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Protective high affinity antibody responses emerge through an orchestrated
developmental process that occurs in germinal centers (GCs). While GCs have been
appreciated since 1930, a wealth of recent progress provides new insights into the
molecular and cellular dynamics governing humoral immunity. In this review, we highlight
advances that demonstrate that fundamental GC B cell function, selection, proliferation
and SHM occur within distinct cell states. The resulting new model provides new
opportunities to understand the evolution of immunity in infectious, autoimmune and
neoplastic diseases.

Keywords: B cell, germinal center, transcription, epigenetics, T cell help, tingible body macrophage, somatic
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INTRODUCTION

Since the histologic identification in 1930, almost a century of investigation has revealed the central
importance of germinal centers (GCs) in humoral immunity (1). Fundamental to GC function is the
orchestration of the molecular programs of immunoglobulin gene somatic hypermutation (SHM),
selection for antibody affinity and specificity, and proliferative expansion of selected cells. Within
the GC, these processes are coordinated with remarkable rapidity such that a B cell transits through
these processes in four to six hours allowing for numerous rounds of selection and immune
amplification during the course of a typical acute GC reaction of 14 to 21 days (2, 3). From the GC
circuit both plasma cells (PCs) and memory B cells (MBCs) are produced ensuring both acute and
durable antigen-specific immunity.

The importance of GCs in infection and vaccine responses has been demonstrated in numerous
studies (3–5). However, the molecular nature of the GC incurs risk. One risk is that, through
stochastic SHM, autoreactive and potentially pathogenic antibodies arise. However, elegant studies
have demonstrated that GCs strongly select against autoreactivity (6). Indeed, selection against
autoreactivity appears to have primacy over selection for affinity. The mechanisms by which GCs
purge the antigen-selected repertoire of autoreactivity remain unclear.

The other risk of ongoing SHM and proliferation is neoplastic transformation. The GC B cell
molecular program establishes a state that promotes survival in the presence of increased genomic
stress (7, 8). This both enables SHM and increases the risk of lymphoma (9, 10). Indeed, GC B cells
are precursors for large B cell lymphoma, follicular lymphoma, and Burkitt lymphoma (11, 12).
Transformation has been linked to off-target AID activity (13). Studies in humans and mice have
revealed multiple genetic, epigenetic and signaling mechanisms that individually mitigate the risk of
neoplastic transformation inherit to the GC response. Recent studies are providing insights into
how these mechanisms are coordinated with those that drive affinity maturation (14–16).
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In this review, we will discuss the current understanding of
how SHM, selection and proliferation are coordinated within the
GC. We will first discuss the cellular architecture of the GC and
then what is known about underlying molecular programs.
Finally, we will propose a model that segregates fundamental
GC molecular functions into separate cell states and niches in a
way that enables effective adaptive immunity and mitigates the
risks of neoplastic transformation.
GC CELLULAR EVOLUTION

The initial histological description of GCs noted characteristic
dark and light zones (DZ and LZ respectively). Live cell imaging,
and other complementary approaches, have provided
remarkable insights into how GCs form and polarize into these
two zones that perform very different functions. However, as
described below, it has become clear that simple division of cells
into DZ and LZ populations obscures underlying molecular
GC functions.
Germinal Center Initiation
Activation of naïve B cells in primary follicles induces migration
to interfollicular areas and conjugates with antigen-specific T
cells. B cells then present antigens to T cells and receive help
through CD40-CD40L signals that promote B cell survival (5, 17,
18). Based on intravital microscopy experiments, these B-T cell
conjugates can be found within a day after immunization (19,
20). NF-kB signaling is critical downstream of BCR activation to
form GCs (21). However, while GCs do not form in mice with
impaired NF-kB signaling, responding B cells are still able to
migrate to the B-T cell border and present antigen to T cells.
Instead, NF-kB signaling regulates expression of the
transcription factors (TFs) IRF4 and BCL6, which are critical
for both the GC and PC developmental programs (18, 20, 22, 23).

The formation of B-T cell conjugates is followed by T cells
entering the B cell follicle on day 3. Subsequently, on day 4, B
cells re-enter the B cell follicle and proliferate to form early GCs
(18–20). Contrary to these distinct cellular events, the molecular
regulation underlying the early events after antigen encounter is
still being defined. Recent studies suggest there are multiple pre-
GC B cell states leading up to commitment to the GC B cell
program (24). Some of these are controlled by the transcriptional
repressor BCL6 (20, 25). BCL6 is upregulated in the outer follicle
after antigen encounter and is important for forming B-T cell
conjugates prior to GC commitment (20). Within early and
mature GCs, BCL6 controls B cell positioning within the B cell
follicle (20, 23, 26–28). It also enhances GC B cell proliferation by
making them more tolerant of DNA damage (7, 8). Ultimately,
BCL6 drives the GC B cell program and prevents PC
differentiation through inhibition of Prdm1 (BLIMP) (29).

Recent studies further reinforce the importance of BCL6 in
GC B cell commitment. By modulating the amount of Bcl6
expression in transgenic mice, one study found that Bcl6hi B cells
responding to immunization were more likely to commit to the
GC program (30). In complementary studies, Zhang et al. found
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that while T-B cell conjugates are important to generate GC B
cell precursors, increasing the time of T-B cell conjugates or
CD40 signaling reduces progression to a Bcl6hi state and favors
plasmablast (PB) differentiation in the extrafollicular region (24).

Class Switch Recombination Occurs
During the GC Initiation Phase
In 2019, it was discovered that class switch recombination (CSR),
the process by which B cells perform DNA rearrangements at the
heavy chain locus to replace IgM and IgD, for IgA, IgG, or IgE,
occurs during the GC initiation phase (31). Most studies on CSR
have been performed in vitro and focused on the molecular
mechanism, reviewed (32). However, strong evidence for when
CSR occurs in vivo was lacking. Through a combination of
imaging and molecular experiments Roco et al. found that CSR
occurs in the first few days after activation and prior to GC
commitment (31). Evidence for this included the observation of
predominantly IgM+ GCs as well as the visualization of CSR
prior to mature GC formation. This study resolved a critical
question in the field placing CSR in the early events during GC
initiation, and validated earlier evidence that CSR might occur
prior to mature GCs (33, 34). The transcriptional states
associated with CSR have now been resolved at the single cell
level, further accelerating our understanding of early events in
the GC reaction (35).

Mature GC Cellular Dynamics
By day 4 after immunization, GCs precursors begin to expand
and polarize to form LZ and DZ areas by day 7 (18, 36). The LZ
contains more sparse populations of B cells that capture antigen
from follicular dendritic cells (FDCs) and receive help from
cognate T follicular helper (TFH) cells (37). B cells in the LZ are
selected based on their competency to present antigen to TFH

cells as well as BCR signal strength (38–40). These B cell
interactions with TFH cells guide the major known GC fates
which include cyclic re-entry, cell death as well as PC and MBC
differentiation (37). Tingible body macrophages (TBMs), which
lie within the DZ, clear dying B cells and thereby likely prevent
inflammation and autoimmunity (37, 41).

A wealth of data assign both proliferation and somatic
hypermutation to the DZ (3, 18, 37). However, genomic
mutation, and the attendant genotoxic stress are incompatible
and indeed antagonistic to proliferation. It is possible that
mechanisms intrinsic to genotoxic stress, such as the sensing of
DNA breaks by p53, segregate proliferation from SHM within
the DZ (42). However, as discussed below, these incompatible
processes occur in different cell populations each occupying a
unique niche within the GC.

A Paradox
An extensive body of literature has revealed that the LZ and DZ
perform very different functions and that this is associated with
g r e a t mo l e cu l a r comp l ex i t y . Howeve r , when LZ
(CD83hiCXCR4low) and DZ(CD83loCXCR4hi) cells are isolated
and characterized for RNA expression and genomic accessibility,
they are remarkably similar (14, 38, 43). Taken at face value,
these data suggest that primarily post-transcriptional
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mechanisms regulate cycling through the dark and light zones.
This seems attractive as it could provide for very rapid cell fate
transitions. Alternatively, it is possible that simply dividing GC B
cells into two populations obscures important underlying
molecular dynamics.

There are data supporting the latter possibility. In addition to
driving affinity maturation, the GC selects for differentiation into
both PCs and MBCs. Precursors of these populations must exist
in the GC and, indeed, some have been identified (16, 44, 45).
However, these populations are not observed upon simple
division of the GC into two populations.

Given the rapidity of the GC cycle, it is also possible that B
cells are always in transition (46). This is suggested by available
single cell RNA-Seq studies, where GC B cells do not resolve into
discrete cell populations (14–16). However, some cell fate
decisions are discrete and are associated with definitive
checkpoints. A cell either undergoes mitosis or it does not.
Likewise for apoptosis. It is possible that SHM occurs along a
gradient of cell states. However, we would argue that such a
strategy would incur unnecessary genomic risk. Furthermore,
during B lymphopoiesis genomic recombination and
proliferation are segregated into very different cell populations
(47, 48). As described below, this strategy is recapitulated in
the GC.
Division of the DZ Into Two Discrete
Cell States
The canonical DZ encompasses a gradient of CXCR4 and CD83
surface expression. Differing levels of CXCR4 raises the
possibility that these cells could occupy different niches within
the DZ and therefore be imbued with different functions.
Remarkably, when we split the DZ into two populations
(CXCR4hiCD83+ and CXCR4+CD83-), and therefore GC B
cells into three populations, there were striking differences in
RNA and protein expression (14). It became clear that
proliferation was restricted to the CXCR4hiCD83+ population.
More specifically, these cells were the site of mitosis marked by
increased cell size, enrichment of cells in G2/M and high
expression of the mitotic factor Cyclin B1. Previous work has
indicated that GC B cells can transit the G1/S checkpoint in any
compartment (49, 50). Our data indicate that mitosis occurs in a
discrete cell state, which we refer to as proliferative DZ cells or
DZp cells.

Conversely, CXCR4+CD83- cells have features of cells
undergoing SHM. These include high expression of Aicda and
genotoxic stress genes as well as induced phosphoproteomic
pathways of DNA damage response. These cells were also in the
G1 phase of the cell cycle where AID activity is known to occur
(14, 51). We refer to this DZ subset as DZd for DZ
differentiation. While immunoglobulin gene transcription,
which is necessary for AID targeting (52), is induced in DZd,
it was effectively repressed in DZp cells. These and other data
indicate that both positive and repressive mechanisms ensure
segregation of mitosis and SHM into different cell states.

Comparison across RNA expression and proteomic data sets
indicated a cyclic progression in which cells selected in the LZ
Frontiers in Immunology | www.frontiersin.org 3
transit to the DZp for mitosis and then to the DZd for SHM (14).
These data also revealed how the molecular programs in one cell
state primes for functions in the next. Myc provides an example.
The Myc locus displayed increased genome accessibility and
transcription in LZ B cells compared to the DZ populations.
However, phosphorylated MYC protein was observed in LZ and
DZp B cells, with the downstream MYC program uniquely high
in DZp cells.

These data, in conjunction with scRNA-Seq data (14, 15)
indicate that expression across each stage is dynamic and that the
initiation of transcriptional programs rapidly induces proteomic
and functional programs as cells transit through each stage.
Overall, these data help explain the rapidity of the GC cycle (2, 3,
38, 50, 53–57).

Remarkably, ATAC-Seq of the LZ, DZp and DZd revealed
enhancer accessibility was also very dynamic across the three cell
states (14). These differences were not only quantitative but also
qualitative with characteristic TF binding motifs becoming
accessible in each GC B cell state. In fact, the most enriched
TF binding motifs found in each subpopulation were for TFs
known to have importance within the GC. These included CTCF
in the DZd, OCT2 in the DZp, and SpiB and PU.1 in the LZ (58–
62). OCT2 is required for GC B cell proliferation and is
dysregulated in B cell lymphomas (62). While OCT2 binding
motifs were enriched in DZp accessible regions, Oct2 expression
did not change between subsets. Instead, expression of Pou2af1
(binding partner of OCT2) was increased in DZp cells (14, 63–
65). These data suggest that epigenetic mechanisms play
important and complementary roles to TFs in regulating GC B
cell fate. We propose that, by mechanisms yet to be defined, GC
B cells integrate regulatory mechanisms across the whole vertical
pathway of protein expression to affect rapid cell fate decisions.

A New GC Model
Our analysis revealed several markers of the DZp population that
allowed identification of distinct clusters of DZp cells within the
larger DZd pool (14). These clusters did not arise solely from
clonal proliferative expansion. Rather, cells appear to migrate to
these DZp niches to undergo mitosis. Why would mitosis occur
in a distinct niche? Subsequent analysis demonstrated that DZp
cells are intimately intertwined with TBMs. Furthermore, within
these cellular aggregates are GC DZp cells that are apoptotic and
appear to be undergoing engulfment by TBMs. Integration of
these and molecular data suggests a new model of GC
compartmentalization (Figure 1).

As well described, selection for antigen receptor affinity
occurs within the LZ with coordinated collaboration between
GC LZ B cells, FDCs and TFH cells (Figure 1A). Interactions
between LZ B cells and TFH cells are critical to determine GC B
cell fate. Our data suggest that those LZ B cells that have been
successively selected, and also those that have not, migrate to the
DZp niche (Figure 1B). Those fated for apoptosis are then
eliminated by TBMs, which are the principal macrophage cell
population within the GC (37, 66). The mechanisms by which
TBMs identify dying B cells is not fully understood. However, it
is known that FDCs secrete a molecule called MFGE8, which
labels apoptotic cells for phagocytosis (67, 68). This labeling
March 2021 | Volume 12 | Article 659151
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occurs by binding phosphatidylserine that is externalized on the
surface of cells undergoing apoptosis (69). Recently, a molecule
called decay accelerating factor (DAF) has also been proposed to
regulate GC B cell phagocytosis (70). Such signals likely help
TBMs distinguish between healthy B cells and B cells undergoing
apoptosis. We propose that B cells that have been successfully
Frontiers in Immunology | www.frontiersin.org 4
selected in the LZ, and are not cleared by TBMs, can then
undergo mitosis.

Why would clearance of apoptotic cells be coordinated with
mitosis? Apoptosis is the usual pathway of GC cell death (37).
However, when apoptotic cells attempt division it can result in
mitotic catastrophe and necrosis (71). Therefore, by positioning
A

B
C

FIGURE 1 | Model of germinal center dynamics and compartmentalization. GC B cells progress through a series of molecular states compartmentalizing key
functions to distinct spatial niches. (A) GC B cell selection occurs in the LZ. B cells entering the LZ from the DZd first attempt to capture antigen deposited on
follicular dendritic cells (FDC). This is followed by antigen processing and presentation to TFH cells in the context of MHC class II. Interactions between LZ B cells and
TFH determine if B cells are fated to differentiate into MBCs or PBs, undergo cyclic re-entry into the DZp, or initiate apoptosis. Cells selected for cyclic re-entry
migrate to the DZp (B). We propose that B cells that initiate apoptosis in the LZ are cleared by TBMs in the DZp niche. Those cells that are successfully selected in
the LZ, and therefore are not cleared by TBMs, undergo mitosis. (C) After one or more rounds of cell division, GC B cells transit to the DZd compartment where
differentiative functions, such as SHM and replacing old BCRs with newly mutated BCRs, are proposed to occur. B cells that successfully complete processes in the
DZd migrate to the LZ to undergo selection. Figure created with BioRender.com.
March 2021 | Volume 12 | Article 659151
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TBMs within the DZp niche, necrosis, and the attendant
inflammation, would be prevented. Many factors affect the G1/
S checkpoint and the decision to initiate proliferation (72). Our
data suggest that the main quality check for cell cycle progression
is at G2/M.

One of the main controllers of proliferation within the DZp is
Myc. B cells selected for cyclic re-entry typically divide on
average twice in the DZ (49, 50). The number of divisions is
dependent on the strength of signal received from TFH cells. This,
in turn, correlates with Myc protein levels implicating Myc in
controlling the extent of proliferation (73). In this model,
selection in the LZ determines the magnitude of Myc
expression. Proliferation then continues until Myc levels are
sufficiently diluted by cell division (73–75).

Upon completing one or more rounds of mitosis, GC B cells
transition to the DZd stage (Figure 1C) where cell cycle exit is
coordinated with induction of immunoglobulin gene transcription,
which is required forAID targeting. Furthermore, dissolutionof the
nuclearmembrane, as occurswhen cells undergomitosis, facilitates
AID entering the nucleus (51). These mechanisms are predicted to
restrict AID-mediated SHM to DZd cells. Indeed, these cells bear
features of genotoxic stress and DNA repair associated with SHM
(14). Our findings are consistent with studies suggesting that SHM
occur in G1 phase cells (51, 76–79). Therefore, proliferation and
SHM appear to occur in sequential and mutually exclusive cell
states, DZp and DZd respectively, that ensure cells have exited cell
cycle before initiating SHM. In this way, the attendant risks of gene
mutation are mitigated.

B cells undergoing SHM-associated DNA damage and repair
undergo an additional checkpoint prior to transit to the LZ.
Upon completion of SHM, GC B cells replace old surface BCRs
with the newly mutated BCR (80). B cells that generated
nonfunctional BCRs due to SHM are fated for apoptosis prior
to LZ entry. Thus, there are two levels of BCR selection per GC
cycle, structural competency followed by relative affinity. We
would postulate that those cells that express an incompetent BCR
in the DZdmight undergo retrograde GC cycling to be cleared by
TBMs, the only known macrophage resident in the DZ (37, 66).

In our model, cells transit from the DZd to LZ without
intervening proliferation. Therefore, only mutations that
immediately arise on the DNA coding strand would be
selected. Mutations on the non-coding strand must also be
selected. However for these mutations to be selected, we
predict that must arise during the preceding GC cycle and
previous transit through the DZd. This would allow these
single stranded mutations to be “fixed” by DNA replication in
the DZp and therefore become “visible” for subsequent selection
in the LZ. Alternatively, it is possible that a minor fraction of
DZd cells migrate back to the DZp for proliferation and fixing of
non-coding strand mutations.
Frontiers in Immunology | www.frontiersin.org 5
Selection in the LZ Also Determines
Differentiation to PC and MB Cell Fates
In addition to cyclic re-entry into the DZ, LZ B cell interactions
with TFH govern GC exit into the PB or MBC fates (18, 81–83).
While the LZ population that induces Myc contains cells
destined for cyclic re-entry, this B cell pool also contains PB
and MBC precursors (45 , 84) . PB precursors are
BCL6loCD69hiIRF4+ and express high-affinity BCRs (38, 45,
85). Commitment to the PC fate is associated with stable B:
TFH cell conjugates suggesting strong T cell help instructs PC
differentiation (45).

In contrast MBCs develop from low-affinity B cell clones that
receive low strength signals from TFH (5, 86–88). Weak T cell
help also results in low Myc and mTORC1 activation, which also
predisposes to differentiation into MBCs (44). Overall, these
studies indicate that high affinity BCRs and strong TFH

interactions predispose to PC differentiation while low affinity
BCRs, and poor T cell help, leads to differentiation into MBCs.
CONCLUSION

Here we provide a three-compartment model that segregates
each fundamental GC B cell function, selection, proliferation and
SHM, into distinct, separate cell states. This both mitigates the
risk of SHM and allows coordination of molecular processes
specific to each function. Furthermore, analysis of these three
populations reveal just how molecularly dynamic the GC subsets
are with large differences in genomic accessibility, transcription,
protein expression and protein phosphorylation across each cell
state. Therefore, it is likely that many regulatory mechanisms
vertically integrate across the biosynthetic pathway to both drive
and maintain the integrity of the GC response. Understanding
these mechanisms, and how they integrate to regulate GCs, will
provide opportunities to better treat a wide breadth of infectious,
autoimmune and neoplastic diseases.
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