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Enhanced astroglial GABA uptake in heart failure
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Chronic heart failure is characterized
by exaggerated sympathoexcitation in
both human patients and animal models.
Despite major advances in therapy, the
increased neurohumoral drive causes sig-
nificant cardiovascular complications that
contribute to increased morbidity and
mortality. Blunted GABAergic inhibition
in the hypothalamic paraventricular
nucleus (PVN) has been suggested as a
key integrating mechanism of the sympa-
thoexcitation associated with cardiovascu-
lar-related disorders such as hypertension,
diabetes, and heart failure. The GABA,L
receptor (GABAR), a pentameric ligand-
gated Cl™ channel, mediates 2 inhibitory
modalities in the PVN: a conventional
inhibitory synaptic current (IPSC) medi-
ated by synaptic GABARs, and a persis-
tent tonic inhibitory current (termed
Lonic)  generated by  extrasynaptic
GABAARs. As in other brain regions, Iionic
the dominant

mediates portion  of
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GABA R-mediated inhibition and thus
has a major impact on PVN neurons pro-
jecting to the rostral ventrolateral medulla
(PVN-RVLM) excitability."
However, the pathophysiological signifi-

neuronal

cance of I in  sympathoexcitation
remains poorly understood. In a recent
study using brain slice patch-clamping,”
Sudip and colleagues showed that I ypic
defined as the holding current shift by the
GABAAR antagonist bicuculline, was
attenuated in the PVN-RVLM in rats
with myocardial infarction (MI)-induced
heart failure (HF). The authors suggested
that this deficit in GABAergic tonic inhi-
bition of the pre-sympathetic neurons and
the resulting increased sympathetic out-
flow from the PVN during HF is attribut-
able to enhanced astroglial GABA uptake.

Lionic generated by activation of extrasy-
naptic GABA4Rs is tightly controlled by
extracellular GABA concentration as well
as the expression and combination of extra-
synaptic GABAsRs in specific brain
regions. In addition to vesicular GABA
release responsible for activating IPSCs,"
GABA released from glia contributes to
Lionic generation in the brain. GABA trans-
porter (GAT) reversal has been suggested
in pathological conditions, while a debated
role for the GABA-releasing anion channel
bestrophin-1 (Best-1) has been proposed
to explain physiological and pathophysio-
logical GABA release from glia. Despite
evidence for GAT reversal under patho-
physiological conditions, GATSs are gener-
ally believed to uptake extracellular GABA
into cells. Of the 4 GATs (GAT-1, GAT-
2, GAT-3, and BGT-1), GAT-1 and
GAT-3 are most likely to be expressed in
neurons and glia, respectively, and to be
responsible for ambient GABA levels in
the brain (Fig. 1.4 Pharmacological or
genetic inhibition of GAT-1 increases I,
nic Which is associated with neurological
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and psychological disorders. However, the
relationship between astroglial GABA
clearance by GAT-3 and its effects on I, ;.
modulation and neuronal activity under
pathological conditions are poorly under-
stood. Sudip and colleagues showed that
HF Inic attenuation was reversed by a
nonselective GAT blocker (nipecotic acid,
NPA) and a GAT-3 selective blocker
(SNAP-5114), but not by a GAT-1
blocker (NO-711), suggesting that astro-
glial GABA uptake plays a major role in I,
nic regulation of HF in PVN-RVLM
neurons,” as in the naive PVN.” To
exclude the involvement of BEST-1-medi-
ated GABA release in HF I, attenua-
tion, Sudip et al. showed that BEST-1
blockade did not affect I, in either
sham-operated or post-MI rats.

Given that I, amplitude correlates
with vesicular GABA release, HF I,opic
attenuation may result from reduced
ambient GABA concentrations related to
a decrease in IPSC frequency in HF
PVN-RVLM neurons.® Collectively, the
finding that GAT blockers mask and
reverse HF I, attenuation suggests that
blockade of enhanced GAT activity could
compensate and even overpower impaired
vesicular GABA release in HF PVN-
RVLM neurons. Using pharmacological
probes, Sudip and colleagues also investi-
gated possible changes in extrasynaptic
GABA4R function in HF. Reduced Ionic
sensitivity to THIP (4,5,6,7-tetrahydroi-
sothiazolo-[5,4-c]pyridin-3-ol) supported
decreased function of GABAAR 8§ subu-
nits in HF, whereas similar I,,;. sensitiv-
ity to benzodiazepines indicated that vy,
subunit-containing GABAARs do not dif-
fer between sham-operated and post-MI
rats. Thus, despite reduced GABAsR 8
subunit function, the increased impact on
GABAAR v, subunits mediating I
may enable GAT blockade to reverse
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Figure 1. Regulation of GABA4 tonic inhibition of the pre-sympathetic PVN neurons in normal rats and following heart failure. Combined with decreased
vesicular GABA release (A) and reduced function of extrasynaptic GABAsRs containing 8 subunits (B), enhanced astroglial GABA clearance via GAT-3
(€) attenuates GABA, tonic inhibition and increases neuronal firing in heart failure.

Lionic attenuation in HF PVN-RVLM
neurons.

Sudip et al. found that I, attenua-
tion increased membrane input resistance
(IR) and firing discharge rate in HF
PVN-RVLM neurons, indicating that I,
nie> as the dominant portion of GABAAR-
mediated inhibition, has a major impact
on PVN-RVLM neuronal excitability.'
The direct impact of Iy, on membrane
IR, and thus the membrane time con-
stant, may affect synaptic efficacy and
integration in neurons.” Accordingly,
Sudip and colleagues observed a leftward
shift in the input-output (I-O) function
of HF PVN-RVLM neurons, reversed by
NPA, suggesting that I, attenuation
significantly impacts neuronal sensitivity
to incoming excitatory and/or inhibitory
synaptic inputs in the HF PVN-RVLM.

Therefore, the increased impact on mem-
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brane IR and the I-O function would
enable GAT blockade to correct the
altered synaptic efficacy and integration
in HF PVN-RVLM neurons. This con-
clusion is further supported by the find-
ing that NPA efficiently inhibits the
increased spontaneous firing in HF PVN-
RVLM neurons.

In conclusion, Sudip and colleagues
showed that enhanced astroglial GABA
uptake attenuates Il,nic and, in turn,
increases neuronal firing of pre-sympa-
thetic PVN neurons in heart failure. The
data demonstrate a link between patho-
physiology and GAT-3 uptake modula-
tion of GABAAR tonic inhibition in the
brain during altered autonomic nerve
activity and highlight the potential of tar-
geting astroglial GABA clearance to
reduce sympathoexcitation associated with
cardiovascular disorders.
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