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Abstract: From the beginning of the COVID-19 pandemic, researchers assessed the impact of the
disease in terms of loss of life, medical load, economic damage, and other key metrics of resiliency
and consequence mitigation; these studies sought to parametrize the critical components of a disease
transmission model and the resulting analyses were informative but often lacked critical parameters
or a discussion of parameter sensitivities. Using SARS-CoV-2 as a case study, we present a robust
modeling framework that considers disease transmissibility from the source through transport and
dispersion and infectivity. The framework is designed to work across a range of particle sizes and
estimate the generation rate, environmental fate, deposited dose, and infection, allowing for end-to-
end analysis that can be transitioned to individual and population health models. In this paper, we
perform sensitivity analysis on the model framework to demonstrate how it can be used to advance
and prioritize research efforts by highlighting critical parameters for further analyses.

Keywords: disease transmission; COVID-19; SARS-CoV-2; transport and dispersion; infectivity;
disease transmission; respiratory mechanics; respiratory virus modeling; sensitivity analysis

1. Introduction

Upon recognition of the novel infectious agent SARS-CoV-2 in 2019, laboratories
across the world began to conduct fundamental research on the pathogen and the disease
(COVID-19) to evaluate host transmissibility, pathogen survivability and transport, and
severity and infectiousness to assess possible impacts. A 2020 Nature review showed the
exponential increase in published papers related to SARS-CoV-2 and COVID-19, as well
as the trends in topics [1]. The review demonstrated that research on epidemic model-
ing and controlling the spread of the disease initially outpaced research on diagnostics
and testing, public health, and hospital mortality. Early, heavily cited research showed
evidence of person-to-person transmission [2], clinical features of infected individuals [3],
and transmission stemming from asymptomatic individuals [4]. As respiratory trans-
mission became increasingly recognized as the dominant mechanism of contagion [5,6],
modeling efforts pivoted towards better understanding incubation periods [7], aerosol
survivability [8], and reproduction numbers [6,9,10]; these studies were geared towards
understanding the spread of COVID-19 and mechanisms for mitigating casualties. Due
to the unknown nature of the disease in these early days and no modern pandemic to act
as a foundational case study, model parameters and considerations were missing or not
well characterized/defined, which could have resulted in additional uncertainties around
results. Studies have presented models of particle generation and transport and even
considered the importance of particle size [9,10]; this paper adds to previous work by pre-
senting a complete model framework of person-to-person disease spread by a respiratory
transmission that couples particle generation, transport, and deposition to aid researchers,
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along with a methodology for understanding the influence of model parameters on results.
Although this paper uses SARS-CoV-2 and COVID-19 as a case study for the model, the
authors are presenting a generalized framework for communicable infectious respiratory
pathogens. We are using the framework and the SARS-CoV-2 parameterization to perform a
sensitivity analysis that aims to uncover the most influential parameters when considering
person-to-person disease transmission.

Early models of SARS-CoV-2 transmissibility were limited, in that the characterization
of risk was missing infectivity and resulting disease severity. The former is typically char-
acterized by a dose-response function with a median effective dose (ID50) and a measure of
spread (i.e., probit slope or confidence bounds) [11–14], whereas the latter involves models
that characterize onset time, progression of illness, and outcomes with or without treatment.
There were early attempts to derive an ID50 from transmission data by correlating it to
a reproduction number [15]; however, a tissue culture ID50 (TCID50) in ferrets was not
determined until later in the pandemic [16]. Similarly, the ID50 in non-human primates
for both symptomatic/asymptomatic expressions of illness were determined nearly a year
after the start of the pandemic [17]. Recently, an intranasal administration ID50 for humans
was estimated to be approximately 10 TCID50 [18]. Measured values of ID50 vary signifi-
cantly from species-to-species and introduce uncertainty in risk assessment. Other missing
parameters from much of the early research that could further add uncertainty include:

1. Information on aerosol transport and survivability that accounts for particle size;
larger particles may be less susceptible to environmental conditions [19] and smaller
aerosols can remain suspended in the air well down-wind from an infectious
person [20–22].

2. The relationship between RNA copies from PCR assays and live virions; estimates of
this value differed by orders of magnitude [23,24]; however, understanding the viral
load of respiratory droplets is crucial to quantifying the degree of transmissibility.

3. The viral content of exhaled particles generated as a function of the disease stage; a
necessary component to understanding the window of communicability for infectious
disease modeling, but also isolation requirements.

The degree to which these parameters are vital components of infection risk likely
varies by disease but understanding prediction sensitivity to these parameters will result in
the ability to assess individual parameter impacts and prioritize their derivation. Determin-
ing critical parameters would lead to comprehensive risk assessments where the generation
and presentation of an exposure environment can be directly correlated to human health
effects. An understanding of the missing or incomplete data ensures better quantification
of uncertainty and presents best/worst case scenarios for infections and mortalities in risk
assessment.

At a high level, the proposed framework captures important environmental and
biological features that impact emission, transport, infectivity, and disease progression. The
framework begins with an infectious individual emitting particles into an environment
as they breathe, talk, or cough (particle generation). Virus-laden particles immediately
degrade via evaporation with further decay determined by the ambient temperature,
humidity, and sunlight, and larger particles settle due to gravity, removing them from
the air (particle transport). The remaining particles present as an air concentration to a
susceptible human. The number of inhaled particles is estimated across different deposition
sites in the respiratory tract [25], which can either be taken individually or summed
across deposition sites to calculate the likelihood of infection (human response); thus, the
framework may be used to capture the transmission dynamics for a variety of contagious
respiratory diseases.

Using SARS-CoV-2 as a proof-of-concept, this paper provides qualitative descriptions
of the three submodels (i.e., particle generation, particle transport, and human response)
that form the end-to-end workflow, highlighting essential features of each (Section 2.1,
Section 2.2, Section 2.3). The baseline simulation scenario and approach for conducting a
sensitivity analysis of the full system are then defined (Sections 2.4 and 2.5). Results of the
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individual submodels, complete workflow, and sensitivity analysis are presented (Section 3).
Derivations and detailed model descriptions as well as accompanying source code are
provided in Appendix A, Appendix B, Appendix C: Appendix A contains equations and
parameter descriptions for the models, Appendix B contains additional results from the
sensitivity analysis, and Appendix C contains the Python implementation of the modeling
framework.

2. Materials and Methods

The model framework presented in this paper is designed to be used to analyze a
respiratory disease pathway from particle generation through the transport and dispersion
of the particles, ending with inhalation and infectivity. The workflow of this framework
is summarized in Figure 1. Note that the figure uses the terms “Particle Generation” and
“Particle Transport”. Many authors use the term “aerosol” to describe small particles,
typically below five microns in diameter, and “droplet” for larger diameters that tend to
settle more quickly; this difference in terminology, and the need to develop a single term
for what has typically been classified as aerosols and droplets, has been discussed in the
literature [26]; this paper does not distinguish between the two particle size groups as the
authors are presenting a generalized framework using algorithms that account for the full
range of sizes: a lower bound that is typically dictated by the size of a single infectious
agent and an upper bound that is dictated by the limits of respiration (i.e., respirable and
inhalable particle size). Throughout this paper, we use “particle” as the single term to
describe emissions from the respiratory tract, regardless of size or emission mode.
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susceptible person is expressed as a function of particle emission by an infectious person.

For this paper, we will use SARS-CoV-2 as the basis for discussion, but the model
framework is designed to be threat agnostic and includes generalized parameters for person-
to-person spread of other contagious respiratory diseases transmitted via the respiratory
tract. The first three subsections describe the submodels that form the computational
workflow; a detailed treatment of each submodel is provided in Appendix A. The last
two subsections provide the considerations and analysis underscoring the Results section.
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2.1. Particle Generation

To determine the initial air concentration of virus-laden particles, we consider a particle
generation submodel. The composition, rate, and initial size distribution of particles emitted
by an infective person is dependent on the mechanism of emission and the viral load in the
upper respiratory tract (URT)/lower respiratory tract (LRT) in the infectious person [27].

Particles are generated and emitted by healthy and diseased individuals. Respiratory
particles produced by infected individuals may carry airborne pathogens, and the surface
deposition and inhalation of these particles are the primary mechanisms by which many
contagious diseases, including SARS-CoV-2, are transmitted [28]. There are three primary
routes of exposure, in general, for respiratory particles from an infectious individual
to a susceptible individual: (1) respiratory particle emission and fomite deposition on
surfaces [29]; (2) respiratory particle emission and direct deposition to mucous membranes
or inhalation in close contact situations [30,31]; and (3) respiratory particle emission and
inhalation of the suspended airborne particles [32]; this paper and model framework
focuses solely on the third route of exposure.

The particle generation model describes the number, size distribution, and composition
of particles generated by an infectious human throughout the course of the disease. The
purpose of this model is to estimate the emission rate, size distribution, and composition of
the particles as they exit the infectious individual’s oral and nasal cavities. To determine
this environment, the model first characterizes the individual’s viral load in the upper
respiratory tract (URT) and lower respiratory tract (LRT) at the time of the emission event.
Studies with SARS-CoV-2 have shown varying viral load as a function of time and stage of
infection [33–35]. The mechanism of emission determines where particles originate [36];
the composition of those particles [37–39], including virion counts per particle as derived
from viral load [40–42]; and the size and number of those particles [38,43,44].

2.2. Particle Transport

To determine the exposure particle concentration and size distribution required for
an inhalability calculation, we consider a particle transport model. Concentration in the
air is dependent on humidity, temperature, sunlight, particle composition, and the initial
virus-laden particle emission rate [43]; these factors affect the number of particles present in
a volume of air, the size of those particles, and the number of live virions in those particles.

The particle transport model characterizes the transport, dispersion, and fate of parti-
cles and their viral component in the absence of a host (i.e., the surrounding environment).
The purpose of this model is to receive inputs from the particle generation model to estimate
the particle (and, specifically, virion) concentration downwind from the infectious person.
In indoor environments, air circulation, ventilation, and filtration are crucial components
of characterizing the environment, with ultraviolet (UV) radiation and temperature likely
playing a less significant role [44]. Humidity is important in indoor environments, partic-
ularly in considering the impact particle size due to drying has on filtration and settling.
For indoor environments, box models such as CONTAM and FaTIMA [45,46] have been
used to estimate concentrations over time; these models typically estimate the steady-state
concentration over time, accounting for particle removal via settling, filtration, air exchange,
or other factors. For outdoor environments, humidity, UV radiation, and temperature play
a significant role in particle dehydration and particle survivability. For example, particles
evaporate slower in humid environments, likely resulting in faster settling [47], UV radia-
tion diminishes viral activity [43], and experiments have shown crystallization of particles
can occur after a particle dehydrates, potentially leading to a decrease in infectivity [48].

2.3. Human Response

To calculate the output of an end-to-end model, we consider a human response model of
symptomatic infection and severity of the disease. Severe cases drive resource requirements,
resource shortfalls, and fatalities [49,50]. By considering infectivity and severity in a risk
assessment, it becomes clearer which models and parameters are most critical across the
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calculation. Significant drivers of disease severity are demographics [51], comorbidities [52],
and dosage [17]. Severity depends on whether an individual is infected, which is typically
determined by an ID50 and probit slope [9]. ID50 and probit slope can change depending
on the deposition site [53–55], which is contingent upon particle size; inhalability is also
affected by particle size and wind speed [56,57].

Infectivity is only the first part of a human response model—disease severity and
outcome are important to understanding impacts on human response. A viral disease that
generally presents as mild-to-moderate across a large portion of the population, such as the
common cold, will have significantly fewer impacts than a disease that generally presents
as severe-to-fatal, such as smallpox. COVID-19 has been shown to present from mild to
lethal at different distributions depending on the stage of the pandemic [58,59] and the
variant [60].

2.4. Numerical Simulations

To illustrate the behaviors produced first by the submodels, and then by the complete
workflow, the end-to-end model was parameterized to model the emissions, transport, and
deposition of SARS-CoV-2. We chose a set of scenarios that could be used to illustrate the
utility of the model and provide some insight into parameter influence on risk assessments.
Simulations run for this effort consider variations of the following example scenario:
suppose two individuals simultaneously enter a single, uncontaminated room with a floor
surface area of 25 m2 (A f loor) and volume (V) of 100 m3. At the time of entry (t = 0),
one individual is assumed to be newly infectious and the other SARS-CoV-2 susceptible.
The two individuals stand apart at a distance of greater than 2 m, as per social distancing
guidance. In our simulations, the infectious person emits SARS-CoV-2-laden particles via
breathing, speaking, and/or coughing immediately upon entry and continues to do so at
a constant rate of Ei for eight hours. We did not consider sneezing for these simulations,
as sneezing was not a significant sign/symptom of the alpha variant [3,7,61]. Sneezing
could be included in future analyses, particularly as we consider biological agents with a
higher incidence of sneezing. We assumed the individual who is susceptible to SARS-CoV-2
spends six hours in the room; this decouples the emission time and exposure time while
still providing enough simulation time to perform the sensitivity analysis. Thus, for a
given particle diameter di, the corresponding viral emission function Gi(t) is assumed to
be piecewise constant such that:

Gi(t) =

{
Ei, t ∈ [0, 8]
0, otherwise

Far-field transport and dispersion dynamics of the time-dependent viral concentration
in the room, Cvi(t), are governed by a simplified form of the ordinary differential equation
(ODE) used in FaTIMA to estimate concentration as a function of time [62]; this simplified
ODE for Cvi(t) is given by:

dCvi(t)
dt

=
1
V

Gi(t)−
[

1
V

(
Qr + vsi A f loor

)
+ kin f

]
Cvi(t)

In this scenario, the infectious person is the only source of contamination, and virus is
removed by three mechanisms: removal via ventilation, gravitational-induced settling on
the room floor, and viral decay. No consideration is given to airflow from other sources
outside the room (i.e., open window) and filtration (i.e., air purifier).

The room is assumed to be uncontaminated at t = 0 (i.e., Cvi(0) = 0). Using this initial
condition along with the above representation for Gi(t), it can be shown that Cvi(t) satisfies:

Cvi(t) =


Ei
α̂V

[
1− e−α̂i(t)

]
, 0 ≤ t ≤ 8

Ei
α̂iV

[
e−α̂i(t−6) − e−α̂i(t)

]
, t > 8
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where α̂i =
1
V

(
Qr + vsi A f loor

)
+ kin f .

The SARS-CoV-2 susceptible person is assumed to be continuously exposed for a total
of six hours, starting at t = 0. Table 1 summarizes the values assigned to parameters for
this baseline scenario. Unless stated otherwise, parameter values are fixed at their baseline
values. Numerical simulations were conducted for varying particle emission mechanisms
by the infectious individual (e.g., breathing, speaking, and coughing). The computational
framework, including all three models, was implemented in both MATLAB and Python
in accordance with best practices for coding verification. The Python implementation is
available in Appendix C.

Table 1. Parameters and values used for baseline scenario.

Symbol Description Units Baseline Refs.

ρd Particle density g/cm3 1 Assumed

Particle Generation

tG1 Time at start of particle generation h 0 Assumed

tG1 Time at end of particle generation h 8 Assumed

CMDB Count median diameter of particles generated in the bronchiolar region µm 1.6 [36]

GSDB Geometric standard deviation of particles generated in the bronchiolar region µm


1.30, i f breathing

1.30, i f speaking

1.25, i f coughing

[36]

ηB Number concentration of particles generated in the bronchiolar region #/mL


0.069, i f breathing

0.069, i f speaking

0.087, i f coughing

[36]

CMDL Count median diameter of particles generated in the laryngeal region µm


NA, i f breathing

2.5, i f speaking

1.7, i f coughing

[36]

GSDL Geometric standard deviation of particles generated in the laryngeal region µm


NA, i f breathing

1.66, i f speaking

1.68, i f coughing

[36]

ηL Number concentration of particles generated in the laryngeal region #/mL


NA, i f breathing

0.086, i f speaking

0.130, i f coughing

[36]

CMDO Count median diameter of particles generated in the oral region µm


NA, i f breathing

145, i f speaking

123, i f coughing

[36]

GSDO Geometric standard deviation of particles generated in the oral region µm


NA, i f breathing

1.80, i f speaking

1.84, i f coughing

[36]

ηO Number concentration of particles generated in the oral region #/mL


NA, i f breathing

0.001, i f speaking

0.016, i f coughing

[36]

Particle Transport

κ Dynamic viscosity of air cm · s 0.000181 -

g Gravitational constant cm/s2 981 -

V Volume of the room m3 100 Assumed

A f loor Surface area of the room floor m2 25 Assumed

Qr Return ventilation volumetric airflow rate m3/s 0.0278 Assumed

Human Response

tE1 Time at beginning of exposure h 0 Assumed

tE2 Time at end of exposure h 6 Assumed

WS Wind speed m/s 0 Assumed
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2.5. Sensitivity Analysis

Extended Fourier Amplitude Sensitivity Test (eFAST), a variance-based global sensi-
tivity analysis method [59], is applied to the end-to-end computational framework. eFAST
employs Fourier transformations to decompose output variance, which is then attributed
to fluctuations in the varied parameters using Sobol’s first-order and total sensitivity in-
dices [58,60,61]. eFAST is known to be computationally intensive, and therefore only a
subset of parameters can be included in the analysis. In this paper, we focus on parameters
whose estimates will presumably introduce the most uncertainty to model predictions, as
they are poorly understood or most likely to be unknown in real life.

Parameters selected for sensitivity analysis include evaporation diameter ratio (revap),
minute ventilation of the infectious individual (εdz), median viral load (µVL), standard
deviation of the viral load (σVL), viral decay rate (kin f ), super spreader emission factor
(λ), infectivity ratio (rin f ), median infectious dose (ID50), and slope of the probit function
(β). Prior to analysis, distributions for each selected parameter must be defined [61]; the
distributions assigned to each parameter are provided in Table 2. Note that for uniformly
distributed parameters with a range exceeding two orders of magnitude, sampling occurred
on a log-scale. All other parameters remain fixed at their baseline values listed in.

Table 2. Parameters with distributions for sensitivity analysis.

Symbol Description Units Baseline Value Distribution Refs.

Particle Generation

εdz

Respiratory minute
ventilation of the
infectious person

L/min 15 Uni f orm (5, 75) Assumed

Particle Transport

revap

Ratio of evaporated
particle diameter to

initial particle diameter
- 0.29 Uni f orm (0, 1) [48]

kin f Viral decay rate min−1 0.1577 Normal (0.1614, 0.0863) Derived from [43]

µVL Median viral load log10 RNA copies/mL 7.19 Uni f orm (3, 13) Derived from [63]

σVL

Standard deviation of
the viral load for the
infectious individual

log10 RNA copies/mL 1.35 Normal (1.58, 0.22) Derived from Ref. [63]

λ
Super spreader
emission factor - 20 Uniform (0, 40) [52]

rin f Infectivity ratio RNA copies/TCID 102 Uni f orm
(
101 , 106

)
[23,24]

Human Response

εndz

Respiratory minute
ventilation of the

SARS-CoV-2 susceptible
person

L/min 10 Uni f orm (5, 75) Assumed

ID50 Median infectious dose TCID50 10 Uni f orm
(
10−1, 104

)
[17]

β
Base-10 probit slope for

the probability of
infection

log10 1 Uni f orm (0.25, 1.5) [17]

The baseline and distribution of the viral decay rate was derived from by uniformly
varying temperature (0–30 ◦C), humidity (0–100%), and UV irradiance (0–1.9 W/m2) as
inputs to the predictive model proposed by Dabisch [43]. The probability of infection
(Pin f ect) was chosen as the output of interest; that is, eFAST is used here to understand how
changes in the selected parameters influence predictions of Pin f ect. Results were obtained
using coughing and breathing as the emission mechanism, with the latter scenario serving
as validation.
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Each parameter was selected to be representative of SARS-CoV-2 and a COVID-19
infection. The literature review resulted in parameter selection; the reference used for each
parameter is given in the tables. Parameters that define the scenario were not selected for
variation. Room size, exposure duration, and other parameters from Table 1 are scenario-
dependent parameters, and not parameters that are specific to SARS-CoV-2. The parameters
in Table 2 are specific to SARS-CoV-2 particle generation, transport, and infectivity, and
for the purpose of the sensitivity analysis are ideal parameters for use within a sensitivity
analysis. For the parameters included in the sensitivity analysis, we attempted to decouple
the infectious individual from the susceptible individual. For example, we selected different
baseline minute ventilations for the infectious and susceptible individuals; however, we
used the same distribution of minute ventilations for both the infectious and susceptible
individuals.

eFAST uses total and first-order sensitivity indices to measure the sensitivity of output
to the parameters of interest. First-order sensitivity indices capture the contribution of the
individual parameter to the overall output variability, whereas the total indices measure
the individual contribution of the parameter as well as that resulting from its interaction
with other model parameters. Both indices lie in the interval [0, 1], with values closer to
one indicating a greater influence on variation in the predicted output. When nonlinear-
ities are prevalent in a model, as is the case here, the total sensitivity index is the most
appropriate measure to consider when examining sensitivity of model parameters [64].
Consequently, results presented herein are in terms of the total sensitivity index. The first-
order results are provided in the Appendices. In addition to computing sensitivity indices,
eFAST allows for significance testing to determine whether the influence of a parameter on
a model output can be considered statistically notable. A detailed treatment of the method
itself and accompanying statistical significance testing can be found in Marino, 2008 [58].

Here, eFAST is performed using 993 simulations per parameter, with each parameter
resampled 15 times, totaling 163,845 simulations. Statistical significance was established
using a two-sample t-test applied to the parameter resampling with a significance level
of α = 0.01. To reduce the likelihood of incorrectly identifying a non-influential model
parameter as significant, a Bonferroni correction factor was applied [65]. The sensitivity
analysis was executed in MATLAB, adapting to MATLAB implementation of eFAST for
biological systems consisting of ordinary differential equations by Marino, et al. [58] to suit
our computational framework.

3. Results

Using the scenario specified in Section 2, with parameters specified in Tables 1 and 2,
numerical simulations were first performed to illustrate the dynamics exhibited in each
of the submodels and the full framework for SARS-CoV-2/COVID-19. Additionally, we
sought to identify the parameters that are drivers of transmissibility with a particular
interest in parameters where exact values remain unknown, allowing for uncertainty to
be introduced into the final predictions. Such influential parameters can be discovered by
performing a sensitivity analysis, which aims to quantify how fluctuations in parameters
impact a model’s behavior [66].

3.1. Numerical Simulations

Particle Generation. Figure 2 shows plots of the particle concentrations emitted from
each region of the respiratory tract via breathing, speaking, and coughing for varying
particle sizes, which is input to the particle generation submodel. Particle concentrations
from the bronchiolar (Figure 2A) and laryngeal (Figure 2B) sites encompass both small
(sub-micron) and large (>5 micron) particle sizes.
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Figure 2. Particle concentrations versus particle size for different emission mechanisms (breathing,
speaking, and coughing). Subplots (A–C) describe the concentrations emitted from the bronchiolar,
laryngeal, and oral regions, respectively.

Figure 3 is calculated from data from Figure 2 and demonstrates the particle concen-
tration contributions from the bronchiolar (CBi, dark blue), laryngeal (CLi, light blue), and
oral (COi, yellow) regions during coughing as well as the total particle concentration (Ci,
brown). Most particles generated via the respiratory tract are below ten microns (µm)
(from the bronchiolar and laryngeal regions) with a non-negligible concentration above
20 µm from the oral region. The larger particles from the oral region are expected to settle
rapidly, however particles in the 20 µm range can remain suspended in the air at a low
concentration. Figure 4 shows the viral emission rates, further extrapolated from Figure 3.
Since the larger particle sizes carry orders of magnitude more virus than the lower particle
sizes, we are showing this in linear-log space (A) and log-log space (B). Low viral emission
rates occur predominantly for particle sizes smaller than 0.5 µm, suggesting that they are
unlikely to contain an infectious virus. Meanwhile, the majority of expelled virus takes
place for particle sizes over ten microns, where we see an order of magnitude increase in
viral concentration of particles every 20 microns.
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Particle Transport. Figure 5 presents the calculated viral concentration in the air as a
function of time (Cvi(t)) for different particle diameters of increasing size (0.29 µm, 2.9 µm,
and 29 µm). Viral concentration increases as particle size increases, which is a byproduct of
this same relationship being present in the viral emission rates (see Figure 4). The larger
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particles will settle faster. The viral concentration of the remaining larger particles, however,
will remain several orders of magnitudes higher than the smaller particles.
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Figure 5. Time-series predictions for the viral concentration in the air of the indoor room (Cvi(t))
produced by the Particle Transport submodel during coughing.

Human Response. The inhalable fractions for different particle sizes are shown in
Figure 6 and are input to the human response submodel. Since wind speed for the base-
line scenario (and most indoor scenarios) is set at 0 m/s, the resulting rapid drop-off of
inhalability for larger particles is expected (blue curve); however, it is worth noting that
for di = 20 µm, ~65% of the particles are still inhalable. Particles with this diameter will
have orders-of-magnitude higher viral concentration than smaller particles that are 100%
inhalable. If the windspeed is increased, the inhalability of large particles increases as
shown with the red curve. At 4 m/s, 20 µm particles have an ~95% inhalability; this will
be a significant factor outside, where large particles will travel further and have a higher
likelihood of being inhaled.
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Figure 7 plots the deposition fractions (including inhalability) at the upper respiratory
tract, tracheobronchial region, and pulmonary region versus particle size, calculated by the
human response submodel. Observe that larger particles are unlikely to be deposited in
the tracheobronchial and pulmonary airways and will instead be filtered out by the upper
respiratory tract. As demonstrated above, a decrease in inhalability results in a decrease of
overall deposition for larger particles.
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Now, suppose the exposure period of the SARS-CoV-2 susceptible person is varied
but does not exceed 12 h; that is, tE2 is no longer fixed at six hours but instead, tE2 ∈ [0, 12].
The susceptible person is still at a distance of greater than 2 m from the infectious person,
so the only exposure continues to be via the steady-state concentration. The TCID50 used in
this analysis is of the same order as that for symptomatic presentation of disease [17] for the
alpha variant of SARS-CoV-2. The subplots (B) and (D) of Figure 8 display how the median
and 95th percentile for the Probability of Infection (Pin f ect) change as the exposure period
increases for virus emitted via coughing, speaking, and breathing. If the infectious person in
the room is coughing, the probability of infection reaching approximately 50% after an hour
even if the susceptible person is not directly interacting with the infectious person. After
seven hours, that likelihood of infection increases to 90% for the 95th percentile. Subplots
(A) and (C) of Figure 8 display analogous results for the total deposited dose, Dtotal . The
results accurately capture how infection risk is greater under coughing as compared to
breathing. Figure 9 shows the same outputs for a scenario wherein the ventilation in the
room is turned off. Whereas the total cumulative dose increases in (A) and (C), we only see
an appreciable increase in the Probability of Infection for the 95th percentile case, where
all modes of particle emission result in a 50% probability of infection within two hours
of exposure.

3.2. Sensitivity Analysis

The total sensitivity indices produced by eFAST for the median and 95th percentile of
Pin f ect resulting from exposure to SARS-CoV-2 contaminated particles emitted by
an infectious person breathing and coughing are presented in Figures 10 and 11, respectively.
The parameter rankings are displayed in Table 3.
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Figure 8. Total deposited dose (Dtotal) and probability of infection (Pin f ect) for varying continuous
exposure periods. The orange dashed line in each subplot represents the ID50 or 50% chance infection.
Subplots (A,B) correspond to the median values, whereas (C,D) to the 95th percentile. In our baseline
scenario, this is only met for the 95th percentile of Dtotal (or Pin f ect) and if coughing or speaking is the
particle emission mechanism into the environment by the infectious person.

Viruses 2022, 14, x FOR PEER REVIEW 14 of 31 
 

 

 

Figure 9. Total deposited dose (Dtotal) and probability of infection (Pinfect) for varying continuous 

exposure periods with ventilation turned off. The orange dashed line in each subplot represents 

the ID50 or 50% chance infection. Subplots (A,B) correspond to the median values, whereas (C,D) 

to the 95th percentile. 

3.2. Sensitivity Analysis 

The total sensitivity indices produced by eFAST for the median and 95th percentile 

of 𝑃𝑖𝑛𝑓𝑒𝑐𝑡 resulting from exposure to SARS-CoV-2 contaminated particles emitted by an 

infectious person breathing and coughing are presented in Figures 10 and 11, respectively. 

The parameter rankings are displayed in Table 3. 

 

Figure 10. Total sensitivity indices (ordered from largest to smallest) derived using eFAST for the 

median 𝑃𝑖𝑛𝑓𝑒𝑐𝑡 and 95th percentile of 𝑃𝑖𝑛𝑓𝑒𝑐𝑡 with breathing as the emission mechanism. Asterisks 

(*) indicate statistically significant sensitivity indices (α = 0.01). 

Figure 9. Total deposited dose (Dtotal) and probability of infection (Pinfect) for varying continuous
exposure periods with ventilation turned off. The orange dashed line in each subplot represents the
ID50 or 50% chance infection. Subplots (A,B) correspond to the median values, whereas (C,D) to the
95th percentile.
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Figure 10. Total sensitivity indices (ordered from largest to smallest) derived using eFAST for the
median Pin f ect and 95th percentile of Pin f ect with breathing as the emission mechanism. Asterisks (*)
indicate statistically significant sensitivity indices (α = 0.01).
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Figure 11. Total sensitivity indices (ordered from largest to smallest) derived using eFAST for the
median Pin f ect and 95th percentile of Pin f ect with coughing as the emission mechanism. Asterisks (*)
indicate statistically significant sensitivity indices (α = 0.01).

Note that there are noticeable consistencies between the two outcomes (median and
95th percentile Pin f ect) for the two emission methods (breathing and coughing), both in the
rankings of the parameters’ sensitivity indices and in the set of parameters identified as
influential. With respect to all outputs, µVL, rin f , revap, ID50, εndz, β, and εdz were identified
as statistically significant, suggesting variability in the median Pin f ect is sensitive to changes
in these parameters. σVL and λ were also identified as statistically significant for the 95th
percentile of Pin f ect. Visual inspection of Figure 11 reveals total sensitivity index for µVL
(the median viral load in the infectious person) is clearly delineated from those for the
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other parameters for all four emission routes and outcomes. The parameter ranked as
the second most influential, rin f (the ratio of RNA copies to live virions), is also distinct
from the remaining parameters. While less extreme than that of µVL, the magnitude of
this difference is still readily evident. In all cases, the ID50 (the median infectious dose)
is the third most influential parameter. The consistency of these results between the
two outcomes strengthens the validity of their importance.

Table 3. Ranking of the total sensitivity indices for the median and 95th percentile Pin f ect with
breathing and coughing as the emission mechanisms. Yellow shaded cells indicate parameters that
were determined to be statistically significant.

Total Sensitivity Index Ranking

Median Pinfect 95th Percentile PinfectParameter Parameter Description

Breathing Coughing Breathing Coughing

εdz
Respiratory minute ventilation of

the infectious person 5 7 7 9

revap
Ratio of evaporated particle size to

initial particle size 7 4 9 8

kin f Viral decay rate 10 9 10 10

µVL Median viral load 1 1 1 1

σVL Standard deviation of the viral load
for the infectious individual 9 10 4 7

λ Super spreader emission factor 8 8 6 5

rin f Infectivity ratio 2 2 2 2

εndz Respiratory minute ventilation of
the SARS-CoV-2 susceptible person 6 5 8 4

ID50 Median infectious dose 3 3 3 3

β
Base-10 probit slope for the

probability of infection 4 6 5 6

Observe that, with respect to the 95th percentile Pin f ect, total sensitivity indices of the
σVL and λ were also found to be statistically significant, but not for the median; this is
an expected consequence of the model design, as these two parameters are involved only
in the calculation of the 95th percentile Pin f ect, and not in that of median Pin f ect, further
reinforcing the credibility of the results.

The first-order indices for coughing identified similar parameters as statistically signif-
icant as the total sensitivity indices with one exception (results not shown; see Appendix B).
The probit slope β was not identified as significant for the median Pin f ect for the coughing
scenario. It is common that there are slight differences between parameters identified as
statistically significant by this index when compared to the total index. The first-order in-
dices for breathing identified fewer statistically significant parameters than total sensitivity
indices for both the median and 95th percentile Pin f ect. The first-order sensitivity analysis
did not identify revap as statistically significant for the median Pin f ect. β was not identified
as statistically significant for the 95th percentile Pin f ect. We note that µVL, rin f , and ID50
remain ranked as first, second, and third most influential parameters, respectively in both
the first-order and total sensitivity index for breathing and coughing emissions.

4. Discussion

The results presented in Section 3 provide insight into the inputs and outputs of an
end-to-end, particle size-inclusive disease transmission model. We will discuss the results
of the individual submodels before discussing the overall parameter sensitivities.
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4.1. Numerical Simulations

Particle Generation. The particle generation results begin to show one of the core
reasons to include a range of particle sizes in analysis: large particles are generated, and
they carry orders of magnitude more virus than smaller particles. The viral load is driven
by several factors that can be included in the model such as the viral load in the individual
(which would be a function of the individual and their time since exposure); however, an
underlying assumption could be made that the ratio of virions in small to large particles will
be consistent regardless of those factors. Considering risk to a susceptible person, inhaling
large particles would result in an inhaled dose of infectious agent that would be several
orders of magnitude higher than that of the smaller, more abundant particles, resulting in a
higher likelihood of infection. Large particles are often discounted from analysis as they
tend to settle quickly or are not as inhalable as smaller particles. While both arguments are
true, the expected viral load in these large particles greatly outweighs increased settling
or decreased inhalability; this phenomenon is shown in the Particle Transport submodel.
One consideration that we did not include in our analysis was the dependence of initial jet
flow dynamics and turbulence on the respiratory dynamics driving the emission events
(e.g., normal breathing or coughing and sneezing [67]); these events can cause additional
lifting of larger particles, eventually resulting in settling further away from the infected
individual.

Particle Transport. The particle transport submodel shows how the presented viral
concentration over time is largely driven by particle size. Using FaTIMA, simulation results
show that larger particles (29 µm) remain suspended in the air long enough to present
approximately four orders-of-magnitude higher viral concentration than smaller particles
(0.29 and 2.9 µm) despite contributing an order of magnitude fewer total particles to the
presented concentration; this alone inherently shows the risk of being collocated in a room
with an individual who is coughing, even if standing away from the infectious individ-
ual. Modeling suites such as FaTIMA have been used to estimate indoor concentrations;
however, they are not designed to handle complex materials (i.e., multiple particle sizes,
wet/dehydrating particles) that include multiple sources, particle size distributions, and
particle composition, nor do they account for evaporation of the volatile water content in
respiratory particles. To account for this, we used post-evaporation particle sizes in our
implementation of FaTIMA. Another factor not considered is proximity to the infectious
individual. In this scenario we considered a susceptible individual standing far enough
away from an individual that only the steady-state concentration in the room would con-
tribute to the presented concentration. One can surmise that if an individual is closer to the
emitter, the concentration of larger particles will be greater as they have not settled, and
the likelihood of infection would increase at shorter exposure times.

Human Response. The particle transport submodel demonstrated the particle sizes
and viral concentrations to which a susceptible individual could be exposed. The human
response submodel showed the inhalability of those particles and where they deposit before
considering infectivity. The results show that large particles (greater than 10 microns) are
still inhalable, with over 65% being inhaled. Additionally, large particles are more likely
to deposit once inhaled, whereas smaller particles can be exhaled. The results in Figure 7
show this phenomenon; smaller particles with 100% inhalability only have 60% or less
deposition in the respiratory tract. Conversely, larger particles that have a 60% or greater
inhalability fraction have a 100% deposition in the respiratory tract.

The results also show which region particles deposit in as a function of size, with larger
particles depositing in the upper respiratory tract and smaller particles deposited primarily
in the pulmonary and tracheobronchial region; this is an important phenomenon, as
evidence of decreased infectivity for biological agents deposited in the head has been shown
for several pathogens and toxins; this has not yet been shown to be the case experimentally
for COVID-19 but is an area of additional uncertainty that could be included in the model.

The model also did not account for disease severity. Dabisch [17] showed a difference
in the ID50 for seroconversion vs. illness which is one aspect of severity that can account for
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asymptomatic individuals but does not account for differences in severity for symptomatic
individuals. Typically, severity models are developed from observation to the distribution
of severities across demographic cohorts. A greater understanding of host immune response
and extrapolation between species could eventually result in predictive models of disease
severity at the early stages of an epidemic.

4.2. Sensitivity Analysis

There are mathematical and physiological explanations for the results obtained by
eFAST. Recall from Section 3 that the three most important model parameters, as determined
by eFAST, are the median viral load (µVL), infectivity ratio (rin f ), and median infectious
dose (ID50). It is worth noting that the median viral load is a parameter that will vary
widely from one individual to the next and that the infectivity ratio is a value that has
not been well characterized for SARS-CoV-2. The ID50 is a parameter that has been
characterized in humans. Physiologically, the magnitude of viral particles generated across
individuals are distributed lognormally, with super spreaders shown to generate orders of
magnitude more virus than a mean spreader. The introduction of µVL at the beginning of
the end-to-end framework leads to its variability and influence being recognized within
each submodel, from particle generation through human effects. By assuming a size-
independent concentration of virions in the emitted particles, larger particles would be
laden with significantly more live virions whereas smaller particles would still be limited by
the size of the virion compared to the volume of the particle. The authors note that a recent
study found that particles over 4 microns generated in six hospital rooms contained RNA
copies but not evidence of replicating virus in these droplets [68]. The author hypothesized
that particles generated in the respiratory tract are more likely to be culturable. The
model as presented could be expanded in the future to include a particle-size dependent
concentration of RNA copies or ratio of RNA copies to live viruses. The significance of the
infectivity ratio (rin f ) is likely a result of its use being to estimate the number of live virions
as a function of RNA copies, a value that directly influences the number of inhaled virions
by a susceptible individual. µVL and rin f are parameters with an understood wide range of
values and are positioned at the beginning of the end-to-end model; their influence on the
output is expected. The ID50 is used at the end of the calculation to estimate probability
of infection for a deposited dose; since probability of infection is the output of the model,
the ID50 being identified as an influential parameter makes logical sense. Understanding
the influence of these parameters early in the pandemic could have been a driving force to
prioritizing research.

Observations can be made when comparing across emission mechanisms. The ranked
order of influential parameters is consistent for the top three parameters (µVL, rin f , and
ID50) when comparing breathing to coughing. The fourth most influential parameter for
breathing is the probit slope, whereas the fourth most influential parameter for coughing
is a measure of particle size as it pertains to evaporation. The intuitive difference is in
the effect of evaporation on small particles that result from breathing compared to large
particles that result from coughing. For the larger particles, the evaporation dictates settling
velocity and presented concentration. For the smaller particles, evaporation does decrease
the size of the particle and its settling velocity, but the settling velocity is already very small
and has an insignificant effect on the airborne concentration.

It is also worth noting the probit slope (β) was consistently less influential in the first-
order sensitivity indices than in the total sensitivity indices. For the first-order sensitivity
indices of the median Pin f ect and the 95th percentile Pin f ect, β was not identified as a
statistically significant parameter. The influence of β can be surmised when Figure 8,
particularly noting the deposited TCID50 across the different scenarios using the baseline
values. Table 4 shows a summary of the approximate TCID50 alongside the sensitivity
ranking and the statistical significance of β. The two scenarios where the baseline values
result in a deposited TCID50 of approximately 1 both resulted in β not being identified
as significant. A deposited dose of 1 TCID50 is close to the baseline ID50 of 10 TCID50,
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and changes to the probit slope will not have a great effect on the outcome, especially
considering the probit slope distribution of 0.25 to 1.5 as specified in Table 2. Conversely,
the two scenarios where β was identified as significant had deposited doses of 1 × 104 and
1 × 10−4 TCID50. Deposited doses this far from an ID50 of 10 TCID50 will be more sensitive
to the probit slope.

Table 4. Deposited dose and sensitivity index ranking/significance for β across multiple scenarios.

Scenario ~Deposited Dose (TCID50) Ranking (Statistically Significant)

Coughing/Median Pin f ect 1 7 (Insignificant)

Coughing/95th percentile Pin f ect 1 × 104 8 (Significant)

Breathing/Median Pin f ect 1 × 10−4 5 (Significant)

Breathing/95th percentile Pin f ect 1 9 (Insignificant)

It is notable that eFAST identifies kin f , the viral decay rate, as a not significantly
sensitive parameter across all scenarios; this could be due to our scenario: the emission
of particles by a single individual for a period of time within an enclosed, well-ventilated
space. Virus-laden particles were constantly being added to the environment and the
viral decay rate was not rapid enough to depreciate the viral concentration considerably
compared to removal by settling or ventilation. The significance of this parameter could
obviously change in outdoor environments, where UV intensity is a significant driver of
viral decay.

The influential parameters identified herein are deemed as such by eFAST because—
by design—fluctuations in their value disseminate to a significant amount of variation in
model output; ergo, uncertainty in their values will propagate to uncertainty in model
output. Gaining a better understanding of these influential parameters and obtaining
accurate estimates of their values will help to inform and prioritize future research, with
the goal of reducing uncertainty in subsequent risk assessment and mitigation techniques.

5. Conclusions

In this paper, we present a robust modeling framework of person-to-person dis-
ease spread for respiratory transmitted biological pathogens that considers disease trans-
missibility using three submodels: (1) particle generation; (2) transport and dispersion;
and (3) human response (i.e., infectivity and severity of symptoms/clinical presentation
of infected individuals). Although developed and validated using data generated and
collected from SARS-CoV-2 and COVID-19 studies, the framework is designed to work for a
range of pathogens and particle sizes and estimates the generation rate, environmental fate,
deposited dose, and infection/severity. Thus, it provides a generalizable, threat-agnostic,
end-to-end analytic approach that can be applied to emerging communicable infectious
respiratory pathogens of varying particle sizes and can be transitioned to individual and
population health models accounting for varying levels of disease severity. A global sensi-
tivity analysis performed on the model framework identified critical parameters associated
with respiratory disease throughout the transmission process; this knowledge can be used
to advance and prioritize research efforts by highlighting key parameters of the transmis-
sion cycle needing rigorous quantification. Further, the outputs of the end-to-end analytic
framework can also be applied to inform operational decision-making by identifying which
stages of the disease transmission life cycle should be targeted for optimal risk mitigation
and effective risk management; this framework ultimately adds value for risk analysis con-
sidering an emerging contagious disease and is complemented by a parameter sensitivity
analysis to highlight critical parameters, categorize uncertainty, and prioritize gaps.
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Appendix A. Detailed Model Discussion

In this appendix, we provide greater detail and the accompanying equations for the
proposed end-to-end modeling framework. Following the format of the main body, we will
divide this section into Particle Generation, Particle Transport, and Human Response.

Appendix A.1. Particle Generation

The particle generation submodel characterizes the respiratory particles released into
the air by an infectious individual via different emission mechanisms and the subsequent
evaporation of most of the volatile liquid (water) content from the particles. Figure A1
summarizes the workflow of this submodel. The first step in developing a model of
respiratory particle emission is to physically characterize the particles. Respiratory particles
are heterogeneous and vary in number, size, chemical composition, and viral content
depending on the generation mechanism, the stage of infection, as well as inter- and intra-
subject variability [32,36,69,70]. Accounting for this heterogeneity is an important step in
quantifying the potential uncertainty in particle emission from an infected individual. The
physical characterization of emitted respiratory particles will allow for improved modeling
of the fate of respiratory particles in the environment and inform estimates of inhalation,
deposition, and infectivity within the respiratory tract of susceptible populations.

A simplified schematic of a respiratory particle as it is emitted from an infectious
person is shown in Figure A2. The particle can be described as a combination of volatile
liquid (such as water), non-volatile and non-soluble materials (an actively infectious com-
ponent and other material, such as proteins), and non-volatile, soluble materials that are
suspended in the liquid portion (such as salts). As the particle is transported, the volatile
material evaporates, leaving the non-volatile and soluble portions of the particle.

https://www.mdpi.com/article/10.3390/v14071567/s1
https://www.mdpi.com/article/10.3390/v14071567/s1
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Figure A1. Visualization of the particle generation submodel workflow. Due to the rapid time scale
at which it occurs (i.e., within the first 50 s), near-field dynamics of the Particle Transport submodel
(Evaporation box in green) is displayed alongside the Particle Generation submodel. Red circles
indicate parameters selected for sensitivity analysis (see Section 2). All notation definitions are
provided in Table 1.
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A saliva particle, for example, is composed of approximately 3% well-mixed non-
volatile components and 97% water by mass [71]. The nonvolatile components are varied,
as shown in Table A1. Most of a saliva particle is made up of salts (NaCl and KCl) and
mucin; these components will affect the dehydration and rehydration of particles and, for
a high-fidelity model, should be tracked. For dehydration, we used data from [48] and
consultation with Walker to determine post-evaporation diameters from pre-evaporation
diameters. We settled on a post-evaporation diameter of 29% of the original pre-evaporation
saliva particle size.
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Table A1. Components of a saliva particle. The first two columns were calculated in [48] and the
other columns were calculated.

Component Concentration (Mass per
Liter of Fluid) (g/L)

Density of Component
(g/L)

Volume of Component/Dry
Particle Volume

Weighted Density in Dry
Particle (g/L)

MgCl2 0.04 2320 4.52 × 10−3 10

CaCl2.H20 0.013 2240 1.52 × 10−3 3

NaHCO3 0.42 2200 5.01 × 10−2 110

KH2PO4 0.21 2340 2.35 × 10−2 55

K2HPO4 0.43 2450 4.59 × 10−2 112

NH4Cl 0.11 1530 1.89 × 10−2 29

KSCN 0.19 1900 2.62 × 10−2 50

(NH2)2CO (urea) 0.12 1340 2.35 × 10−2 31

NaCl 0.88 2165 1.07 × 10−1 231

KCl 1.04 1984 1.37 × 10−1 273

Mucin 3 1400 5.62 × 10−1 787

DMEM 1 mL per liter of fluid - - 14

Alpha-amylase - - - -

Deionized water 979 mL per liter of fluid - 0 0

Sum - - - 1706

Respiratory particles are primarily generated in three locations within the human res-
piratory tract. Studies have characterized primary emission locations and mechanisms [36].
First, respiratory particles are generated during normal breathing and these particles are
generally in the range of 1–2 µm in diameter [72]. Second, respiratory particles may also
be generated in the larynx during activities such as speaking or coughing; these particles
are also in the range of 1–2 µm in diameter when expelled from the respiratory tract. The
final primary location of particle generation is the oral cavity; this generation mechanism
is primarily associated with coughing and to a lesser extent with speaking, and these
particles are much larger in size (approximately 100 µm in diameter) when measured at
emission [36]. Particles generated by these three locations during speaking, coughing, and
normal breathing are quantified in terms of the count median diameter (CMD), geomet-
ric standard deviation (GSD), and number concentration (η) [36]. Values for these three
parameters for each respiratory activity are provided in Table A2.

Table A2. Size distribution of particles emitted via breathing, speaking, and coughing.

Breathing Speaking Coughing

Location CMD
(µm) GSD Concentration

(#/cm3)
CMD
(µm) GSD Concentration

(#/cm3)
CMD
(µm) GSD Concentration

(#/cm3)

Bronchiolar 1.6 1.30 0.069 1.6 1.30 0.069 1.6 1.25 0.087

Laryngeal N/A N/A N/A 2.5 1.66 0.086 1.7 1.68 0.130

Oral N/A N/A N/A 145 1.80 0.001 123 1.84 0.016
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For our implementation of the model, emission rate varies with particle size and is
determined by assuming a lognormal particle size distribution combining the contributions
from each source for particle size bins ranging from 0.1 µm in diameter to 100 µm in
diameter. A lower and upper size limit should be selected for virus-containing particles.
For example, the lower size limit for virus-containing respiratory particles of 0.1 µm can
be chosen based on the 100 nm estimated size of SARS-CoV-2 and the estimated initial
water content of the respiratory particles being >90% [38]. The upper size limit for virus-
containing respiratory particles of 100 µm was chosen based on an estimated settling time
of less than 20 s for particles larger than 100 µm in diameter. Therefore, the submodel
assumes particles larger than 100 µm in diameter will deposit to surfaces quickly and are
not a long-term airborne exposure risk in most situations.

For a given pre-evaporation particle diameter di, the total particle emission rate, Ei,
depends on the minute ventilation of the infected subject (εdz), the source of the particles
(bronchiolar, laryngeal, or oral), and the emission mechanism (breathing, speaking, or
coughing) within the respiratory tract. More specifically,

Ei = εdz
(
CBi + CLi + COi

)
where CBi, CLi, and COi denote the particle number concentration emitted from the bron-
chiolar, laryngeal, and oral sites, respectively, as determined by the corresponding values
of CMD, GSD, and η. Note that the minute ventilation εdz is the product of the tidal
volume and breathing frequency both of the infectious subject. The above equation for Ei is
equivent to that given by Equations (2) and (3) in Figure A1.

Polymerase chain reaction (PCR) tests measure the number of RNA copies per vol-
ume of liquid sample collected; however, these viral RNA counts are not an indicator of
infectiousness as they can include non-infectious viral genetic material that has been neu-
tralized by the immune system and is cleared by the respiratory tract [34,73]. For this model
framework we are interested in the infectious viral content being emitted and therefore,
introduce an infectivity ratio (rin f ) between RNA copies and plaque forming units (PFUs).
The complete conversion process (number of particles to RNA copies to TCID50) to estimate
the viral emission rate is summarized by Equations (2)–(4) in Figure A1. This study makes
the assumption that the concentration of RNA copies in each pre-evaporation particle is
equal to the viral load measured by PCR tests. As the particle dries after emission from the
respiratory tract, this viral concentration will increase with the decrease in particle volume.

Viral load measured by PCR tests was also found to vary considerably from subject to
subject. For example, one study found that viral loads for SARS-CoV-2 positive individuals
vary from 6.99 × 102 to 4.71 × 108 RNA copies/mL with a median of 1.46 × 105 RNA
copies/mL [74]. Viral load also depends on the stage of infection and the sample collection
site [41,63,75,76]. In addition, a specific variant of SARS-CoV-2 may have an impact on the
measured viral load [77].

Appendix A.2. Particle Transport

The particle transport submodel describes the fate of particles emitted by the infectious
individual in the surrounding environment. The near field transport and dispersion of
respiratory particles takes place near the infected individual and within the first seconds
of emission; it is dominated by effects of the initial jet flow produced by air escaping the
mouth or nose, rapid evaporation as the particles enters a dryer environment, and rapid
settling of larger particles. The evaporation and sedimentation of respiratory particles can
be expressed as a function of time after emission from the infected individual [48]; these
model results can be used to characterize the near field environmental fate of respiratory
particles. Using this information for both saliva particles (oral generation) and lung fluid
particles (bronchiolar generation), we can determine the size change and sedimentation
of particles after the initial expulsion time period. Our implementation of this model did
not account for near field dynamics except for estimating a final particle diameter after
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dehydration. Our model, therefore, assumes that particles quickly dehydrate to a stable
particle size and are introduced into the well-mixed indoor environment; this assumption
was partly due to our primary mode of modeling a steady-state concentration to model
two individuals who are separated by over 2 m. The additional model and computational
complexity from adding a complete characterization of near-field phenomena (e.g, jet flow
emission) would be unnecessary for our numerical analyses and sensitivity analysis. If we
were examining near-field exposures, including these dynamics would be necessary.

The far field transport and dispersion of respiratory particles takes place after most
large particles have settled, the jet flow no longer impacts particle trajectory, and particles
have reached a stable size after evaporative drying. For SARS-CoV-2, a time period of
50 s was chosen as the cut-off between near and far field transport models due to the
fact that most particles have evaporated down to a stable particle size by that time or
had already settled to the ground for those particles large enough to still be experiencing
evaporation; note that because of the different time scales in which evaporation-induced
particle size reduction and exposure occur (i.e., seconds v. hours) near field dynamics are
captured in workflow of the particle generation submodel (see Figure A1 dpre

i and di are
used to distinguish between the pre-evaporation and post-evaporation particle diameters;
moreover, the pre-evaporation particle diameter is proportionally reduced by a factor of
revap as shown in Equation (1) of Figure A1.

Indoor transport and dispersion models include several mechanisms that reduce the
concentration of airborne respiratory particles and airborne contagions. First, gravitational
settling is modeled using Stokes law to determine the particle settling velocity for a given
diameter di (see Equation (5) in Figure A3); this settling velocity is used to determine a
loss rate based on a conservative estimated initial particles height of 2 m above the floor of
the room.
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The second mechanism pertains to viral degradation in the surrounding environment.
One study developed an equation to estimate a first order viral infectivity reduction rate
for SARS-CoV-2 as a function of air temperature, humidity, and UV radiation [43]:

kin f = 0.16030 + 0.04018
(
(T−20.615)

10.585

)
+ 0.02176

(
(RH−45.235)

28.665

)
+ 0.14369

(
(S−0.95)

0.95

)
+ 0.02636

(
(T−20.615)

10.585

)(
(S−0.95)

0.95

)
where kin f is the first order viral decay rate (in min−1), T is the air temperature (in ◦C),
RH is the relative humidity (in %), and S is the surface UVB irradiance (in W/m2). Finally,
in the indoor setting, room air ventilation is also used to remove airborne particles from
the air while replacing with clean air with zero particle concentration.

To account for these three far field mechanisms in the submodel, we adopt the ap-
proach of Dols et al., which uses an ordinary differential equation (see Equation (6) in
Figure A3) to describe how the viral concentration changes with time [62]. The first term
of on the right-hand side of Equation (6) is the time-dependent emission rate, which is
determined by the viral emission rate defined in the preceding subsection. The summa-
tion of Q’s captures the effects due to indoor ventilation, whereas the penultimate term
accounts for removal of virus via settling. The last term with kin f describes viral decay
due to environmental factors. We note that this ODE has an analytical solution given by
Equation (7).

Appendix A.3. Human Response

To determine likelihood of infection from a contaminated exposure environment, the
human response submodel first determines the inhaled viral concentration and then the
subsequent total deposited dose. Figure A4 summarizes this workflow. Ultimately, this
submodel aims to quantify the impact of infection.

The amount of inhaled virus is computed by multiplying the time dependent viral
concentration for a given particle diameter with an inhalable fraction, θi. One study
presented an inhalability model that accounts for wind speed, minute ventilation and
particle diameter [57]. Adopting the approach of [57], the particle diameter-dependent
inhalability fraction is computed according to Equation (10) in Figure A4. For the indoor
environment, a value of 0 m/s can be assumed for wind speed, resulting in an inhalable
fraction of ~0 for 100-micron particles.

To determine likelihood of infection from an exposure environment, the model first
accounts for how many particles are inhaled, the location of deposition, and the particle
composition; this is determined by considering particle-size dependent inhalability [57],
particle size-dependent deposition site [78] (which would also account for hygroscopic
growth of a particle as it enters the humid respiratory tract [20]), and the viral content
of particles [70]. The severity and course of illness of the disease then could depend
solely on demographic factors, immune response, deposited dose, or a combination of
factors. For SARS-CoV-2, experimenters were able to show clear dose-dependence for
symptomatic/asymptomatic presentation of disease [17] as well as demographic differences
in severity for symptomatic diseases [51,79].

An additional factor to consider is that of hygroscopic growth in the respiratory
tract. The URT and proximal lung airways rapidly condition air to ~100% humidity and
~98.6 degrees Fahrenheit [80]; this environment will cause a hygroscopic particle to grow,
often resulting in greater deposition in the URT and lower deposition in the LRT [20,24]
(due to filtration by the URT).
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Figure A4. Visualization of the human response submodel workflow. Red circles indicate parameters
selected for sensitivity analysis (see Section 2). All notation definitions are provided in Table 1.

Using a URT model that accounts for hygroscopic growth, we developed look-up-
tables that accounted for ambient temperature and humidity, initial particle size, and
initial particle composition for calculating URT and LRT deposition. Plots of URT and LRT
deposition fractions as a function of initial particle size are shown in Figure A5.
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Figure A5. Plots of example look-up table data of particle deposition fraction versus initial diam-
eter of a particle at the inlet to the nasal passages of a susceptible person including deposition in
(a) the URT (red), LRT (blue), and total URT and LRT (black), and (b) the tracheobronchial region (TB)
(red), pulmonary region (PUL) (blue), and total TB and PUL, or LRT (black). At the inlet to the nasal
passages, initial properties are a particle composition of 74% well-mixed nonvolatile components
(NaCl) and 26% water by mass, air and particle temperatures of 20 ◦C, and relative humidity of 50%.

A dose response model is typically used to determine the probability of infection,
Pin f ect. Adopting the standard form of a probit model (see Equation (14) in Figure A4),
Pin f ect is taken to be a function of the total deposited dose Dtotal (in virions, TCID50,
PFUs, etc.), the median infectious dose ID50 (in equivalent units), and probit slope β; note
that here, Dtotal and ID50 are measured in terms of TCID50.
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A model that can incorporate infectivity parameters (ID50 and probit slope) for both
the URT and LRT is preferred when data exists to support such a model. If data supports
site-specific infectivity, an ID50 and β will be available for both the URT and LRT. Although
a study must be conducted to correlate infectivity likelihood with deposition site for
SARS-CoV-2, a decreased infectivity from particles deposited in the URT when compared
to the LRT has been observed for several biological agents including F. tularensis [81],
Y. pestis [82] and B. anthracis [83,84]. It is possible to develop a joint probit model given
the data or to simply assume that the probabilities of infection for the two deposition sites
are independent by using:

Ptotal = 1− (1− PURT)(1− PLRT)

where Ptotal is the overall probability of infection, PURT is the probability of infection from
the dose deposited in the URT, and PLRT is the probability of infection from the dose
deposited in the LRT.

There is not sufficient evidence to correlate initial dose to disease severity or lethality
in biological agents; however, for SARS-CoV-2 it has been shown that there are different
infectivity parameters for asymptomatic and symptomatic presentation of the disease [85].
For SARS-CoV-2 we developed a non-dose dependent severity model based on documented
incidence of severity, but it does not fit in the discussion of an end-to-end framework as
it is independent of all other submodels. It is the authors’ belief that a model of viral
reproduction and immune response is necessary for incorporating a model of disease
severity within this framework.

Appendix B. Results for First-Order Sensitivity

The first-order sensitivity indices produced by eFAST for the median and 95th per-
centile of Pin f ect resulting from exposure to SARS-CoV-2 contaminated particles emitted
by an infectious person breathing and coughing are presented in Figures A6 and A7,
respectively. The parameter rankings are displayed in Table A3.
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Table A3. Ranking of the first-order sensitivity indices for the median and 95th percentile Pin f ect with
breathing and coughing as the emission mechanisms. Yellow shaded cells indicate parameters that
were determined to be statistically significant.

First-Order Sensitivity Index Ranking

Median Pinfect 95th Percentile PinfectParameter Parameter Description

Coughing Breathing Coughing Breathing

εdz
Respiratory minute ventilation of the infectious

person 4 6 6 9

revap
Ratio of evaporated particle size to initial particle

size 7 4 8 7

kin f Viral decay rate 10 9 10 10

µVL Median viral load 1 1 1 1

σVL
Standard deviation of the viral load for the

infectious individual 9 10 4 6

λ Super spreader emission factor 8 8 5 5

rin f Infectivity ratio 2 2 2 2

εndz
Respiratory minute ventilation of the SARS-CoV-2

susceptible person 6 5 7 4

ID50 Median infectious dose 3 3 3 3

β Base-10 probit slope for the probability of infection 5 7 9 8

Appendix C. Python Implementation of End-to-End Modeling Framework

Python code for the end-to-end model is provided as supplementary material to this paper.
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