD diagnoses, history of alcohol abuse/dependence, CDC CMI case status, predicted
exposure to the Khamasiyah plume, Kansas GWI exclusionary conditions (as a proxy measure for general
overall health) and APOE ε2/ε4 genotype (F2.189 = 6.76, p = 0.001). Planned contrasts revealed that the
MCI group had a smaller hippocampal volume compared to CN (p < 0.001) and intermediate (p = 0.001)
groups, but there were no significant hippocampal volume differences between intermediate and CN
groups. The MCI group also had a thinner parietal cortex compared to the intermediate and CN groups,
even after accounting for age, sex, education, rank during the GW, current PTSD and MDD diagnoses,
history of alcohol abuse/dependence, CDC CMI case status, predicted exposure to the Khamasiyah
plume, Kansas GWI exclusionary status, and APOE ε2/ε4 genotype (F2,181 = 4.10, p = 0.018). Planned
contrasts revealed that the MCI group had a thinner parietal cortex compared to CN (p = 0.005) and
intermediate (p = 0.03) groups, but there were no significant parietal cortex thickness differences between
intermediate and CN groups. Although there was a group difference in temporal cortex thickness
(F2,183 = 3.29, p = 0.04), this difference was not significant after adjustments for multiple comparisons
according to the number of regions analyzed (n = 5) and the average intercorrelations among those
regions [75]. With an average intercorrelation of r = 0.58 between the thickness of the four lobes of the
brain and insula, a 2-sided adjusted p = 0.03 was considered statistically significant.
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Table 3. Demographic and clinical characteristics in the entire study sample and by cognitive status.

All MCI Intermediate CN Statistics

N 202 25 (12%) 98 (49%) 79 (39%)
Age (years) 54.1 (7.7) 51.8 (6.7) 53.7 (7.3) 55.4 (8.4) F = 2.49
Education

(years) 15.6 (2.3) 14.8 (2.2) 15.5 (2.3) 16.0 (2.3) F = 2.49

Male 166 (82%) 22 (88%) 76 (78%) 68 (86%) χ2 = 2.83
Race χ2 = 16.10 **

Caucasian 148 (73%) 15 (60%) 66 (67%) 67 (85%)
African

American 18 (9%) 6 (24%) 11 (11%) 1 (1%)

Other 36 (18%) 4 (16%) 21 (21%) 11 (14%)
Enlisted

personnel
during GW

150 (74%) 24 (96%) 77 (79%) 49 (62%) χ2 = 13.32 **

Military service
during GW χ2 = 1.71

Active duty 155 (77%) 18 (72%) 78 (80%) 59 (75%)
Reserves 38 (19%) 6 (24%) 15 (15%) 17 (22%)

National guard 9 (5%) 1 (4%) 5 (5%) 3 (4%)
Branch of

Service during
GW

χ2 = 0.72

Army 126 (62%) 17 (68%) 61 (62%) 48 (61%)
Marines 39 (19%) 4 (16%) 20 (20%) 15 (19%)

Navy 20 (10%) 2 (8%) 9 (9%) 9 (11%)
Air force 17 (8%) 2 (8%) 8 (8%) 7 (9%)

Current PTSD 28 (14%) 10 (40%) 12 (12%) 6 (8%) χ2 = 17.12 ***
Current MDD 19 (9%) 6 (24%) 8 (8%) 5 (6%) χ2 = 7.30 *

Hx ETOH
abuse/depend. 48 (24%) 11 (44%) 19 (19%) 18 (23%) χ2 = 6.73 *

Hx substance
abuse/depend. 16 (8%) 4 (16%) 5 (5%) 7 (9%) χ2 = 3.40

Psychotropic
medication use 40 (20%) 9 (36%) 18 (18%) 13 (16%) χ2 = 4.81

TBI Hx χ2 = 9.02
Improbable 105 (52%) 13 (52%) 50 (51%) 42 (53%)

Possible 49 (24%) 4 (16%) 20 (31%) 15 (19%)
Mild 46 (23%) 8 (32%) 16 (16%) 22 (28%)

Moderate 2 (1%) 0 (0%) 2 (2%) 0 (0%)
APOE

genotype a χ2 = 6.11

ε2/ε3 21 (11%) 3 (12%) 12 (13%) 6 (8%)
ε2/ε4 8 (4%) 2 (8%) 3 (3%) 3 (4%)
ε3/ε3 129 (65%) 15 (60%) 58 (60%) 56 (73%)
ε3/ε4 33 (16%) 5 (20%) 18 (19%) 10 (13%)
ε4/ε4 7 (4%) 0 (0%) 5 (5%) 2 (3%)

Mild–moderate
CDC CMI cases 126 (62%) 20 (80%) 64 (65%) 43 (63%) χ2 = 6.52 *

Severe CDC
CMI cases 36 (18%) 10 (40%) 19 (19%) 7 (9%) χ2 = 12.89 **

Kansas GWI
cases 83 (41%) 14 (56%) 41 (42%) 28 (35%) χ2 = 3.36

Kansas
exclusionary

condition
59 (29%) 7 (28%) 31 (32%) 21 (27%) χ2 = 0.56

Predicted
Khamisiyah

exposure
88 (44%) 11 (44%) 44 (45%) 33 (42%) χ2 = 0.18

* p < 0.05, ** p < 0.01, and *** p < 0.001. a data unavailable for two intermediate and two CN (cognitively
normal) veterans.
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Table 4. Neuroimaging results.

MCI Intermediate CN Statistics

Hippocampal
volume (cc) 8.05 (0.98) 8.59 (0.80) 8.68 (0.79) F = 6.76 a

Cortical Thickness
(mm)

Frontal lobe 2.54 (0.09) 2.59 (0.10) 2.59 (0.10) F = 2.28
Parietal lobe 2.33 (0.11) 2.38 (0.09) 2.40 (0.09) F = 4.10 b

Temporal lobe 2.87 (0.11) 2.95 (0.12) 2.95 (0.11) F = 3.42 †

Occipital lobe 1.90 (0.11) 1.92 (0.10) 1.95 (0.10) F = 2.07
Insula 2.98 (0.15) 3.03 (0.13) 3.06 (0.14) F = 2.13

a ANCOVA with ICV, age, sex, education, rank, CMI case status, Kansas GWI exclusionary status, predicted
Khamisiyah exposure status, current PTSD, current MDD, history of ETOH abuse/dependence, and APOE ε2/ε4
status as covariates. b ANCOVA with age, sex, education, rank, CMI case status, Kansas GWI exclusionary status,
predicted Khamisiyah exposure status, current PTSD, current MDD, history of ETOH abuse/dependence, and APOE
ε2/ε4 status as covariates. † p = 0.04, not significant after correction for multiple comparisons.

In post-hoc analyses, we used hierarchical linear regression to examine the ability of MCI
status (independent variable entered in the last step of the model) to predict hippocampal volume
and parietal cortex thickness (dependent variables) over and above demographic and clinical
variables. All fits in the post-hoc regression for hippocampal volume were significant (p’s ≤ 0.002,
0.30 ≤ R2

≤ 0.33). After accounting for ICV (standardized coefficient β = 0.51, t= 7.40, p < 0.001),
age (standardized coefficient β = −0.20, t= −3.01, p = 0.001), and Khamisiyah exposure status
(standardized coefficient β = −0.13, t= −1.99, p < 0.05) in the first step of the model, MCI status was
still significantly associated with hippocampal volume (standardized coefficient β = 0.20, t= 3.07,
p = 0.002). In the post-hoc regression for parietal cortex thickness, age was inversely related to parietal
cortex thickness (standardize coefficient β = −0.20, t= −2.44, p = 0.016); however, the first model with
demographic and clinical variables was not statistically significant (R2 = 0.04, p = 0.09). Only the
second model was significant (R2 = 0.07, p = 0.008) because MCI status was significantly associated
with parietal cortex thickness (standardized coefficient β = 0.21, t= 2.67, p = 0.008).

Table 5 summarizes the group differences in GW deployment-related exposures and experiences.
More GWVs in the MCI group reported witnessing smoke from burning oil well fires, hearing chemical
alarms sound, coming into contact with dead animals, using powdered pesticides directly on skin,
witnessing their living areas being sprayed with pesticides, and coming into contact with chemical agent
resistant coating (CARC) paint compared to the other groups (see Table 5). However, after adjustment
for multiple comparisons according to the number of exposures (n = 15) and the average intercorrelation
among the exposures (r = 0.21) [75], only differences in the frequency of contact with dead animals and
witnessing living areas being sprayed with pesticides remained significant.

In a final post-hoc analysis, we examined the relationship between MCI status (dependent variable)
and demographic and military characteristics (race and rank during GW), clinical characteristics (current
PTSD and MDD, history of alcohol abuse/dependence, and CDC CMI status) and deployment-related
experiences (coming into contact with dead animals and witnessing living area sprayed with
pesticides) that differed significantly between the groups. The stepwise linear regression models
(p’s ≤ 0.01, 0.07 ≤ R2

≤ 0.15) revealed three significant predictors of MCI status: race (being non-white,
standardized coefficient β = 0.20, t = 2.82, p = 0.005), current PTSD diagnosis (standardized coefficient
β = 0.20, t= 2.94, p = 0.004), and rank (enlisted during the GW, standardized coefficient β = 0.17, t= 2.48,
p = 0.01). GW deployment-related experiences were not significantly associated with MCI status after
accounting for these three variables.
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Table 5. Deployment-related exposure or experience as a function of cognitive group.

Did Not Experience Experienced for 1–6 Days Experienced for 7–30
Days Experienced for >30 Days

χ2 p

MCI Int CN MCI Int CN MCI Int CN MCI Int CN

Smoke from oil well fires 4 14 29 16 20 14 20 34 29 60 32 28 16.51 0.01
Heard chemical alarms 12 25 27 28 37 39 24 27 28 36 11 6 16.13 0.01

Within 1 mild of SCUD missile explosion 29 55 56 58 33 33 8 8 9 4 4 3 6.98 0.32
Contact with POWs 48 45 52 28 28 30 12 19 11 12 8 6 3.39 0.76

Contact with dead animals 32 63 62 44 16 32 8 14 5 16 6 1 22.62 0.001
Contact with destroyed enemy vehicles 20 35 39 44 30 34 20 27 22 16 9 5 6.78 0.34

Contact with vehicles destroyed by
friendly fire 60 76 82 28 18 16 4 3 1 8 3 1 6.43 0.38

Cream/liquid pesticides 28 36 51 8 5 9 16 21 13 48 38 27 8.72 0.19
Powdered pesticide 60 86 89 8 3 1 4 4 4 28 6 6 16.22 0.01

Pesticide-treated uniform 58 67 64 0 2 8 13 9 8 29 22 21 5.69 0.46
Wore flea collar 88 95 96 0 1 0 0 2 3 12 2 1 9.65 0.14

Living area sprayed with pesticides 52 78 76 8 9 13 12 8 8 28 5 4 18.86 0.004
Took PB pills 20 26 23 36 22 26 24 25 28 20 28 23 2.9 0.82

Contact with CARC paint 44 77 72 16 11 10 12 4 9 28 8 9 13.37 0.04
Lived in tent with fuel burning heater 24 39 46 8 5 9 12 7 10 56 49 35 7.04 0.32

Int: Intermediate cognitive impairment; POWs: prisoners of war; PB: pyridostigmine. Values are %; Bold type indicates significant after adjustment for multiple comparisons.
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4. Discussion

The main finding of this study is that 12% of GWVs in a convenience sample originally recruited for
a VA-funded study on the effects of predicted exposure to the Khamisiyah plume on brain structure and
function had MCI according to an actuarial neuropsychological criteria [33,35]. MCI, conceptualized
as the transition between normal cognitive aging and dementia [76], is widely considered to be a
prodromal condition indicative of future dementia such as AD [76]. Although not every patient with
MCI progresses to dementia [14,77], it is noteworthy that GWVs with MCI had smaller hippocampal
volume and thinner parietal cortex, two hallmarks of AD pathogenesis [78,79] compared to GWVs
without MCI. The group difference in hippocampal volume and parietal cortex thickness remained
significant even after accounting for demographic and clinical variables, predicted exposure to the
Khamisiyah plume, APOE genotype, and general overall health, approximated by using Kansas GWI
exclusionary status.

How significant is a prevalence of 12% of MCI in GWVs who had a median age of 48 years at the
time they were studied? According to the American Academy of Neurology Practice update summary
of MCI [80], the prevalence of MCI in the general population is 6.7% for ages 60–64, 8.4% for 65–69,
10.1% for 70–74, 14.5% for 75–79, and 25.2% for ages 80–84. Very few research studies of MCI focus
on adults under the age of 60 [36]. The few studies that have reported prevalence in the range of
0%−13% [81–83]. If the higher estimates of MCI in adults under 60 is valid, then our finding that 12%
of deployed GWVs had MCI is not out of the ordinary. In a study of 1126 twins from the Vietnam Era
Twin Study of Aging (VETSA) who were 51–59 years old at the time of study, Kremen et al. reported a
prevalence of 1%−65% for MCI [37]. However, it seems unlikely that 65% of Vietnam veterans in their
50s would have MCI given that the prevalence of MCI increases with age [84] and 65% is significantly
higher than the prevalence of MCI in octogenarians, estimated to be 25% by the American Academy
of Neurology [80]. Consequently, Kremen et al. proposed that lower rates of MCI are more likely
to be valid in adults under 60 [37]. If we assume that Kremen et al.’s proposal is correct, and that
the prevalence of MCI in adults under 60 is lower than the prevalence of MCI in people aged 60–64,
estimated to be 6.7% by the American Academy of Neurology [80], then 12% MCI in deployed GWVs
is almost twice the prevalence of MCI expected in the general population.

Two case definitions for GWI have been endorsed by the Institute of Medicine for use in
clinical diagnosis and research investigations [1]: the CDC CMI definition [45] and the Kansas GWI
definition [44]. Although cognitive dysfunction is a symptom of both, it is interesting that was no
difference in the rate of Kansas GWI between the three cognitive groups. In contrast, there were
significantly more CDC CMI cases, both severe and mild–moderate cases, in the MCI group. This is likely
because the Kansas GWI definition requires cases to have multiple chronic symptoms in at least three of
six categories and cognitive difficulties falls within the broader category of neurological/cognitive/mood
symptoms. In contrast, the CDC CMI definition requires only symptoms in two of three categories and
the mood-cognition category captures many symptoms common in individuals with MCI (i.e., difficulty
remembering or concentrating, word finding difficulties, feeling depressed, feeling moody, feeling
anxious, trouble sleeping).

The mechanisms underlying higher rates of MCI in GWVs are likely to be complex and interlinking
with no single process explaining the relationship. However, post-hoc regression analysis revealed
a strong association between current PTSD and MCI status, even after accounting for demographic
characteristics. PTSD is a stress-related condition that develops in some individuals after experiencing
a traumatic event [85]. It has been postulated that dysregulation of the hypothalamic-pituitary-adrenal
(HPA) axis occurs in some people following exposure to severe trauma [86]. Chronic hyperactivation of
the HPA axis may lead to aberrant neuroimmune responses [87], which, in turn, can result in damage
to the hippocampus [88–91]. A large (n = 1868) consortium study recently confirmed the negative
association between PTSD and hippocampal volume [91]. Notably, hippocampal atrophy is also a
pathological hallmark of AD [92]. There is also suggestive evidence that PTSD may induce epigenetic
changes that disrupt a number of physiological mechanisms/systems such as the metabolic, immune,
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and inflammatory systems, which renders individuals with PTSD vulnerable for developing a variety of
co-morbid chronic diseases [93]. Aberrant immune responses may also interrupt anti-inflammatory Aβ
clearance mechanisms that creates a switch towards pro-inflammatory mechanisms which could cause
neuronal necrosis [94]. One consequence of this would be cognitive impairment. Indeed, PTSD has
been associated with impaired cognition [95–99], increased risk for dementia [94,99,100], and increased
Aβ burden [101], but see [102].

Although there were higher rates of current MDD among GWVs with MCI compared to the other
groups (24% vs. 8% and 6% in intermediate and CN), post-hoc analysis suggested that current MDD
was not significantly associated with MCI status in the present study. Nevertheless, it is noteworthy
that MDD has been associated with impaired cognitive function [103–106]. Furthermore, there is a
large body of literature suggesting that depression in late life [107–111] as well as middle age [112,113]
increases the risk of developing cognitive impairment and dementia. An epidemiological study of more
than 13,000 subjects found that the risk of developing AD was approximately doubled in individuals
with late-life depressive symptoms while the risk of vascular dementia was more than tripled in
those with both mid- and late-life depression [114]. Neuropathology studies have linked history
of depression with increased amyloid plaques and neurofibrillary tangles, two neuropathological
hallmarks of AD [115,116]. Prolonged damage to the hippocampus due to hypercorisolaemia may
play a role linking both PTSD and MDD to cognitive impairment and risk for dementia [100,117].

Consistent with epidemiological findings that substance use disorders are commonly comorbid
with PTSD [118–121] and MDD [122,123], there was a higher prevalence of history of alcohol
abuse/dependence in MCI group compared to the other two groups (44% vs. 19% and 23% in
intermediate and CN). Although post-hoc analysis suggested that history of alcohol use disorder
was not significantly associated with MCI status in the present study, like PTSD and MDD, heavy
alcohol use has been associated with deleterious effects on the hippocampus [124] and cognitive
function [125–128]. Future studies will be necessary to ascertain the relationship between PTSD, MDD,
history of alcohol abuse/dependence and MCI in GWVs.

Contact with dead animals during the GW has been considered a proxy for contact with
chemical warfare agents [129]. There have been reports of negative associations between self-reported
exposure to pesticides and cognitive performance in non-demented individual who live in areas near
pesticide-sprayed fields [130]. In the current study, GWVs with MCI reported higher frequencies of
coming into contact with dead animals and seeing their living area being sprayed or fogged with
pesticide during the GW; however, neither deployment-related exposure was significantly associated
with MCI status after accounting for race, rank, and PTSD in post-hoc regression analyses.

The current study also found a significant association between race (i.e., being non-white) and
MCI status. This is consistent with the reports of higher rates of MCI and dementia in African
Americans [131–135]. In fact, it has been suggested that African Americans and Hispanics may be
more likely to develop AD and other dementias than their non-Hispanic White counterparts [136,137]
because of differences in underlying risk factors [136–139]. There were also significantly more enlisted
personnel in the MCI group compared to the other two cognitive groups. In the U.S. Armed Forces,
military rank is commonly considered a proxy for socioeconomic status (SES) because higher SES
correlates with higher rank and there is a direct relationship between military rank and annual
income [140]. Many studies have found higher risk of AD and other dementias [141–146] and higher
rates of MCI [82,146,147] among individuals with lower SES. There is a well-established relationship
between higher SES levels and cognitive function, particularly for executive function and language
tasks [148]. One explanation may be that higher cognitive function leads to more intellectual and higher
paying occupations, and greater wealth affords enriching lifestyles than can contribute to cognitive
reserve [149], which may confer protection against the effects of neurodegeneration [150].

The findings of this study should be considered in the context of some limitations: first, this study
had a cross-sectional, non-random, non-experimental design because the parent study from which data
for the secondary analyses were derived was not originally designed to investigate the relationship
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between GW deployment and the prevalence of MCI. Thus, the current findings may not accurately
reflect the true prevalence or severity of MCI among GWVs and cannot determine causal links.
For example, history of TBI with loss of consciousness (LOC) has been associated with an approximately
2.5 year earlier diagnosis of MCI [151]. However, TBI with LOC was exclusionary in the parent study.
Further, the parent study excluded participants with a lifetime history of psychotic or bipolar disorders
and/or drug abuse or dependence in the past 12 months, which may have biased the current findings.
Second, MCI was defined using an actuarial neuropsychological criteria [33] and the GWVs did
not undergo neurological evaluations. Nevertheless, it is worth noting that MCI patients identified
with the actuarial neuropsychological criteria have been shown to exhibit significant cerebral spinal
fluid AD biomarker associations, more stable diagnoses, and have a larger percentage of individuals
who progressed to dementia than MCI patients diagnosed by the conventional MCI criteria [35].
Third, the present study used a hybrid of the actuarial neuropsychological criteria described by Jak
et al. [33] and Bondi et al. [35]. The original description of the actuarial neuropsychological criteria
employed three neuropsychological measures in five cognitive domains. Patients were categorized
as MCI if they had impaired scores on two measures in a cognitive domain [33]. In a subsequent
publication, the actuarial neuropsychological criteria was adapted for the ADNI sample and two
neuropsychological measures in three cognitive domains were used [35]. ADNI subjects were classified
as MCI if they had an impaired score on two measures in one cognitive domain or one impaired score
in three cognitive domains. Because the neuropsychological battery used in the parent study only had
one measure in the visuospatial domain and one measure in the language domain, we modified the
actuarial neuropsychological criteria to categorize GWVs as MCI if they had two impaired scores in the
cognitive domains with two measures (i.e., memory, executive function and attention), or one impaired
score in at least four of the five domains. Therefore, it may be possible that some of the GWVs classified
as “intermediate” in the present study may, in fact, have MCI. Finally, we did not have information
about the veterans’ premorbid cognitive abilities (e.g., from the Armed Forces Qualification Test).
Previous research has shown that low premorbid cognitive abilities may be a risk factor for MCI,
whereas high premorbid cognitive abilities may be protective against MCI [151].

5. Conclusions

Assuming that the prevalence of MCI in people under 60 is lower than the prevalence of MCI
in people aged 60–64, estimated to be 6.7% [80], the finding that 12% of GWVs (median 48 years
at the time of testing) had MCI is nearly twice the prevalence rate of MCI expected in the general
population. This finding is consistent with the idea that GWVs are aging at a faster rate than the general
population [6]. Furthermore, GWVs with MCI had hippocampal atrophy and a thinner parietal cortex,
two hallmarks of AD pathogenesis [78,79], compared to GWVs without MCI. Because individuals with
MCI develop dementia at a higher rate than the general population (10–15% versus 1–2% per year) [12],
if these results are confirmed in a larger, more general sample of GWVs, it may portend higher
rates of future dementia in deployed GWVs. With the advent of in vivo biomarkers of amyloid and
tau, AD is increasingly being conceptualized as a biomarker-driven diagnosis rather than a clinical
syndrome [152]. Therefore, it will be informative to examine in vivo levels of amyloid and tau in
GWVs with MCI in future studies.
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