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Abstract

Background: Modern dairy cattle breeding goals include several production and more and more functional traits.
Estimated breeding values (EBV) that are combined in the total merit index usually come from single-trait models
or from multivariate models for groups of traits. In most cases, a multivariate animal model based on phenotypic
data for all traits is not feasible and approximate methods based on selection index theory are applied to derive
the total merit index. Therefore, the objective of this study was to compare a full multitrait animal model with two
approximate multitrait models and a selection index approach based on simulated data.

Methods: Three production and two functional traits were simulated to mimic the national Austrian Brown Swiss
population. The reference method for derivation of the total merit index was a multitrait evaluation based on all
phenotypic data. Two of the approximate methods were variations of an approximate multitrait model that used
either yield deviations or de-regressed breeding values. The final method was an adaptation of the selection index
method that is used in routine evaluations in Austria and Germany. Three scenarios with respect to residual
covariances were set up: residual covariances were equal to zero, or half of or equal to the genetic covariances.

Results: Results of both approximate multitrait models were very close to those of the reference method, with rank
correlations of 1. Both methods were nearly unbiased. Rank correlations for the selection index method showed
good results when residual covariances were zero but correlations with the reference method decreased when
residual covariances were large. Furthermore, EBV were biased when residual covariances were high.

Conclusions: We applied an approximate multitrait two-step procedure to yield deviations and de-regressed breeding
values, which led to nearly unbiased results. De-regressed breeding values gave even slightly better results. Our results

confirmed that ignoring residual covariances when a selection index approach is applied leads to remarkable bias. This
could be relevant in terms of selection accuracy. Our findings suggest that the approximate multitrait approach applied

to de-regressed breeding values can be used in routine genetic evaluation.

Background

In dairy cattle breeding programs, selection is focused
on different production traits and more and more on
functional traits. Usually, estimated breeding values
(EBV) or phenotypes [1] are combined into a total merit
index (TMI) [2]. Traits or groups of traits are usually
evaluated separately based on different statistical models
[3]. This is also the case in the joint Austrian-German
genetic evaluation of one dairy and several dual-purpose
cattle breeds. The TMI and several sub-indices are based
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on a selection index method [1] for all cattle breeds, which
was proposed by [4]. Currently, the TMI of Fleckvieh
(dual-purpose Simmental) and Brown Swiss populations
consists of up to 30 production and functional traits. EBV
for the TMI as well as for several sub-indices are esti-
mated either using univariate (e.g. protein yield) or multi-
variate (e.g. calving ease and stillbirth) methods by
applying animal or sire-maternal-grandsire models (the
latter for functional longevity only). Some of these models
include repeated measures, such as somatic cell count [2].
Subsequently, EBV for individual traits are combined to
form TMI or other sub-indices by assuming that residual
covariances between traits or groups of traits are equal
to zero. Due to the large number of traits involved and
to methodological constraints, the additive genetic
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(co)variance matrix to combine EBV into a TMI cannot
be estimated multivariately for all traits. Additive gen-
etic correlations between the traits in the TMI are
mainly obtained from the literature [4]. Furthermore,
we have observed that the TMI shows an upward trend
in bias for animals with low reliabilities (r?) (unpub-
lished results). We hypothesize that this is due to ig-
noring residual covariances when combining traits or
trait groups into the TMI. Full multivariate estimation
of all traits based on phenotypic data could represent
the optimum methodology [5-7], but in routine genetic
evaluations substantial restrictions (e.g. computer power
and computational considerations) make this approach in-
feasible. Thus, an approximate multivariate model using a
two-step procedure was proposed and validated using
simulated data [3,8,9]. In the first step, genetic (co)vari-
ances were estimated based on yield deviations (YD). The
associated weights for YD were calculated from univariate
analyses and YD were adjusted for all environmental ef-
fects. In the second step, a multivariate animal model that
included a random genetic effect for the animal and a
fixed year effect was applied [3,9]. Due to improved con-
nectedness of the data and simultaneous estimation of
genetically correlated traits, accuracies of EBV can be
increased compared to those from a univariate analysis. In
particular, functional traits, which are characterized by
low heritabilities (h?), benefit more from a multivariate
animal model than moderately to highly heritable traits
[6,10]. A set of characteristics using an approximate multi-
variate model based on YD exists and is well described
[3,7,11,12]. However, YD cannot always be obtained in
routine evaluation settings, e.g. for EBV from Interbull.
Therefore, the objective of this study was to compare four
methods to calculate TMI using: a full multitrait model;
approximate multitrait models applied to YD and de-
regressed estimated breeding values (drEBV); and the
current selection index method which is used in the joint
Austrian-German genetic evaluations. The consequences
of ignoring residual covariances when a TMI is computed
were investigated. Hence, three scenarios with respect to
residual covariances were set up using data that were gen-
erated by stochastic simulation of data that represent a
simplified breeding scheme of the Austrian Brown Swiss
cattle population.

Methods

Data simulation

A population structure that roughly reflected the Austrian
breeding program of Brown Swiss cattle was simulated
with the stochastic simulation program ADAM [13]. The
simulated population comprised approximately 51 300
cows in 1710 herds. Five normally distributed traits were
chosen to represent dairy, beef and fitness traits. Add-
itional requirements were a wide range of heritabilities
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and genetic correlations between traits and economic im-
portance. Fat yield (FY), protein yield (PY), somatic cell
count (SCC) and non-return rate of cows (NRR) were
measured on female animals. Net daily gain (NDG) was
observed on approximately 60% of all male animals. No
repeated records were assumed. The assumed heritabil-
ities and genetic correlations for the five traits are in
Table 1, which were obtained from estimates for the na-
tional Brown Swiss population [14]. Around 25% young
bulls and 75% proven bulls were used for matings in the
selection scheme. Breeding values and phenotypes for the
five traits were simulated for animals from a base popula-
tion. Animals were selected on a TMI based on multivari-
ately EBV over 30 years. Based on values used for routine
genetic evaluation, relative economic weights per additive
genetic standard deviation were 5.4, 53.6, 4.3, 19.7 and
17% for FY, PY, NDG, SCC and NRR, respectively [14].
Three scenarios with respect to residual covariances
between traits were simulated. In scenario 0, residual
correlations between traits were assumed to be zero.
For scenarios 1 and 2, residual correlations corresponded
to 50% or 100% of the genetic correlations, respectively.
These scenarios were chosen to specifically test the cur-
rently used selection index method for possible bias due
to ignoring correlations between residual effects, as
proposed by [4]. For each scenario, ten replicates were
simulated. On average, breeding values and reliabilities
of EBV were estimated for 755 567 animals for each
scenario.

Methods to calculate the TMI

The first method (MULTI) was a full multivariate animal
model based on phenotypic data using the true genetic
and phenotypic parameters, assuming the following lin-
ear model:

Yy = Xb + Za + e, (1)

where vy is the vector representing simulated pheno-
typic observations of FY, PY, NDG, SCC and NRR,
respectively; X and Z represent the incidence matrices

Table 1 Genetic parameters used for simulation
(heritabilities on the diagonal, genetic correlations above
the diagonal)

Trait FY PY NDG SCC NRR
FY 040 0.85 0.10 0.25 -0.20
PY 0.39 0.10 0.25 -0.20
NDG 0.27 0.00 0.00
SCC 0.12 -0.10
NRR 0.02

Fat yield (FY), protein yield (PY), net daily gain (NDG), somatic cell count (SCC)
and non return rate cow (NRR).
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for fixed and random effects, respectively, b is the vector
of the fixed herd-year effects, a is the vector of the ran-
dom animal additive genetic effects and e is the vector
of the random residual effects. Vector a was assumed to
have a multivariate normal distribution, with MVN(0,
G=Gy ® A), where Gy is a 5 x 5 additive genetic
variance-covariance matrix,® is the Kronecker product
of matrices, and A represents the numerator relation-
ship matrix. Residuals e were assumed to be MVN(0,
R =Ry ® I), where Ry is the 5 x 5 residual variance-
covariance matrix and I represents the identity matrix.
Subsequently, the TMI was calculated as:

TMIpmurT = apy@ry + Apywpy + ANDGONDG (2)

+ asccwscc + ANRRONRR,

where 4 represents the EBV for the traits and  de-
notes the relative economic values. As the full multitrait
estimation, MULTI, represents the optimum method,
this was considered to be the reference method.

The second (YD) and third (DRP) methods were based
on the approximate multitrait two-step procedure pro-
posed by [3]. These methods use either YD or drEBV.
For both methods, univariate genetic evaluations were
used to calculate YD and drEBV for each trait. For the
YD method, phenotypic observations were corrected for
the fixed herd-year effect using the following model:

Yy = y-Xb, (3)

where y* is the vector of yield deviations, y is the
vector of phenotypic observations of the traits FY,
PY, NDG, SCC and NRR, and b is the vector of
herd-year effects. X is the incidence matrix of proper
order. After correcting for fixed effects, all five traits
were analysed together in the following multivariate
animal model:

y" = Xb + Za + e, (4)

where y* indicates yield deviations of animals of a
trait; X and Z represent the incidence matrices for
fixed and random effects, respectively, b is the vec-
tor of year of birth fixed effects, a is the vector of
random animal additive genetic effects and e denotes
the vector of random residual effects. The year of
birth effect was included in order to account for
over- or underestimation of the genetic trend [9].
The use of YD requires weights to consider the dif-
ferent amount of information for each animal. Reli-
abilities were calculated with the program package
ApaX [15], using the approximate Interbull method
of [15]. Based on these reliabilities, effective own
performances (EOP) were calculated and used as
weighting factors for yield deviations in the multi-
variate estimation of breeding values for method YD.
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The following formula was applied to calculate EOP
for trait i:
G
EOPLJ' = 1_—[%} —O(i7 (5)
where «; is the ratio of residual and additive genetic
variances of trait i; and r represents the reliability of the
own performance of animal j for trait i [16]. The
assumption and size of the (co)variance matrices Gy and
Ry for estimating breeding values and the equation for
the TMI were based on the same formulas as in method
MULTL For method DRP, EBV were de-regressed using
a univariate de-regression based on the approach of [17]
and [18], which is implemented in the program package
MiX99 [19]. The de-regression procedure uses the EBV
and their respective effective daughter contributions as
weights, with the general mean as the only fixed effect.
Based on model Equation (4), EBV were estimated in a
5-trait animal model, with drEBV as the response vari-
ables and an overall mean, a year effect, additive genetic
effects of animals for each trait and residual effects of
drEBV as explanatory variables. As described for method
YD, EOP were used as weighting factors to estimate
breeding values.

The fourth method SI is the approach that is currently
used in routine genetic evaluations in Austria and
Germany to calculate the total merit index based on
selection index theory. The EBV of the five traits were
estimated univariately using the same model Equation (1)
but assuming that G = Ac? and R =102, where o2 is the
additive genetic variance and o? is the residual variance.
In order to obtain the TMI with method SI, covariances
between EBV (oy) were calculated as:

2.2
Gij = rgijr il jGaiGaj, (6)

where rg; is the genetic correlation between traits i
and j; rj; are the reliabilities of EBV of traits i and j, and
Oai,ej are the additive genetic standard deviations of traits
i and j. In this equation, residual correlations are
neglected, i.e. assumed to be zero.

YD, drEBV and EBV were computed using the program
package MiX99 [19]. Reliabilities of EBV were calculated
with the program package ApaX [15]. Reliabilities of the
TMI of methods MULTL, YD and DRP were calculated
using the approach of [20]. Reliabilities of the TMI of
method SI were calculated using the formula described by
[4]. For all methods, genetic parameters were not re-
estimated, but the true (simulated) parameters were used.
All EBV were standardized to an additive genetic standard
deviation of 12 and 100 for the mean of cohorts from
birth year 18 to 22. Spearman rank correlations between
TMI of different methods were calculated using SAS 9.2.
[21]. To estimate breeding values and reliabilities by
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calculating genetic trends and for all further analyses, the
last 20 years of the simulated period were used.

Results

Correlations

Table 2 shows the Spearman rank correlations between
TMI obtained using the reference method MULTI and
from methods YD, DRP and SI categorized by TMI reli-
ability for all animals for scenarios 0 and 2. Correlations
for YD and especially DRP were almost 1. Correlations
between the reference method and method SI were
slightly lower, particularly for scenario 2, in which the
residual (and thus the phenotypic) correlation was equal
to the genetic correlation. Results for scenario 1 are not
shown since values were always between those of scenar-
ios 0 and 2. The simulated selection program resulted in
a strong genetic trend, therefore results were also ana-
lyzed within year groups. Across all animals and in the
last 20 years of the simulation (Table 3), correlations
between TMI from the different methods were high and
ranged from 0.983 to 1 for all scenarios. As expected,
correlations decreased slightly when split into year
groups. Correlations for method SI were more strongly
affected, especially when non-zero residual covariances
were simulated. In addition, the population was subdi-
vided into the following four groups: bulls with progeny
information (BP), bulls without progeny information
(BNP), females with progeny information (FP) and fe-
males without progeny information (FNP). Correlations
between TMI from the reference method MULTI and

Table 2 Rank correlations of TMI obtained using alternate
methods with TMI obtained using the multivariate
method within TMI reliability groups

Scenario Reliability YD DRP Sl

0 <39 1.000 1.000 0.993
40-49 1.000 1.000 0.990
50-59 1.000 1.000 0.997
60-69 1.000 1.000 0.994
70-79 1.000 1.000 0.991
80-89 1.000 1.000 0.997
>90 1.000 1.000 0.999

2 <39 1.000 1.000 0.988
40-49 1.000 1.000 0.985
50-59 1.000 1.000 0.988
60-69 1.000 1.000 0.985
70-79 1.000 1.000 0.978
80-89 1.000 1.000 0.991
>90 1.000 1.000 0.998

YD = approximate multitrait two-step procedure based on yield deviations;
DRP = approximated multitrait two-step procedure based on de-regressed
estimated breeding values; SI = selection index method.
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Table 3 Rank correlations with multivariate TMI (MULTI)
within year groups for different TMI methods for
scenarios 0 and 2

Scenario Years YD DRP Sl

0 All 1.000 1.000 0.989
11-15 1.000 1.000 0.962
16-20 1.000 1.000 0.963
21-25 1.000 1.000 0.945
26-30 1.000 1.000 0.950

2 All 1.000 1.000 0.983
11-15 1.000 1.000 0.948
16-20 1.000 1.000 0.943
21-25 1.000 1.000 0914
26-30 1.000 1.000 0932

YD = approximate multitrait two-step procedure based on yield deviations;
DRP = approximated multitrait two-step procedure based on de-regressed
estimated breeding values; SI = selection index method.

the three other methods for BP, BNP, FP and FNP across
all 20 years and scenarios ranged from 0.984 to 1 (results
not shown). For bulls and dams with progeny, a ten-
dency for higher correlations was observed. Method SI
showed the lowest correlations and method DRP showed
the highest correlations with method MULTIL With
regard to scenarios, rank correlations were highest for
scenario O followed by scenarios 1 and 2. When grouped
by reliability, rank correlations of TMI from MULTI
with those from YD and DRP were always close to 1.
However, correlations between MULTI and SI grouped
by reliability were lower, especially when non-zero
residual correlations were simulated (scenarios 1 and 2,
results not shown). For BNP bulls, correlations even de-
clined to 0.907.

Bias

Bias was defined as the difference between the esti-
mated TMI of each method and the MULTI TMI (e.g.
TMlIyp-TMIyiuirr). This was done for all animals and
scenarios. Since the reference method MULTI essen-
tially had no bias, the presented bias is equivalent to
the bias from true TMI. Results for scenarios 0 and 2
for all animals grouped by reliability are in Table 4. For
all scenarios, methods YD and DRP showed almost no
bias. However, method SI showed a relevant bias in
both scenarios. The TMI of animals with a reliability
lower than 50% were overestimated, whereas that of
animals with a reliability greater than 50% were under-
estimated. When residual correlations were non-zero
(scenario 2), this bias was more pronounced. Method
SI led to a markedly overestimated genetic trend,
which was expressed as a downwards bias during the
first years and an upwards bias during the last years
(Table 5). This was especially evident for scenario 2
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Table 4 Bias of approximate TMI methods relative to TMI
from multivariate analysis within TMI reliability groups
for scenarios 0 and 2

Scenario Reliability YD DRP Sl

0 <39 0.1 0.0 1.0
40-49 0.1 0.0 13
50-59 0.1 0.0 -05
60-69 0.1 0.0 -06
70-79 -0.1 0.0 -16
80-89 0.0 0.0 =23
>90 0.0 0.0 -25

2 <39 0.1 0.0 0.2
40-49 0.1 0.0 0.7
50-59 0.1 0.0 -1
60-69 0.1 0.0 =14
70-79 —0.1 0.0 -16
80-89 0.0 0.0 -26
>90 0.0 0.0 -28

YD = approximate multitrait two-step procedure based on yield deviations;
DRP = approximated multitrait two-step procedure based on de-regressed
estimated breeding values; SI = selection index method.

and even more for the top 10% animals based on TMI
(Figure 1). When non-zero residual covariances were
simulated (scenario 2), the bias was similar to that for
scenario 0 but slightly more pronounced. Figure 2
shows the bias for all bulls with progeny performance
(BP) and for bulls without progeny performance (BNP)
for method SI for scenario 0 (currently used method).
A difference of about half a genetic standard deviation
was observed between the average TMI of BP and BNP
at the end of the simulated period. Selecting the best
10% bulls each year from groups BP and BNP resulted

Table 5 Bias with different TMI methods from
multivariate TMI within year groups for scenarios 0 and 2

Scenario Years YD DRP Sl

0 All 0.1 0.0 0.2
11-15 04 0.1 =11
16-20 0.1 0.0 -03
21-25 0.1 00 0.6
26-30 -0.1 0.0 14

2 All 0.1 00 -0.5
11-15 04 0.1 =27
16-20 0.1 0.0 =07
21-25 -0.1 0.0 0.7
26-30 —-0.1 00 038

YD = approximate multitrait two-step procedure based on yield deviations;
DRP = approximated multitrait two-step procedure based on de-regressed
estimated breeding values; SI = selection index method.
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in an even greater difference (Figure 3) for method SI.
Differences between groups BP and BNP were even
higher when the simulated residual covariances were
greater (results are not shown). The difference between
FP and FENP was close to O for method SI for all
scenarios.

Reliabilities and standard deviations

The mean reliabilities (r?) and standard deviations
(SD) for the TMI of methods MULTI, YD and DRP
were almost equal (numerically +0.1 to +0.3). Thus,
only the results of the reference MULTI and SI
methods are presented in Table 6. Estimated reliabil-
ities were slightly higher for method SI than for the
other methods for scenario 0, when grouped by years.
For scenario 2, for which non-zero residual covariances
were simulated, reliabilities for method SI were sub-
stantially higher than for MULTI for each year group.
Since the estimated reliabilities depend on the method
used, realised (true) reliabilities obtained from the
squared correlation of estimated true breeding values
for TMI are also presented. Realised reliabilities for SI
were on average 4% lower than for MULTL.

To quantify the presumed inflation of TMI from
method SI, the expected SD of TMI was calculated as,
/1?02 using realised reliabilities and the true genetic
standard deviationo? within year (Table 6). The variance
for TMI for method MULTI was very close to the
expected values. For method SI, the observed SD of the
TMI was notably higher than the expected SD for
scenario 0 (from 0.4 to 1) and especially for scenario 2
(from 1.6 to 2.1). These findings were similar for all sce-
narios and groups (results not shown).

Selection response

To demonstrate the practical implications of the lower
realised reliabilities and the inflated SD of EBV with
method SI, the expected loss in selection response using
SI compared to MULTT was analysed. If we consider the
breeder’s equation, we can assume that selection inten-
sity, genetic standard deviation and generation interval
do not depend on the TMI method. Thus, differences in
selection response between the analysed methods de-
pend only on the reliability of the TMI. This led to an
expected loss in response of 3 to 5% with method SI
compared to MULTI (Table 6). Since the realised reli-
abilities for methods YD and DRP were almost identical
to those for MULTI, no loss in response is expected for
these methods.

Discussion
In this study, four methods were used to combine sev-
eral traits into a total merit index and were compared
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Figure 1 Time trend of bias (TMI-TMly 1) with different TMI methods for the top 10% animals per year in scenario 0.
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Figure 2 Time trend of bias (TMI-TMlyy, 1) for bulls with progeny (BP) and bulls without progeny (BNP) (method SI, scenario 0).
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Figure 3 Time trend of bias (TMI-TMly, 1) for the top 10% bulls with progeny (BP) and bulls without progeny (BNP) by year (method
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with different assumptions regarding residual covari-
ances. Both approximate multitrait two-step procedures
that used either YD or drEBV led to results that were
comparable to those of the full multivariate animal
model (MULTI). Our findings agree with those of [8,9]
who compared a full multitrait model, an approximate
two-step procedure applied to YD and a combination of
single trait models. The approximate two-step procedure
was not as efficient as the full multitrait model but
superior to the single-trait approach in terms of genetic

response. Results of this study substantiate some draw-
backs of the method that is currently used to calculate a
TMI in routine genetic evaluations in Germany and
Austria. Spearman rank correlations of TMI between the
reference MULTI and the YD and DRP methods were
close to 1 for all scenarios for any categories of reliability
or year. Correlations for method SI were lower than for
methods YD and DRP even when zero residual covari-
ances were simulated. Rank correlations between MULTI
and SI decreased with increasing residual covariances.

Table 6 Reliabilities and standard deviations (SD) of TMI from methods MULTI and SI for scenarios 0 and 2 grouped by
year and loss in selection response (SR) with SI compared to MULTI

Sc. Years Reliabilities MULTI Reliabilities SI SD MULTI SD sI Loss in SR
Realized Estimated Realized Estimated Expected* Estimated Expected* Estimated With SI*

0 11-15 313 46.1 279 488 5.7 57 54 6.0 -3.2

16-20 32.1 459 288 486 5.7 59 54 6.1 =27

21-25 354 46.0 312 488 6.1 6.2 57 6.7 -38

26-30 420 457 380 483 6.9 72 6.6 79 -3.7
2 11-15 28.7 436 243 489 54 55 50 6.6 -4.6

16-20 276 434 230 487 52 53 48 64 -438

21-25 309 433 254 486 56 58 5.1 6.9 -52

26-30 36.7 43.0 320 484 6.3 6.6 59 80 -39

Sc. = Scenario; *expected standard deviation of EBV, based on realised reliabilities, obtained from squared correlation of estimated with true breeding values, and
the true genetic standard deviation within year; *percent loss in SR of SI compared to MULTI, with 100% being a SR with an accuracy of 1.
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Applying selection index theory (e.g. method SI) to calcu-
late a TMI is valid when traits are not or only slightly cor-
related [3,12]. However, this is not the case for the
routinely calculated TMI in Austria and Germany due to
the wide range of dairy, beef and functional traits which
are correlated to a certain degree (e.g. genetic correlations
between fat kg and fertility, dressing percentage or milk-
ability are -0.20, -0.15 and 0.25, respectively [14]). In par-
ticular, some of the lowly heritable functional traits are
correlated with production or conformation traits to a
considerable degree [12,22]. Furthermore, it is well known
that ignoring residual covariances when animals are re-
corded for different traits in the same environment is not
valid [3]. This was confirmed by our results with method
SI. As residual covariances increased, correlations of TMI
with the reference method decreased and deviated more
from the full multivariate model. In addition, a downwards
bias was observed for animals with high reliabilities, e.g.
bulls with progeny, and an upwards bias for animals with
low reliabilities, e.g. young animals without progeny.
Hence, the bias for the top 10% animals can be relevant in
terms of selection decisions across birth cohorts. The
average difference between TMI from the reference
MULTT and SI methods can be up to half a genetic SD,
which leads to substantial re-ranking of bulls. This can
cause selection bias, in particular when early selection de-
cisions are made on young bulls. It should be noted that,
in this simulation study, young bulls without progeny can-
not be compared with young bulls with genomic EBV
from routine evaluations. In the simulation, young bulls
had own data only for NDG, while for all other traits a
pedigree index was used. This means that the problem of
bias may be less severe in routine evaluations.

In the method that is currently used to calculate a
TMI, residual correlations are neglected for traits for
which covariance is expected to occur, e.g. fat and pro-
tein yield, functional longevity and some fitness traits
[22,23]. Results of this study based on simulated data
imply that the variances of EBV with low reliability are
in general inflated using method SI. This is confirmed
by results obtained with real data on functional longev-
ity and type traits in Austrian Fleckvieh cows [24]. Re-
liabilities and variances of the TMI were overestimated
for functional longevity when combined with auxiliary
type traits using method SI and ignoring residual co-
variances. Based on the results of this simulation,
drEBV could be a good alternative to YD, since they
can be easier to obtain in some cases and show equally
good results. This could also help to include Interbull
EBV in the national evaluation, since individual YD are
not available at the international level. The current
method for calculating TMI and other sub-indices
could thus be replaced by an approximate two-step
procedure using drEBV.

Page 8 of 9

Two crucial points need to be clarified before the ap-
proximate multitrait approach can be implemented in
routine genetic evaluations: (1) accurate genetic and re-
sidual (co)variance components must be estimated using
a multivariate analysis of all traits in order to allow their
inclusion in the two-step procedure; if this is not pos-
sible, it has been suggested by [8] to cluster traits that
have genetic correlations above 0.10; and (2) further-
more, a genomic evaluation including international EBV
(Interbull) must be implemented.

Conclusions

An approximate multitrait two-step procedure to
compute TMI applied to drEBV led to nearly unbiased
results. Fortunately, the outcomes for the multitrait
method based on drEBV are equally as good as those
on YD, which will facilitate its implementation, espe-
cially for specific traits for which it is difficult to ob-
tain accurate YD. The advantages of these methods are
greatest when residual covariances differ from zero.
Although there are several crucial prerequisites before
implementing an approximate multitrait two-step pro-
cedure in routine genetic evaluations, our results open
up perspectives for the replacement of the current
selection index method by this procedure based on
drEBV.
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