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Abstract: Diets rich in fruits and vegetables, like the Dietary Approaches to Stop Hypertension
(DASH)-diet, are usually characterized by high potassium intake and reduced dietary acid
load, and have been shown to reduce blood pressure (BP). However, the relevance of potential
renal acid load (PRAL) for BP has not been compared with the relevance to BP of urinary
biomarker (K-urine)- and dietary food frequency questionnaire (K-FFQ)-based estimates of potassium
intake in a general adult population sample. For 6788 participants (aged 18–79 years) of the
representative German Health-Interview and Examination Survey for Adults (DEGS1), associations
of PRAL, K-urine, and K-FFQ with BP and hypertension prevalence were cross-sectionally
examined in multivariable linear and logistic regression models. PRAL was significantly associated
with higher systolic BP (p = 0.0002) and higher hypertension prevalence (Odds ratio [OR]
high vs. low PRAL = 1.45, p = 0.0004) in models adjusted for age, sex, body mass index (BMI),
estimated sodium intake, kidney function, relevant medication, and further important covariates.
Higher estimates of K-FFQ and K-urine were related to lower systolic BP (p = 0.04 and p < 0.0001)
and lower hypertension prevalence (OR = 0.82, p = 0.04 and OR = 0.77, p = 0.02) as well as a lower
diastolic BP (p = 0.03 and p = 0.0003). Our results show, for the first time in a comparative analysis of
a large representative population sample, significant relationships of BP and hypertension prevalence
with questionnaire- and biomarker-based estimates of potassium intake and with an estimate of
dietary acid load.
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1. Introduction

Current guidelines on the management of arterial hypertension recommend lifestyle changes
including dietary measures to prevent the development of high blood pressure (BP) and to assist in
reducing BP as well as cardiovascular disease (CVD) risk in hypertensives [1]. Apart from a reduction
in salt and alcohol intake, increases in the consumption of fruits and vegetables, and vegetarian diets
as well as Dietary Approaches to Stop Hypertension (DASH)-type diets have been shown to reduce
BP in interventional and observational studies [2–4]. Of note, a recent review and meta-analysis of
dietary interventions for BP-reduction indicated that among common dietary interventions (including
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low-sodium diets), the DASH-type diet may be the most effective [4]. Different aspects of the
above-mentioned dietary patterns may account for the observed BP decreases. Apart from increased
intakes of several minerals including potassium, for which substantial evidence for a BP-reducing
effect exists [5,6], a lowered nutritive proton load is a common characteristic of diets rich in fruits
and vegetables, including DASH-type diets. Main determinants of the daily dietary acid load include
high intakes of protein as well as phosphorus as acid-producing components, whereas high intakes of
fruits, vegetables, and potatoes reduce the daily proton load. The potential renal acid load (PRAL)
is an established marker of the diet-dependent proton load and has been used in several studies
on different health outcomes in adults and children [7–9]. Regarding the potential relationship of
dietary acid load with BP, most [10–13] but not all [14,15] observational studies conducted in recent
years suggest a corresponding direct link. Increases in dietary proton load have also been shown to
induce changes in systemic acid–base status [16,17] and different markers of such subclinical forms of
metabolic acidosis have been related to BP and hypertension incidence as well [18–20]. With respect to
available mechanistic evidence, several animal models have linked disturbances in acid–base balance
to (salt-sensitive) hypertension [21,22], and these disturbances may already be present before the onset
of hypertension [21]. Also in humans, salt sensitivity of BP was associated with lower arterial pH [23].

To elaborate on the potential BP-reducing mechanisms of plant-based diets, the aim of the current
analysis was to assess the relation between diet-dependent acid load and BP as well as hypertension
prevalence in a sample of the general adult population living in Germany, and to compare this
association with the (established) relevance of potassium intake to BP, concurrently considering
the possible confounding effects of sodium intake, kidney function, and several further risk factors
for hypertension.

2. Materials and Methods

2.1. Study Population

Data for the present analysis came from the first wave of the German Health Interview and
Examination Survey for Adults (“Studie zur Gesundheit Erwachsener in Deutschland”, DEGS1),
which was conducted between 2008 and 2011. Details on the concept and design of DEGS, a nationally
representative study which is part of the health monitoring system at the Robert Koch-Institute
(RKI), Berlin, have been previously described [24]. In brief, during the first examination wave,
persons aged 18–79 years living in Germany were randomly selected according to a nationwide
two-stage clustered sample design and examined at one of the 180 study centers, resulting in a net
sample of 7115 participants. Of these, n = 2923 were revisiting participants of the German National
Health Interview and Examination Survey 1998 (GNHIES98). The study was approved by the ethical
committee of Charité University Medicine, Berlin (No. EA2/047/08) and conducted according to
guidelines provided by the Federal and State Commissioners for Data Protection. Informed written
consent was obtained from all participants. For the present analysis, n = 6788 participants with
complete information on BP and body mass index (BMI), serum and urine samples for laboratory
analyses as well as dietary data were selected. Of these, n = 6765 also had complete information on
hypertensive status.

2.2. Dietary Intake

A validated [25] semi-quantitative, self-administered food frequency questionnaire (FFQ),
inquiring about consumption frequencies and portion sizes of 53 food groups during the preceding
4 weeks, was used to assess dietary intake in DEGS1. Dietary acid load was determined by calculating
the potential renal acid load (PRAL), i.e., a marker of the dietary impact on human acid–base
status [26] as:
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PRAL (mEq/day) = 0.49 × protein (g/day)
+0.037 × phosphorus (mg/day)
−0.021 × potassium (mg/day)
−0.026 × magnesium (mg/day)
−0.013 × calcium (mg/day).

To estimate the individual daily acid load, PRAL values were assigned to the food groups of the
DEGS1-FFQ. In a first step, PRAL values of relevant single foods of the respective food groups were
calculated using nutrient information on individual food items from the ‘German Food Content and
Nutrition Data Base’ (Bundeslebensmittelschlüssel (BLS)), version 3.02 [27]. In a second step, additional
data from the ‘National Nutrition Survey (NVS) II’ [28] were used to obtain more detailed information
on the distribution of specific single food consumption in the German population regarding the
rather broad DEGS1 food groups. Subsequently, single food PRAL values, weighed according to the
NVS II distribution, were used to obtain DEGS1 food group-specific PRAL estimates (mEq/100 g)
for individual PRAL calculation. Alcohol intake was quantified by summing the alcohol content of
consumed beer, non-alcoholic beer (still containing minor amounts of alcohol), wine, spirits and liquor,
in order to categorize participants as non-drinkers (0 g/day), light drinkers (men: >0 to 20 g/day,
women: >0 to 10 g/day) or heavy drinkers (men: >20 g/day, women >10 g/day) [29]. An index of
potassium intake (mg/day) was derived from FFQ food group consumption and weighted average
nutrient contents obtained from the German Nutrition Survey 1998 [30].

2.3. Measurements and Laboratory Analyses

BP was measured according to standardized procedures with an automated oscillometric
device (Datascope Accutorr Plus, Mahwah, NJ, USA). For each participant, three consecutive BP
measurements were taken at 3-min intervals after an initial 5-min rest and following a non-strenuous
part of the examination. During the measurements, the participant’s back was supported in upright
position, with the right forearm resting on a table at heart level, and the legs uncrossed with
feet on the floor. Three different cuff sizes were used depending on the right mid-upper arm
circumference. Height and weight were measured with standardized procedures in lightly clothed
participants and were used to calculate BMI as weight in kilograms divided by height in meter
squared. Venous blood was drawn using Vacutainer EDTA and gel tubes (Becton Dickinson, Franklin
Lakes, NJ, USA) and was immediately centrifuged and separated. Fasting duration and time of
blood sampling was documented and aliquots of serum samples were stored at −40 ◦C within
one hour. For storage and detailed analysis, serum and whole blood samples were brought to the
central epidemiology laboratory unit at the RKI, Berlin. Analyses were performed on the Architect
platform CI 8200 (Abbott, Chicago, IL, USA), with enzymatic methods used for determination of total
cholesterol (CHOD-PAP) and glucose (hexokinase/G-6-PDH). A colorimetric method (picrate) was
used to measure concentrations of serum and urinary creatinine. Glomerular filtration rate (eGFR)
was estimated from serum creatinine using the four-variable Modification of Diet in Renal Disease
(MDRD) Study equation [31]. Potassium and sodium concentrations in spot urine samples were
determined with ion-sensitive electrode (ISE; indirect method) and subsequently used for estimation
of 24-h excretion rates from urinary mineral–creatinine ratios according to a recently published
prediction equation [32]. Urinary albumin excretion was determined with semi-quantitative test strips
(Micral, Roche Diagnostics, Grenzach-Wyhlen, Germany).

2.4. Other Variables

Physical activity was assessed with standardized questionnaires and was classified into ‘no sports
activity’, ‘<2 h sports per week’, or ‘≥2 h sports per week’. Reported information on smoking
frequency and number of cigarettes consumed per day was used to categorize subjects into (occasional)
smokers, ex-smokers and non-smokers. A three-stage index of socioeconomic status (low, middle,
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high) was derived from questionnaire information on education, occupation and household income
as has been previously reported in detail [33]. Information on current medication (prescription
or over-the-counter) taken in the previous 7 days was verified in a computer-assisted personal
medication interview and by barcode scanning of original drug packages brought to the study center.
Antihypertensive medication was defined as use of antihypertensive drugs (C02), diuretics (C03),
beta-blockers (C07), calcium channel blockers (C08) or angiotensin-converting enzyme (ACE) inhibitors
(C09) according to the Anatomical Therapeutic Chemical (ATC) classification system. A number of
previous physician-diagnosed diseases were assessed in a standardized personal interview.

2.5. Statistical Analyses

Statistical analysis system (SAS, version 9.2, SAS Institute, Cary, NC, USA) was used for statistical
analyses and a p-value < 0.05 was considered significant in all statistical tests. To take account of
deviations from the population structure in Germany as of 31 December 2010, a weighting factor
considering age, sex, education, nationality, region, and community type was used. With respect to
former GNHIES98-participants, the weighting factor also considered re-participation probabilities.
Survey procedures in SAS for complex samples were used to account for the weighting and clustering
in DEGS1 due to the two-stage sampling procedure. Mean values of the second and third measurement
of systolic and diastolic BP were used in all analyses. Hypertension was defined as treatment with
ATC-coded antihypertensive medication in those reporting a diagnosis of hypertension or as systolic
BP ≥140 mmHg or diastolic BP ≥90 mmHg.

Descriptive data are presented in sex-balanced quintiles of dietary PRAL. Quintile construction
was based on sex-specific PRAL distributions and the respective quintiles for males and females
were combined. Differences in characteristics between the quintiles were tested with ANOVA and
Kruskal–Wallis tests for normally and non-normally distributed continuous variables, respectively,
and with Chi-square tests in the case of categorical variables. For assessment of the association between
dietary (or urinary) predictors and BP, median values for the respective predictors were calculated
for sex-balanced quintiles and used as continuous variables in the regression analyses. In basic linear
regression models, adjustment was made for sex, age and BMI as known important predictors of BP.
Adjusted models further considered relevant behavioral and dietary characteristics, cardiovascular
risk factors, renal function, and medication. Among the biologically plausible potential confounders,
only those were included in the final models that either modified the β-coefficient of the main predictor
by >10% or were independently associated with BP. The latter was the case for all finally included
covariates (see footnote Table 2). Additionally tested covariates, such as “physician-diagnosed diabetes”
and “physician-diagnosed dyslipidemia” did not meet the inclusion criteria. Confounder selection
was based on the basic linear regression model for PRAL and systolic BP and the same adjustment was
used in all final models for reasons of comparability. Sensitivity analyses were performed in n = 4677
participants not on antihypertensive medication as well as in n = 5873 participants with apparently
normal kidney function defined as an eGFR > 60 mL/min/1.73 m2, no significant microalbuminuria
(<50 mg/L albumin on a semiquantitative test strip), and no physician-diagnosed kidney function
impairment. Multiple logistic regression models with the same adjustment as used for the linear
regression analyses (except for antihypertensive medication use) were used to evaluate the association
of PRAL and potassium with hypertension prevalence. In these analyses, predictors were categorized
into sex-balanced tertiles (T1: low, T2: middle, T3: high) and adjusted odds ratios (ORs) of hypertension
were presented for high (T3) versus low (T1) values of the respective predictor.

3. Results

3.1. Descriptive Data

Characteristics of the study population across PRAL quintiles are presented in Table 1.
Median PRAL values ranged from −30.8 mEq/day to +15.5 mEq/day. Due to the sex-specific
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quintile categorization, the percentage of women did not differ significantly between the quintiles.
Regarding age and BMI, lowest values were observed in the highest PRAL quintile, while no clear
trend was discernible for systolic and diastolic BP. In contrast, hypertension prevalence differed
significantly between the PRAL quintiles, ranging from 36.3% in the second quintile to 24.6% in the
fifth quintile, with use of diuretics and β-blockers following a similar pattern. Mean values of serum
cholesterol were lowest and eGFR was highest in participants with the highest PRAL. Most behavioral
characteristics except for participation in sports activity also differed significantly across the PRAL
quintiles. With respect to dietary intakes, participants with the lowest PRAL values had the highest
intakes of potassium and milk products as well as fruits and vegetables, while participants in the
highest PRAL quintile consumed significantly more meat and meat products. In contrast, estimated
salt intake was not different across the PRAL range.

3.2. Linear Regression

In basic linear regression models adjusted for age, sex, and BMI, higher PRAL values were
significantly related to higher systolic BP (β = 0.049, p = 0.0005) but not to diastolic BP (β = 0.012,
p = 0.2) (Table 2). Inverse but non-significant associations with systolic and diastolic BP were
observed for FFQ-derived potassium intake in the basic models (β = −0.333, p = 0.08 and β = −0.173,
p = 0.2 for systolic and diastolic BP, respectively), whereas for estimated 24-h potassium excretion,
a significant inverse association with systolic BP (β = −0.012, p = 0.04) was discernible. For diastolic
BP, the relationship with potassium excretion was of only marginal significance (β = −0.007, p = 0.06)
in basic models. Additional adjustment for the size of BP cuff, fasting duration, cardiovascular
risk factors (serum glucose and total cholesterol), eGFR, behavioral factors (smoking status, alcohol
consumption), medication (diuretics and β-blockers), and estimated 24-h sodium excretion changed
the PRAL–BP associations only marginally (β = 0.052, p = 0.0002 and β = 0.015, p = 0.1 for systolic and
diastolic BP, respectively; adjusted models, Table 2). Regarding the FFQ-based potassium intake,
significant inverse associations emerged for systolic (β = −0.397, p = 0.04) as well as diastolic
BP (β = −0.255, p = 0.03) in adjusted models. Similarly, associations of potassium excretion with
systolic (β = −0.033, p < 0.0001) and diastolic BP (β = −0.015, p = 0.0003) were strengthened upon
confounder adjustment.

In sensitivity analysis in the subgroup of n = 4677 participants not taking antihypertensive
medication (Table 3), associations were slightly weakened but remained significant for PRAL with
systolic BP (p = 0.01) and for potassium excretion with systolic (p = 0.0001) and diastolic BP (p = 0.003)
in adjusted models. In contrast, FFQ-derived potassium intake was not a significant predictor of BP in
the subgroup of untreated DEGS1-participants in basic or adjusted models.

3.3. Logistic Regression

With respect to hypertension prevalence (Figure 1A), logistic regression models demonstrated
higher odds of hypertension for the highest tertile of dietary PRAL (OR (T3 vs. T1): 1.45, p = 0.0004)
compared to the lowest PRAL tertile as the reference category in the adjusted model. Regarding
FFQ-derived potassium intake, the respective OR of hypertension prevalence for high (T3) vs. low
(T1) intake was 0.82 (p = 0.04). Estimated 24-h potassium excretion was a significant predictor of
hypertension prevalence in the adjusted model as well (OR (T3 vs. T1): 0.77, p = 0.02). Excluding
participants with impaired renal function resulted in very similar results except for FFQ-derived
potassium intake, for which the difference in hypertension prevalence between low and high intakes
was no longer significant (OR (T3 vs. T1): 0.85, p = 0.1) (Figure 1B).
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Table 1. Characteristics of the German Health-Interview and Examination Survey for Adults (DEGS1) study population in sex-balanced quintiles of dietary potential
renal acid load (PRAL) (n = 6788).

Median PRAL, mEq/Day −30.8 (−44.3, −23.7) −12.7 (−16.9, −7.9) −4.5 (−7.7, 0.4) 3.9 (−0.6, 7.8) 15.5 (9.3, 23.2) p

n 1356 1358 1358 1358 1358

Women, % 49.4 (46.2, 52.7) 51.2 (47.9, 54.5) 52.4 (48.9, 55.9) 49.7 (46.1, 53.4) 49.4 (46.1, 52.7) 0.7

Age, years a 49.9 (48.9, 50.9) 52.5 (51.3, 53.7) 50.1 (49.0, 51.3) 45.7 (44.6, 46.8) 40.4 (39.4, 41.3) <0.0001

BMI, kg/m2 a 27.0 (26.6, 27.3) 26.9 (26.6, 27.3) 27.0 (26.6, 27.3) 26.9 (26.6, 27.3) 26.4 (26.0, 26.8) 0.1

Systolic BP, mmHg a 123.8 (122.8, 124.7) 124.7 (123.5, 125.9) 124.6 (123.5, 125.6) 123.9 (122.9, 124.9) 123.7 (122.7, 124.7) 0.5

Diastolic BP, mmHg a 73.4 (72.7, 74.0) 73.5 (72.8, 74.2) 73.5 (72.9, 74.1) 73.1 (72.5, 73.7) 72.9 (72.2, 73.6) 0.7

Hypertension prevalence b, % 31.8 (28.8, 34.8) 36.3 (32.7, 40.0) 34.9 (31.7, 38.1) 32.2 (28.7, 35.7) 24.6 (22.0, 27.3) <0.0001

Diuretic use, % 4.4 (3.3, 5.5) 5.6 (4.1, 7.1) 5.4 (3.8, 7.0) 5.4 (3.8, 6.9) 2.4 (1.6, 3.1) 0.001

Beta blocker use, % 15.1 (12.9, 17.3) 17.8 (15.2, 20.4) 15.3 (12.8, 17.8) 14.5 (11.9, 17.0) 9.4 (7.8, 11.0) <0.0001

Total cholesterol, mg/dL a 203.6 (200.6, 206.6) 207.7 (204.4, 210.9) 205.1 (201.3, 209.0) 201.6 (198.5, 204.7) 196.2 (193.2, 199.2) <0.0001

Estimated GFR c, mL/min/1.73 m2 a 93.3 (91.5, 95.1) 89.6 (87.8, 91.5) 92.5 (90.5, 94.4) 93.6 (91.8, 95.4) 99.0 (96.9, 101.1) <0.0001

Smoking
Daily or occasionally, % 32.6 (29.2, 36.0) 22.8 (19.9, 25.8) 25.9 (23.0, 28.9) 30.7 (27.3, 34.0) 34.0 (30.6, 37.4) <0.0001
Former smoker, % 27.3 (24.4, 30.2) 32.0 (28.9, 35.0) 32.1 (29.3, 35.0) 27.8 (24.7, 31.0) 23.2 (20.4, 26.1)
Never smoker, % 40.1 (36.6, 43.6) 45.2 (42.0, 48.4) 41.9 (38.6, 45.2) 41.5 (38.0, 45.0) 42.7 (39.4, 46.1)

Sports activity
No sports activity, % 32.3 (28.8, 35.8) 31.8 (28.2, 35.3) 31.3 (27.8, 34.8) 32.4 (28.9, 36.0) 34.8 (31.7, 38.0) 0.2
<2 h per week, % 38.8 (35.3, 42.4) 43.5 (40.1, 46.9) 42.6 (39.2, 46.0) 44.2 (40.8, 47.6) 40.4 (37.3, 43.5)
>2 h per week, % 28.9 (25.3, 32.4) 24.8 (21.9, 27.7) 26.1 (22.8, 29.4) 23.4 (20.3, 26.6) 24.8 (21.9, 27.7)

Socioeconomic Status (SES)
Low 18.4 (15.7, 21.0) 17.1 (14.1, 20.1) 18.9 (15.9, 22.0) 16.3 (13.5, 19.1) 22.8 (20.0, 25.7) <0.0001
Medium 62.0 (58.5, 65.5) 58.4 (54.7, 62.0) 58.9 (55.5, 62.4) 62.6 (59.3, 66.0) 61.9 (59.1, 64.6)
High 19.6 (16.8, 22.4) 24.5 (21.3, 27.7) 22.2 (19.0, 25.3) 21.1 (18.3, 23.9) 15.3 (13.0, 17.6)

Alcohol
0 g/day, % 15.7 (13.2, 18.2) 11.3 (8.7, 13.9) 16.4 (13.7, 19.1) 13.2 (11.0, 15.5) 16.3 (13.5, 19.0) 0.04
<10/20 g/day, % 67.9 (64.8, 71.1) 73.8 (70.8, 76.9) 67.0 (63.7, 70.3) 71.6 (68.5, 74.6) 67.6 (64.6, 70.5)
>10/20 g/day, % 16.4 (13.6, 19.1) 14.9 (12.5, 17.2) 16.6 (14.1, 19.0) 15.2 (13.0, 17.5) 16.2 (14.1, 18.3)

Estimated urinary Na-Excretion, mmol/day d 161.1 (103.2, 242.5) 156.0 (97.1, 232.4) 157.1 (102.5, 227.2) 160.7 (98.9, 232.9) 165.1 (103.9, 236.2) 0.2

Estimated salt intake, g/day d 9.4 (6.0, 14.2) 9.1 (5.7, 13.6) 9.2 (6.0, 13.3) 9.4 (5.8, 13.6) 9.6 (6.1, 13.8) 0.2

Estimated K-Excretion, mmol/day d 93.1 (67.9, 121.9) 84.9 (64.5, 112.2) 85.2 (59.9, 113.8) 78.9 (60.4, 106.0) 73.9 (54.2, 102.1) <0.0001

Estimated K-Intake, mg/day d 4403 (3540, 5664) 3120 (2595, 3785) 2700 (2185, 3407) 2619 (1975, 3207) 2793 (2196, 3606) <0.0001

Meat consumption e, g/day d 66.4 (37.9, 103.2) 66.2 (40.0, 97.8) 67.6 (42.6, 97.8) 81.3 (49.2, 117.9) 118.0 (78.2, 183.3) <0.0001

Milk product consumption f, g/day d 314.6 (142.9, 616.3) 262.1 (130.8, 457.6) 242.2 (127.1, 428.9) 242.6 (128.5, 425.6) 245.6 (127.9, 457.3) <0.0001

Fruit and vegetable consumption, g/day d 461.1 (232.4, 827.9) 357.7 (213.5, 530.7) 269.8 (166.1, 420.5) 211.6 (128.1, 330.3) 179.3 (97.2, 303.8) <0.0001

a Data presented as mean (95% Confidence interval); b Hypertension was defined as BP values ≥ 140/90 mmHg or antihypertensive medication use in physician-diagnosed hypertension;
c Glomerular filtration rate, calculated according to the four-variable Modification of Diet in Renal Disease (MDRD) formula; d Data presented as median (Q1, Q3); e Consumption of meat
including poultry, ham, and sausages; f Consumption of milk, cream cheese, cheese, curd cheese, soured milk and yoghurt; BMI, body mass index; BP, Blood pressure.
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Table 2. Multiple linear regression analyses on the association of PRAL and potassium in sex-balanced
quintiles as continuous predictor variables with blood pressure levels as continuous outcome variables
in the total DEGS1 study sample (n = 6788).

Total Sample (n = 6788)

Predictor Outcome β (95% CI) Ptrend R2

Systolic blood pressure

PRAL (FFQ), mEq/day Basic model a 0.0486 (0.0216, 0.0756) 0.0005 c 0.1570

Adjusted model b 0.0521 (0.0250, 0.0792) 0.0002 c 0.1927

K-Intake (FFQ), g/day Basic model a −0.3327 (−0.7114, 0.0461) 0.08 0.1551

Adjusted model b −0.3969 (−0.7734, −0.0204) 0.04 c 0.1906

K-Excretion, mmol/day Basic model a −0.0119 (−0.0235, −0.0003) 0.04 c 0.1551

Adjusted model b −0.0330 (−0.0455, −0.0205) <0.0001 c 0.1944

Diastolic blood pressure

PRAL (FFQ), mEq/day Basic model a 0.0119 (−0.0070, 0.0308) 0.2 0.1032

Adjusted model b 0.0148 (−0.0038, 0.0334) 0.1 0.1481

K-Intake (FFQ), g/day Basic model a −0.1727 (−0.4088, 0.0634) 0.2 0.1033

Adjusted model b −0.2546 (−0.4891, −0.0202) 0.03 c 0.1484

K-Excretion, mmol/day Basic model a −0.0069 (−0.0141, 0.0004) 0.06 0.1034

Adjusted model b −0.0154 (−0.0236, −0.0071) 0.0003 c 0.1500
a Adjusted for age, sex, and BMI; b Basic model, additionally adjusted for size of blood pressure cuff, fasting
duration (> or <8 h), smoking status, natrium excretion, alcohol intake, diuretics, beta-blockers, eGFR, serum
glucose, and total cholesterol. c Bold numbers indicate significant p-values (<0.05); PRAL, potential renal acid load;
DEGS1, German Health-Interview and Examination Survey for Adults; CI, confidence interval; FFQ, food frequency
questionnaire; BMI, body mass index; eGFR, estimated glomerular filtration rate calculated according to the four-variable
MDRD formula.

Table 3. Linear regression analyses on the association of PRAL and potassium in sex-balanced quintiles
as continuous predictor variables with blood pressure levels as continuous outcome variables in
a reduced DEGS1 study sample of participants without antihypertensive medication (n = 4677).

Sample without Antihypertensive Medication (n = 4677)

Predictor Outcome β (95% CI) Ptrend R2

Systolic blood pressure

PRAL (FFQ), mEq/day Basic model a 0.0375 (0.0094, 0.0657) 0.009 c 0.2059

Adjusted model b 0.0375 (0.0086, 0.0664) 0.01 c 0.2385

K-Intake (FFQ), g/day Basic model a −0.2648 (−0.685, 0.1553) 0.2 0.2045

Adjusted model b −0.2210 (−0.6379, 0.1960) 0.3 0.2370

K-Excretion, mmol/day Basic model a −0.0128 (−0.0257, 0.0002) 0.05 0.2050

Adjusted model b −0.0280 (−0.0420, −0.0140) 0.0001 c 0.2406

Diastolic blood pressure

PRAL (FFQ), mEq/day Basic model a 0.0068 (−0.0119, 0.0256) 0.5 0.1878

Adjusted model b 0.0064 (−0.0129, 0.0258) 0.5 0.2132

K-Intake (FFQ), g/day Basic model a −0.1954 (−0.4718, 0.0810) 0.2 0.1882

Adjusted model b −0.1880 (−0.4597, 0.0836) 0.2 0.2136

K-Excretion, mmol/day Basic model a −0.0085 (−0.0167, −0.0002) 0.04 c 0.1886

Adjusted model b −0.0144 (−0.0238, −0.0049) 0.003 c 0.2154
a Adjusted for age, sex, and BMI; b Basic model, additionally adjusted for size of BP cuff, fasting duration (> or <8 h),
smoking status, natrium excretion, alcohol intake, eGFR, serum glucose, and total cholesterol; c Bold numbers
indicate significant p-values (<0.05); PRAL, potential renal acid load; DEGS1, German Health-Interview and
Examination Survey for Adults; CI, confidence interval; FFQ, food frequency questionnaire; BMI, body mass index;
eGFR, estimated glomerular filtration rate calculated according to the four-variable MDRD formula.
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(K-Intake), and potassium excretion in the total study sample (6765) (A) and in a subsample (n = 5854)
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4. Discussion

In our cross-sectional analyses in a comparably large representative sample of the general adult
population living in Germany, we demonstrated that higher PRAL values, indicative of a higher
diet-dependent proton load, are related to higher systolic BP and hypertension prevalence independent
of estimated 24-h sodium excretion, BMI, eGFR, and several further established risk factors for elevated
BP. Results were also confirmed in the subgroup not receiving antihypertensive treatment and in those
participants with apparently normal kidney function. These findings are in line with several recent
observational studies demonstrating similar direct associations between dietary acidity and BP or
hypertension risk in cross-sectional [10,13] and prospective [11,12] analyses in different age groups.
In two prospective studies in older adults with a mean baseline age of either 65 or 70 years, however,
no consistent associations with hypertension incidence were seen for different markers of dietary acid
load [14,15]. The higher mean age in the study populations of these two studies may be one possible
reason for the divergent findings, since BP seems to level off or even decreases in this age group [34].
This may indicate that BP is less responsive to environmental influences such as dietary acid load at
a higher age. Additionally, other predictors of hypertension such as chronic kidney disease or arterial
stiffness may become more important in older individuals.

In addition to observational studies on dietary acid load and BP, there is also experimental
evidence for a link between acid–base status and BP from animal studies, showing that disturbances
in acid–base balance with lower systemic pH may precede the development of hypertension [21,35].
A recent experimental study in humans also indicated that alkalinization may have an independent
influence on BP: In the cross-over study of Conen et al. [36], a clear BP-decrease was observed among
overweight, middle-aged individuals after administration of alkalizing potassium citrate, whereas BP
was not influenced by potassium chloride. A similarly designed study also comparing the BP-effects
of potassium citrate and potassium chloride did however not confirm these results [37]. The reasons
for these conflicting findings are unclear, but differences in study duration, potassium citrate dose,
and characteristics of the study populations such as antihypertensive medication use, especially of
drugs influencing the potassium homeostasis, may have influenced the results.

Apart from the observed PRAL–BP associations, the present study also confirmed inverse
associations of potassium intake with systolic and diastolic BP as well as hypertension prevalence
in the DEGS1-population. Regarding the strength of these associations and the comparison with the
PRAL–BP relation, our adjusted models (Table 2) indicated that a 10-mmol higher estimated 24-h
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potassium excretion (corresponding to 0.4 g higher potassium intake) would result in a 0.3 mmHg lower
systolic BP. According to our regression analyses, a similar systolic BP reduction would result from
a PRAL reduction of about 6 mEq/day, broadly corresponding to 150 g higher vegetable intake or a 70 g
lower meat intake. When considering the FFQ-based potassium intake estimate, a higher difference
of about 0.8 g would be needed for a similar reduction in systolic BP. These comparisons indicate
that in our analyses, the BP-association was stronger for the urinary than for the dietary estimates
of potassium intake. However, when interpreting these predictions, it has to be kept in mind that
our adjusted models explained only 10% to 20% of the BP variance, indicating a high interindividual
variation due to unknown influencing factors. A possible reason for the difference between urinary and
dietary estimates could be that the semi-quantitative FFQ used in DEGS1 may not allow for sufficiently
detailed intake estimates to clearly separate the BP-effects of potassium from other possibly correlated
but counteracting nutrients. Whether similar problems exist for the FFQ-based PRAL estimate cannot
be determined in the present study due to missing urinary markers of diet-dependent acid load such
as renal net acid excretion or 24-h urine pH. In general, the reported associations in the present analysis
are only of moderate strength, which is largely due to the cross-sectional design (and the respective
high inter-individual variation) of the DEGS1 study. With respect to potassium excretion, a recent
large observational study in more than 100,000 adults reported a very similar decrease in systolic BP of
0.75 mmHg per each 1 g higher potassium excretion [38].

Another point that needs discussion is that usually, a low PRAL diet is accompanied by a high
potassium intake. Correspondingly, we found a significant inverse correlation of PRAL with both
urinary biomarker- and FFQ-based estimated potassium intakes in the DEGS1 study population
(data not shown). At least parts of the postulated PRAL effects on blood pressure could thus be
potassium effects. Potassium intake has its own direct lowering effect on blood pressure and several
mechanisms are discussed for this including a lowered sympathetic activity, an altered baroreceptor
activity, and a reduced renin production as well as an increase of renal natriuresis [6]. An additional
postulated mechanism for BP-reduction with higher potassium intake is the vasodilating effect of
this mineral [5]. Since vascular tone is the main determinant of diastolic BP [39], this mechanism
may account at least partly for the differential associations of PRAL and potassium with diastolic and
systolic BP observed in the present study.

Apart from the potassium-related effects, a variety of mechanisms have been proposed that
suggest a potassium-independent influence of PRAL on blood pressure. The strong buffering of blood
pH usually prevents clear changes in circulating free protons after marked increases in dietary acid
loads, but this broadly constant pH level is not without a price. Increased glucocorticoid secretion
is needed to facilitate ammoniagenesis, which in turn ensures renal elimination of excess H+ via
NH4

+ [40,41], thus preventing stronger blood pH reductions. In line with this it has been shown that
reduction of dietary acid load by administration of alkali salts reduces glucocorticoid secretion in
healthy nondiabetic [42,43] and pre-diabetic subjects [36]. Concurrently, elevated cortisol levels such as
in subclinical hypercortisolism are frequently related to hypertension [44]. Higher levels of serum uric
acid (UA) may also partly explain a direct association of diet-dependent acid load with BP since higher
UA levels are related to an increased hypertension risk [45] and reduction of the dietary acid load has
been shown to increase renal UA excretion and reduce serum UA in healthy young females [46].

Moreover, also the influence of dietary acid load on gut microbiota and kidney function may
mediate parts of the acid–base effects on blood pressure. The probable mechanisms are schematically
represented in Figure 2. In comparison to western diets with high acid loads, more alkaline diets
rich in fruits and vegetables and rich in dietary fibers result in a different microbiome [47] which
may be more favorable with respect to BP [48]. Regarding the association of dietary acid load with
kidney function, several studies in recent years have suggested that a lower dietary acid load may
contribute to a reduced incidence [49] as well as slower progression [50] of chronic kidney disease.
It has been suggested that a higher acid load may be detrimental to renal health due to prolonged high
intra-renal ammonia concentrations [51]. Because a reduced kidney function may be related to higher
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BP-values already within the normal GFR-range, renal function represents a plausible link between
dietary acid load and BP. In our analyses, however, adjustment for eGFR did not attenuate the observed
associations of PRAL with systolic BP and hypertension prevalence. Moreover, our results were very
similar after excluding participants with physician-diagnosed kidney impairment, microalbuminuria,
or an eGFR < 60 mL/min/1.73 m2 (see Figure 1). This is somewhat in contrast to the recent analyses
of Akter et al. [13], in which the association between dietary acid load and hypertension prevalence
became non-significant after adjustment for eGFR.

Nutrients 2018, 10, 103 10 of 14 

 

prolonged high intra-renal ammonia concentrations [51]. Because a reduced kidney function may be 
related to higher BP-values already within the normal GFR-range, renal function represents a 
plausible link between dietary acid load and BP. In our analyses, however, adjustment for eGFR did 
not attenuate the observed associations of PRAL with systolic BP and hypertension prevalence. 
Moreover, our results were very similar after excluding participants with physician-diagnosed 
kidney impairment, microalbuminuria, or an eGFR < 60 mL/min/1.73 m2 (see Figure 1). This is 
somewhat in contrast to the recent analyses of Akter et al. [13], in which the association between 
dietary acid load and hypertension prevalence became non-significant after adjustment for eGFR. 

 
Figure 2. Discussed mechanisms involved in blood pressure changes due to an altered acid–base 
status of which particularly a potentially altered microbiome requires further experimental 
confirmation. IGF-1, insulin-like growth factor-1. 

Compared to some other studies examining the association between PRAL and BP outcomes 
[10,12,13], the median PRAL of −3.4 mEq/day in the DEGS1-population seems rather low. However, 
comparable [14] as well as much lower [52] PRAL levels in other populations have also been 
reported. Whether these large differences in average PRAL values truly reflect the variance in daily 
proton load or are partly attributable to different dietary assessment methods or partly incomplete 
capturing of dietary intake with FFQ is currently unclear. Differences with respect to higher PRAL 
values observed in healthy children [12] are at least partly explainable by coffee consumption since 
coffee has a negative (alkaline) PRAL of −1.7 mEq/100 g, and mean coffee intake in the 
DEGS1-population was almost 500 g/day, whereas it is negligible in most children. 

Besides the potential benefit of a reduced PRAL with respect to BP, a lower dietary acid load 
has also been associated with a reduced incidence [49] and progression [50] of chronic kidney 
diseases as well as with a lower insulin resistance [53] and a lower diabetes risk [9]. At least 
theoretically, these different aspects could in combination contribute to a lowered cardiovascular 
risk with a more alkaline diet, but this hypothesis needs further investigation. 

Several limitations of the present analysis need to be considered: First of all, the cross-sectional 
design of the DEGS1 study does not allow inferring a causal relationship between dietary acid load 
and BP. As has been mentioned above, the semiquantitative FFQ used in DEGS1 constitutes a 
further limitation. For the estimation of daily excretion of urinary sodium and potassium only spot 
urine samples were available. However, 24-h urine sampling is usually not feasible in large 
population-based studies and it has already been shown that the method of estimating 24-h 
excretion rates from spot urine mineral-creatinine ratios provides reasonable results within the 
DEGS1-population [54]. Additionally, as has been addressed above, it has to be considered that 
potassium intake and the PRAL estimates are interrelated and no definitive separation on their 
BP-relevance can be obtained in an observational study. However, PRAL potentially reflects a 
broader dietary pattern compared to potassium intake alone. Differences between these dietary 
predictors are also supported by our findings of a more robust association of PRAL with systolic BP 
and hypertension prevalence, whereas potassium intake might be more relevant for diastolic BP. 

Figure 2. Discussed mechanisms involved in blood pressure changes due to an altered acid–base status
of which particularly a potentially altered microbiome requires further experimental confirmation.
IGF-1, insulin-like growth factor-1.

Compared to some other studies examining the association between PRAL and BP
outcomes [10,12,13], the median PRAL of −3.4 mEq/day in the DEGS1-population seems rather
low. However, comparable [14] as well as much lower [52] PRAL levels in other populations have
also been reported. Whether these large differences in average PRAL values truly reflect the variance
in daily proton load or are partly attributable to different dietary assessment methods or partly
incomplete capturing of dietary intake with FFQ is currently unclear. Differences with respect to higher
PRAL values observed in healthy children [12] are at least partly explainable by coffee consumption
since coffee has a negative (alkaline) PRAL of −1.7 mEq/100 g, and mean coffee intake in the
DEGS1-population was almost 500 g/day, whereas it is negligible in most children.

Besides the potential benefit of a reduced PRAL with respect to BP, a lower dietary acid load has
also been associated with a reduced incidence [49] and progression [50] of chronic kidney diseases
as well as with a lower insulin resistance [53] and a lower diabetes risk [9]. At least theoretically,
these different aspects could in combination contribute to a lowered cardiovascular risk with a more
alkaline diet, but this hypothesis needs further investigation.

Several limitations of the present analysis need to be considered: First of all, the cross-sectional
design of the DEGS1 study does not allow inferring a causal relationship between dietary acid load
and BP. As has been mentioned above, the semiquantitative FFQ used in DEGS1 constitutes a further
limitation. For the estimation of daily excretion of urinary sodium and potassium only spot urine
samples were available. However, 24-h urine sampling is usually not feasible in large population-based
studies and it has already been shown that the method of estimating 24-h excretion rates from
spot urine mineral-creatinine ratios provides reasonable results within the DEGS1-population [54].
Additionally, as has been addressed above, it has to be considered that potassium intake and the
PRAL estimates are interrelated and no definitive separation on their BP-relevance can be obtained
in an observational study. However, PRAL potentially reflects a broader dietary pattern compared
to potassium intake alone. Differences between these dietary predictors are also supported by our
findings of a more robust association of PRAL with systolic BP and hypertension prevalence, whereas
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potassium intake might be more relevant for diastolic BP. Strengths of the present analyses include
detailed and standardized questionnaires and examinations in DEGS1 allowing for control of a large
number of potential confounders of the investigated diet-BP associations. Moreover, to our knowledge,
this is the first time that the relevance of dietary acid load for BP has been directly compared to the
established BP-association of potassium in a large representative population sample.

5. Conclusions

We have demonstrated that a higher dietary acid load is significantly associated with higher
systolic BP and a higher hypertension prevalence in the general adult population living in Germany,
and that these findings are independent of BMI, sodium intake, kidney function, relevant medication,
and further BP-influencing factors. Albeit of only moderate strength, the PRAL–BP associations
seem to be comparable to those observed for potassium intake and support available evidence
for a more alkaline dietary pattern for BP reduction. Besides, the findings of the present analyses
indicate that biomarker information from spot urine samples may supplement FFQ-based estimates in
epidemiological studies on diet–disease relations.
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