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Abstract: We report a prebiotically relevant solution to the N1-ribosylation of pyrimidine nucleobases,
a well-known challenge to the RNA world hypothesis. We found that the presence of metal cations
and clay minerals enable the previously unachievable direct ribosylation of uracil. Spectroscopy and
chromatography analyses confirmed the formation of ribosylated uracil. The method can be extended
to the ribosylation of 2-pyrimidinone. These findings are also compatible with the metal-doped-clay
model, developed by our lab for the unified route of the selection of ribose and subsequent syntheses
of nucleotide and RNA.
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1. Introduction

The RNA world is one of the leading hypotheses for the chemical origin of life [1].
The construction of the glycosidic bond between the ribose and nucleobase moieties is
considered the most debatable step toward the synthesis of RNA, noted for its low yield
and selectivity. This “nucleosidation problem” has remained unsolved for decades [2–4].
The weak nucleophilicity of N9 of purine, and N1 of pyrimidine, is the major obstacle
for the direct ribosylation of nucleobase [5,6]. Various conditions have been investigated
since the pioneering work by Orgel in the 1970s [7,8]; compared with the N9 of purine,
the nucleophilicity of the N1 of pyrimidine is even weaker. The ribosylation of uracil and
cytosine has been a key stumbling block for completing the hypothetical synthesis for the
RNA world [9]. There have been very few precedents on the formation of uridine or its
isomers via the direct ribosylation of uracil. Among the few published examples, Hud
was able to theoretically demonstrate that divalent metal ions, such as Mg2+, might be
promotive to the ribosylation of uracil. Cations are believed to lower activation energy by
holding the reactants in close proximity [10]. However, no detectable uridine, or its isomers,
were reported experimentally. More recently, Zare reported the ribosylation of uracil,
facilitated by generating aqueous microdroplets of the reaction solution [11,12]. Although
no further evidence was given to support the formation of uracil-1-β-D-ribofuranoside
(β-uridine), the reported high-resolution mass spectroscopy (HRMS) signal indicated that
the ribosylation of uracil had taken place, no matter which isomer(s) was formed. The
generality of the corresponding geochemical conditions of this model on the primordial
Earth remains unknown. To circumvent the low reactivity of pyrimidine, a stepwise
strategy was developed by Orgel [13]. In addition, Sutherland developed a stepwise route
to access pyrimidine nucleotides [14]. Carell reported a multistep synthesis based on the
condensation between ribose and N-isoxazolyl-urea, to form pyrimidine nucleotides [15].
Saladino and Di Mauro reported the detection of the ribosylated uracil catalyzed by
meteorite, but without indicating the yield and the isomeric form [16]. Moreover, the
prebiotic availability of the required proton irradiation is to be confirmed. Nevertheless,
the direct nucleosidation between ribose and nucleobase remains attractive due to its
simplicity, although a prebiotically general condition is yet to be developed.
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Recently, our lab has demonstrated that metal-doped-clay (MDC) is able to highly se-
lectively adsorb and stabilize ribose from the complex Formose mixture, as well as promote
downstream syntheses toward RNA, such as nucleosidation and phosphorylation [17].
We have successfully carried out the ribosylation of formamidopyrimidine (FaPy) and
melamine in the presence of MDC, with both of the nucleobases being non-canonical. It
was shown that MDC-retained ribose is highly reactive in these ribosylation reactions.
These results encouraged us to explore if MDC has a facilitating effect on previously un-
achievable transformations. In particular, it would be interesting to explore whether the
more challenging canonical nucleobase can be ribosylated under similar conditions. Herein,
we present the direct ribosylation of pyrimidine nucleobases, facilitated by the use of metal
salts and clay minerals.

2. Results

Clay minerals are an important catalyst and platform for synthesizing RNA oligomers [18].
Cation-exchanged clays have been reported to catalyse organic transformations, such as the
formation of acetal [19], which is a condensation between aldehyde and alcohol. Therefore,
it is reasonable to assume that MDC is able to catalyze nucleosidation, which can also be
regarded as a condensation between an aldehyde (sugar) and a nucleophile (pyrimidine). Here,
we discovered that uracil and ribose could couple to form a set of desirable products in the
presence of metal salts and kaolinite (Figure 1).
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the hot–dry conditions on the primordial Earth [21]. The dried sample was added water 
and analyzed by liquid chromatography—mass spectrometry (LCMS), equipped with a 
reverse-phase high-performance liquid chromatography (HPLC) column. It was observed 
that a set of early eluted peaks (1.7, 2.0 and 2.3 min) were strongly associated with the 
expected masses of 245 ([M + H]+), 267 ([M + Na]+) and 243 ([M − H]−). To confirm the 
identity of these signals, a co-injection with authentic β-uridine was performed. There 
were a group of neighboring peaks between 12 min and 16 min, which should be non-
product-related impurities, since they did not have all three characteristic masses of 
245(+), 267(+) and 243(−). The intensity of the impurity peaks remained unchanged; thus, 
they were selected as the internal standards. It was found that in the LCMS analysis of the 
co-injected sample, besides the signal of β-uridine itself, the total ion chromatography 
(TIC) signal strengths (scanned for 245.1(+)) at 1.7, 2.0 and 2.3 min, also increased sharply, 
as seen in Figure 2, in the red curve in the upper right of the figure. These observations 
indicated that the peaks at 1.7, 2.0 and 2.3 min were probably altered forms of β-uridine 
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Figure 1. Direct ribosylation of uracil enabled by metal salts and kaolinite.

Due to the low reactivity of uracil, a stoichiometric amount of ribose was used, instead
of the one adsorbed on MDC. Multiple metal chlorides (CuCl2, FeCl2·4H2O, MgCl2 and
CaCl2·2H2O) and a clay mineral (kaolinite) were added together with the reactants (D-
ribose and uracil). Chloride was selected as the anion because of its abundance in the
early oceans [20]. The pH of the mixture was adjusted to 5, which should be prebiotically
plausible, and the mixture was heated to evaporate water on a shaking dry-bath to simulate
the hot–dry conditions on the primordial Earth [21]. The dried sample was added water
and analyzed by liquid chromatography—mass spectrometry (LCMS), equipped with a
reverse-phase high-performance liquid chromatography (HPLC) column. It was observed
that a set of early eluted peaks (1.7, 2.0 and 2.3 min) were strongly associated with the
expected masses of 245 ([M + H]+), 267 ([M + Na]+) and 243 ([M − H]−). To confirm the
identity of these signals, a co-injection with authentic β-uridine was performed. There
were a group of neighboring peaks between 12 min and 16 min, which should be non-
product-related impurities, since they did not have all three characteristic masses of 245(+),
267(+) and 243(−). The intensity of the impurity peaks remained unchanged; thus, they
were selected as the internal standards. It was found that in the LCMS analysis of the
co-injected sample, besides the signal of β-uridine itself, the total ion chromatography
(TIC) signal strengths (scanned for 245.1(+)) at 1.7, 2.0 and 2.3 min, also increased sharply,
as seen in Figure 2, in the red curve in the upper right of the figure. These observations
indicated that the peaks at 1.7, 2.0 and 2.3 min were probably altered forms of β-uridine
and/or its isomers. The most probable case was that the products tended to coordinate
with metal cations, which caused a polarity increase, and thus an early elution on the
reversed-phase HPLC. To further elucidate the effectiveness of using metal ion and clay,
a control experiment in the absence of metal salts and kaolinite was conducted, in which
the characteristic MS signals and the corresponding LC peaks were not detected (Figure 3).
The formation of the products was further determined by HRMS, the analytical method
that the Zare lab used for confirming uracil ribosylation. Besides the desired masses of
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245.0777 ([M + H]+), 267.0587 ([M + Na]+) and 243.0622 ([M − H]−), it was also interesting
to observe the m/z of the complexes with divalent cations: 134.0265 ([M + Mg]2+), 142.0151
([M + Ca]2+), 150.0010 ([M + Fe]2+) (see Supplementary Materials).
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Although the products cannot be unambiguously determined to be β-uridine itself,
these results at least suggested that the product could have the same glycosidic linkage as
β-uridine, but in isomeric forms (α-pU, β-pU, α-fU, and β-fU itself). Whether β-furanoside
could be formed predominantly was not the primary focus of this study. Instead, we
decided to emphasize on the formation of all ribosylated products, and leave the question
open on whether the isomers are convertible to β-furanoside under the reaction conditions.
The coordination interaction of β-uridine and isomers to metal ions seemed to be strong.
We tried to free the nucleosides by treating the sample with cation-exchange resin, but we
were unable to detach the metal cations from the products. However, the total yields could
be determined by the UV-integral method, no matter whether the chromophore was bound
to a cation or in free form. The overall yield of the ribosylation products was between 1.3%
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and 4.6% on multiple runs, based on the HPLC integration (uncalibrated) of the peaks at
1.7, 2.0 and 2.3 min.

Under the same conditions, the ribosylation of cytosine afforded predominantly the
4-ribosylamino products, due to the much greater nucleophilicity of the 4-NH2 group that
readily reacts with the –CHO group of ribose. A negative mass of 242.1 indicated the
formation of the 4-NH2-ribosylated cytosine. Under the currently investigated conditions,
we have not yet found an effective way to overcome this problem. We have discovered
that cavitation (both acoustic and hydrodynamic) is helpful in forming an elevated amount
of N9 purine nucleoside, compared with 6-ribosyamino products [22], but whether the
hypothetical cavitational condition was compatible with the environment rich in metal salts
and clay minerals, remains unknown. Therefore, the N1-selective ribosylation of cytosine
is beyond the scope of this study. To expand the utility of this nucleosidation, we explored
the reaction with 2-pyrimidinone, following the same procedure as the ribosylation of
uracil (Figure 4).
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Figure 4. Direct ribosylation of 2-pyrimidinone enabled by metal salts and kaolinite.

To perform this, the pH of the suspension of ribose, 2-pyrimidinone, metal salts and
kaolinite was adjusted to 5. The mixture was stirred on an 85 ◦C heating block for 13 h.
The dried mixture was added water and analyzed by LCMS. The desired MS signal of 229
([M + H]+) materialized, indicating the formation of ribosylated 2-pyrimidinone. The MS
signal of 227 ([M − H]−) was weak, due to the lack of the acidic proton in the ribosylation
products. This is different from the case of uracil, which has an acidic and deprotonatable
proton at N3, thus the negative MS of the products ([M − H]– = 243.1) was much stronger.
The product peaks were again in the solvent front, which implied the possible formation of
metal complexes (Figure 5).
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3. Material and Method
3.1. Chemicals

D-Ribose (CAS 50-69-1) was purchased from TCI (Shanghai, China) (>98%). Cupric
chloride (CAS 7447-39-4) was purchased from Shanghai Xinbao (Shanghai, China) (99%). Iron
(II) chloride (CAS 13478-10-9) was purchased from Acmec Biochemical Co., Ltd. (Shanghai,
China) (99%). Anhydrous magnesium chloride (CAS 7786-26-2) was purchased from Adamas-
Beta (Shanghai, China) (99%). Calcium chloride dehydrate (CAS 10035-04-8) was purchased
from General Reagent (Shanghai, China) (AR, 99–103%). Uridine (CAS 58-96-8) was purchased
from Adamas-Beta (99%). Uracil (CAS 66-22-8) was purchased from Shanghai Yuanye Bio-
Technology Co., Ltd. (Shanghai, China) (98%), and 2-pyrimidinone (CAS 557-01-7) was
purchased from Bidepharma Co., Ltd. (Shanghai, China) (97%). Sodium hydroxide (CAS
1310-73-2) was purchased from General Reagent (Shanghai, China) (≥96%). Methanol (CAS
67-56-1) was purchased from Sigma-Aldrich (St. Louis, USA) (HPLC grade, >99.9%). Formic
acid (CAS 64-18-6) was purchased from Adamas-Beta (Shanghai, China) (99%).

3.2. Instrument

The shaking dry-bath (model# SD1-100) was manufactured by Titan Technology Co.,
Ltd. (Shanghai, China). Magnetic stirrer (RCT basic) and heating block were manufactured
by IKA®-Werke GmbH & CO. KG (Janke & Kunkel–Str.10 79219, Staufen, Germany). LCMS
analyses were performed on a SHIMADZU LCMS-2020 (1 Nishinokyo Kuwabara-cho,
Nakagyo-ku, Kyoto 604-8511, Japan), with a SHIMADZU LC-20AD pump, SPD-20A UV
detector, SIL-20AC auto-sampler, and an electrospray ionization (ESI) MS detection mode
with a SHARPSIL-U C18 column (S-5 µm, 100 Å, 4.6 mm I.D. × 150 mm), at a detection
wavelength of 254 nm, and a flow rate of 1.0 mL/min, with water (pH = 3, adjusted with
formic acid, as phase A) and methanol (as phase B) as the eluents. The standard injection
volume was 30 µL. The gradient conditions were: 0–3 min, 100% A; 3–300 min, 100% A to
100% B. The elution was stopped at 23 min. The reaction yields were calculated from the
integration area of the isomer, divided by the total integration area of the starting material
and products. HRMS analyses were performed on a Thermo Fisher Q Exactive Mass
Spectrometer (Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA).

3.3. Procedure for the Direct Ribosylation of Uracil Enabled by Metal Salts and Kaolinite

Uracil (22.2 mg, 0.20 mmol), D-ribose (450 mg, 3.0 mmol) and multiple metal salts
(CuCl2 (6.72 mg, 0.05 mmol), FeCl2·4H2O (9.94 mg, 0.05 mmol), MgCl2 (4.76 mg, 0.05
mmol) and CaCl2·2H2O (7.35 mg, 0.05 mmol)) were added in H2O (4 mL, [uracil] = 0.05 M,
[D-ribose] = 0.75 M, Σ[multi-metal] = 0.05 M). The solution (1.5 mL) was transferred to a
sample vial (2.0 mL) containing kaolinite (120 mg). The pH of the mixture was adjusted
to 5 with NaOH. The vial was placed on a shaking dry-bath at 73 ◦C for 14 h. The dried
sample was washed with water (1.5 mL) and filtered. The filtrate was analysed by LCMS
and TIC. The elution method was: 0–3 min, 100% buffer A (water/HCOOH buffer, pH = 3),
3–300 min, 100% buffer A to 100% phase B (methanol). The overall yield of the ribosylation
products was 1.3–4.6%.

3.4. Control Experiment of the Ribosylation of Uracil without Metal Salts and Kaolinite

Uracil (8.33 mg, 0.075 mmol) and D-ribose (168.9 mg, 1.125 mmol) were added in
H2O (1.5 mL, [uracil] = 0.05 M, [D-ribose] = 0.75 M). The pH of the mixture was adjusted
to 5 with hydrochloric acid. The prepared mixture was reacted on a shaking dry-bath
at 73 ◦C for 14 h. The dried sample was washed with H2O (1.5 mL) and filtered. The
filtrate was analysed by LC-MS and TIC. The elution method was: 0–3 min, 100% buffer A
(water/HCOOH buffer, pH = 3), 3–300 min, 100% buffer A to 100% phase B (methanol).
No ribosylated uracil was detected.
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3.5. Procedure for the Direct Ribosylation of 2-Pyrimidinone Enabled by Metal Salts and Kaolinite

In a 2 mL vial, 2-pyrimidinone (9.6 mg, 0.10 mmol), D-ribose (225.2 mg, 1.50 mmol),
kaolinite (120 mg), FeCl2·4H2O (5.0 mg, 0.25 mmol), CuCl2·2H2O (4.3 mg, 0.25 mmol),
MgCl2 (2.4 mg, 0.25 mmol) and CaCl2·H2O (3.7 mg, 0.25 mmol) were added in H2O (2 mL,
[2-pyrimidinone] = 0.05 M, [D-ribose] = 0.75 M, [FeCl2·4H2O] = 0.125 M,
[CuCl2·2H2O] = 0.125 M, [MgCl2] = 0.125 M, [CaCl2·2H2O] = 0.125 M). The pH of the so-
lution was adjusted to 5, with aqueous NaOH. The prepared mixture was heated on an
85 ◦C heating block (IKA®) for 13 h. Water (1 mL) was added to the dried mixture. A small
part of the reaction mixture (100 µL) was taken and diluted to 1 mL with H2O for LCMS
analysis. The standard injection volume was 30 µL. The gradient conditions were: 0–3 min,
100% A; 3–300 min, 100% A to 100% B. The elution was stopped at 20 min.

4. Conclusions

In conclusion, we have demonstrated an example of the direct coupling of ribose and
canonical pyrimidine nucleobase in one step, under prebiotically general conditions. Thus,
the previously unachievable direct ribosylation of uracil can be enabled in the presence
of metal salts and clay minerals. This transformation is compatible with the metal-doped-
clay model proposed by our lab for the RNA World hypothesis. The mechanism for the
promoting effect of metal and clay, further optimization of the reaction yield, and the
N1-selective ribosylation of cytosine are currently under investigation in our lab.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/life11121381/s1: HRMS spectra of the product and the TIC traces of the reaction of cytosine.
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