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Abstract

Task-fMRI researchers have great flexibility as to how they analyze their data, with

multiple methodological options to choose from at each stage of the analysis

workflow. While the development of tools and techniques has broadened our hori-

zons for comprehending the complexities of the human brain, a growing body of

research has highlighted the pitfalls of such methodological plurality. In a recent

study, we found that the choice of software package used to run the analysis pipeline

can have a considerable impact on the final group-level results of a task-fMRI investi-

gation (Bowring et al., 2019, BMN). Here we revisit our work, seeking to identify the

stages of the pipeline where the greatest variation between analysis software is

induced. We carry out further analyses on the three datasets evaluated in BMN,

employing a common processing strategy across parts of the analysis workflow and

then utilizing procedures from three software packages (AFNI, FSL, and SPM) across

the remaining steps of the pipeline. We use quantitative methods to compare the

statistical maps and isolate the main stages of the workflow where the three pack-

ages diverge. Across all datasets, we find that variation between the packages' results

is largely attributable to a handful of individual analysis stages, and that these sources

of variability were heterogeneous across the datasets (e.g., choice of first-level signal

model had the most impact for the balloon analog risk task dataset, while first-level

noise model and group-level model were more influential for the false belief and anti-

saccade task datasets, respectively). We also observe areas of the analysis workflow

where changing the software package causes minimal differences in the final results,

finding that the group-level results were largely unaffected by which software pack-

age was used to model the low-frequency fMRI drifts.
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1 | INTRODUCTION

The 2010's may be best remembered by scientists as the start of the

“replication crisis” (Maxwell, Lau, & Howard, 2015), an ongoing issue

that has gained prominence as a number of classic and contemporary

psychology studies have been brought into question. At the heart of

the controversy is a growing body of work where attempts to repli-

cate several effects in psychological science have failed, prompting

further scrutiny of the robustness of the original findings. In a land-

mark investigation, the Open Science Collaboration (2015) repeated

100 experiments that had been published in three high-ranking psy-

chology journals, reporting that only 36% of their replications deter-

mined a positive result compared to 97% of the original studies. At

around the same time the first in a series of Many Labs studies was

published, where numerous analysis teams have tried to replicate

results from the psychology literature across a diverse range of sam-

ples. Of the 51 studies re-evaluated in the first three Many Labs pro-

jects, roughly 60% yielded significant effects (Ebersole et al., 2016;

Klein et al., 2014, 2018).

The field of functional magnetic resonance imaging (fMRI) for

human brain mapping has not come away unharmed from the repli-

cation crisis. On the contrary, the large degree of flexibility in neuro-

imaging analysis workflows has been pinpointed as an aspect of the

field that can hinder reproducibility (Ioannidis, 2005). The crux of

the problem is that two different analysis pipelines applied to the

same dataset are unlikely to give the same result. Therefore, as an

increasing number of analytical tools and techniques have become

available to researchers, this has also increased the potential to yield

distorted findings with inflated levels of false activations. When

combined with selective reporting practices—where only methods

that return a favorable outcome are likely to end up being

published—the consequences of this can be severe, leading to fMRI

effect sizes that are misrepresented and often overstated in the

neuroimaging literature (Simmons, Nelson, & Simonsohn, 2011;

Szucs & Ioannidis, 2017).

In one of the most comprehensive studies in this area, a single

publicly available fMRI dataset was analyzed using over 6,000 unique

simulated workflows, constructed by enumerating all possible pipeline

combinations from an array of commonly implemented analysis proce-

dures (Carp, 2012). Across the tens of thousands of thresholded

results maps generated by these workflows, a substantial degree of

variability was observed in both the sizes and locations of significant

activation. In a more recent study, 70 independent research teams

were tasked with testing 9 hypotheses on the same fMRI dataset,

with no constraints placed on how each team approached their analy-

sis (Botvinik-Nezer et al., 2020). Consequently, no two teams chose

the same analysis workflow, and once again, the plurality of methodo-

logical approaches manifested as variability in the final scientific out-

comes, this time with considerable disagreement between the

70 teams' hypothesis test results. Overall, these investigations have

forewarned practitioners not to fall victim to a version of insanity

where we apply different workflows over and over again and expect

the same results.

In Bowring, Maumet, and Nichols (2019) (BMN), we discovered

that it is not just the procedures comprising the analysis pipeline that

can induce variation across fMRI results, but also the choice of soft-

ware package through which the analysis is conducted. We reanalyzed

three datasets connected to three published task-fMRI studies within

the three most widely-used neuroimaging software packages—AFNI

(Cox, 1996; Cox & Hyde, 1997), FSL (Jenkinson et al., 2012), and SPM

(Penny, Friston, Ashburner, Kiebel, & Nichols, 2011)—reproducing the

original publication's analysis workflows in each package as closely as

possible so that the difference in software was the only changing vari-

able. We then applied a range of similarity metrics to quantify the dif-

ferences between each software's final group-level results. While

qualitatively certain patterns of signal were observed across all three

packages' statistical results maps, our quantitative comparisons dis-

played marked differences in the size, magnitude, and topology of

activated brain regions, and we ultimately concluded that weak

effects may not generalize across software.

Now we revisit that work, seeking to understand where in the

analysis pipeline the greatest variation between analysis software is

induced. We substantially extend the analyses carried out for BMN,

running the same three datasets through a series of “hybrid” pipelines
that employ a common processing strategy across parts of the

workflow (e.g., by implementing a common fMRIPrep preprocessing

strategy) and then interchange pipeline elements between software

for the remaining stages of the analysis. By comparing all sets of our

analysis results, we isolate the key stages of the workflow where the

three packages diverge. Ultimately, we find that the variation between

the packages' results is largely attributable to sizable processing differ-

ences at a handful of key analysis stages, and that these sources of

variability can be heterogeneous across datasets. Finally, for each

study we apply an image-based meta-analysis procedure recently

used in Botvinik-Nezer et al. (2020) to all of our analysis results,

aggregating the information acquired from running one dataset

through multiple pipelines to obtain a consensus map of activated

brain regions.

The remainder of the manuscript is organized as follows: First, we

provide a brief summary of the three original published studies from

which we sourced our selected datasets. We then describe the pipe-

lines implemented for our reanalyses of the data, and detail the quan-

titative and qualitative metrics and image-based meta-analysis

procedure applied to our analysis results. Finally, we evaluate our

findings to assess the magnitude of variation between fMRI analysis

software at each stage of the analysis workflow, and discuss the

repercussions of these results on the functional neuroimaging

literature.

2 | METHODS

We first provide an overview of the original study paradigms for the

three published task-fMRI works from which we sourced the three

datasets, before we go on to detail the reanalysis methods carried out

in this work. Most notably, while the original studies' analyses were
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carried out on 16, 29, and 30 participants task-fMRI data respectively,

for the latter two studies only 21 and 17 participants' data were avail-

able for reanalyses. Alongside this, due to preprocessing failing for

one individual in the ds000001 dataset, we ultimately reanalyzed

15 subjects rather than the complete sample of 16 whose data were

shared (see the start of Section 3 for more details).

2.1 | Study description and data source

We selected three task-fMRI studies from the publicly accessible

OpenfMRI (now upgraded to OpenNeuro, RRID:SCR_005031) data

repository (Gorgolewski, Esteban, Schaefer, Wandell, & Poldrack,

2017), OpenfMRI dataset accession numbers: ds000001 (Revision:

2.0.4; Schonberg et al., 2012), ds000109 (Revision 2.0.2; Moran,

Jolly, & Mitchell, 2012), and ds000120 (Revision 1.0.0; Padmanabhan,

Geier, Ordaz, Teslovich, & Luna, 2011). Each of the datasets had been

organized in compliance with the Brain Imaging Data Structure (BIDS,

RRID:SCR_016124; Gorgolewski et al., 2016). These datasets were

chosen following an extensive selection procedure (carried out

between May 2016 and November 2016), whereby we vetted the

associated publication for each dataset stored in the repository. We

sought to find studies with simple analysis pipelines and clearly

reported regions of brain activation that would be easily comparable

to our own results. Exclusion criteria included the use of custom soft-

ware, activations defined using small volume correction, and applica-

tion of more intricate methods such as region of interest and robust

regression analysis, which we believed could be impractical to imple-

ment across all analysis software. A full description of the paradigm

for each of our chosen studies is included in the respective publica-

tion, here we give a brief overview.

For the ds000001 study, 16 healthy adult subjects participated in

a balloon analog risk task over three scanning sessions. On each trial,

subjects were presented with a simulated balloon, and offered a mon-

etary reward to “pump” the balloon. With each successive pump the

money would accumulate, and at each stage of the trial subjects had a

choice of whether they wished to pump again or cash-out. After a cer-

tain number of pumps, which varied between trials, the balloon

exploded. If subjects had cashed-out before this point they were

rewarded with all the money they had earned during the trial, how-

ever if the balloon exploded all money accumulated was lost. Three

different colored “reward” balloons were used between trials, each

having a different explosion probability, as well as a gray “control” bal-
loon, which had no monetary value and would disappear from the

screen after a predetermined number of pumps. Here we reproduce

the pipeline used to obtain the main study result contrasting the para-

metrically modulated activations of pumps of the reward balloons ver-

sus pumps of the control balloon, corresponding to Figure 3 and

Table 2 in the original article. Group-level inference was performed

using an uncorrected cluster-forming threshold p <.01, FWE-

corrected clusterwise threshold p <.05.

The ds000109 study investigated the ability of people from dif-

ferent age-groups to understand the mental state of others. A total of

48 subjects participated, although imaging data was obtained from

only 43 participants for the false belief task: 29 younger adults and

14 older adults. In this task participants listened to either a “false
belief” or “false photo” story. A false belief story would entail an

object being moved from one place to another, with certain characters

witnessing the change in location while others were unaware. False

photo stories were similar except that they involved some physical

representation of the missing object, such as a photo of an object in a

location from which it had been subsequently removed. The task had

a block design where stories were represented for 10s, after which

participants had to answer a question about one of the character's

perceptions of the location of the object. We reproduce the pipeline

used to obtain the contrast map of false belief versus false photo acti-

vations for the younger adults, corresponding to Figure 5a and

Table 3 from the original publication. Group-level inference was per-

formed using an uncorrected cluster-forming threshold p <.005, FWE-

corrected clusterwise threshold p <.05.

Finally, the ds000120 study explored reward processing across

different age groups. fMRI results were reported on 30 subjects, with

10 participants belonging to each of the three age groups (children,

adolescents, and adults). Participants took part in an antisaccade task

where a visual stimulus was presented in each trial and subjects were

instructed to quickly fixate their gaze on the side of the screen oppo-

site to the stimulus. Prior to a trial, subjects were given a visual cue to

signal whether or not they had the potential to win a monetary

reward based on their upcoming performance (a “reward” or “neutral”
trial). We reproduce the pipeline used to obtain the main effect of

time activation map, an F-statistic for any nonzero coefficients in the

sine HRF basis, corresponding to Figure 3 and Table 1 in the original

publication. Group-level inference was performed using an

uncorrected cluster-forming threshold p <.001, FWE-corrected

clusterwise threshold p <.05.

2.2 | Previous analyses and preprocessing
methods

In BMN we reanalyzed the ds000001 and ds000109 studies

described in the previous section using each of the three software

packages: AFNI (version AFNI_18.1.09; Cox, 1996, Cox &

Hyde, 1997), RRID:SCR_005927; FSL (version 5.0.10, Jenkinson et al.,

2012), RRID:SCR_002823; and SPM (version SPM12, v6906; Penny

et al., 2011), RRID:SCR_007037. For ds000120, the repeated-

measures design carried out for the original group-level analysis was

not feasible to implement in FSL; while the manual for FSL's fMRI

Expert Analysis Tool (FEAT) describes “Repeated Measures” exam-

ples, these are based on a restrictive assumption of compound sym-

metry that would entail assuming all 28 correlations among the basis

regression coefficients are equal. Because of this, for ds000120 we

reanalyzed the data in AFNI and SPM only. In parallel to our reproduc-

tions of the original analysis workflows, for ds000001 and ds000109

we computed an additional set of group-level results using the non-

parametric (permutation test) inference procedures available within
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the three software packages. For ds000120, a one-sample repeated-

measure permutation test was not viable in AFNI, so nonparametric

inference was excluded for this study.

The pipelines carried out for each study and software package are

described in Section 2.2 of BMN, and a full decomposition of the

modules used within each package is provided in Table 1 of the

manuscript. Notably, we chose to implement a number of processing

steps for all of our reanalyses regardless of whether they had been

carried out in the original studies. These were procedures that we

believed were fundamental to ensure our reproductions could be

compared objectively, and steps that are widely considered as good

practice within the community. Specifically, in all of our reanalyses we

TABLE 1 fMRIPrep processing pipeline

Workflow Processing step Description Tools used

Structural preprocessing Nonuniform intensity correction The anatomical T1w image was corrected for intensity

nonuniformity with N4BiasFieldCorrection,

distributed within ANTs 2.2.0, to be used as the

anatomical reference image for the rest of the

pipeline.

ANTS

Brain extraction The anatomical reference image was skull-stripped

with a Nipype implementation of the

antsBrainExtraction.sh workflow from ANTs.

ANTS

Segmentation Brain tissue segmentation of the CSF, WM, and GM

was performed on the brain-extracted T1w using

FSL's fast.

FSL

Brain surface reconstruction Brain surfaces were reconstructed using FreeSurfer's

recon-all, after which the brain mask was refined

using a custom variation of the ANTs-derived and

FreeSurfer-derived segmentations of the cortical

GM.

FreeSurfer, ANTS

T1w-to-MNI152 registration Spatial normalization to MNI152 space was performed

through nonlinear registration with ANTs'

antsRegistration, using brain-extracted versions of

the T1w reference and template images.

ANTS

Functional preprocessing Reference image For each BOLD run, a custom methodology of

fMRIPrep was applied to average across the BOLD

time-series in order to generate a reference volume.

Custom

Brain extraction The BOLD reference image was skull-stripped using

NiWorkflows' init_enhance_and_skullstrip_BOLD_wf

(), to be used for head-motion estimation and

registration of the BOLD time-series images to the

subject's T1w image.

NiWorkflows

BOLD-to-T1w registration The BOLD reference was co-registered to the T1w

reference using FreeSurfer's bbregister,

implementing a boundary-based registration with six

degrees of freedom.

FreeSurfer

Head-motion correction Head-motion parameters with respect to the BOLD

reference (one rigid-body transformation, three

rotations and three translations) were estimated

with FSL's mcflirt, after which the rigid-body

transformation was applied to re-sample the BOLD

time-series onto their original, native space.

FSL

BOLD-to-MNI152 registration Transformations already obtained (head-motion rigid-

body transformation, BOLD to T1w registration,

T1w to MNI152 transformation) were concatenated

to map the BOLD image to the MNI152 standard

space.

Smooth

Confound estimation A range of potential confounds were estimated,

including the mean global signal, mean tissue class

signal, tCompCor, aCompCor, Framewise

Displacement, and DVARS.

CompCo

For all three studies, a subset of the workflows applied the same fMRIPrep preprocessing pipeline. Here, we itemize the main steps of the fMRIPrep

preprocessing pipeline, making note of the various tools used at each stage of the workflow.
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applied skull stripping to the T1-weighted (T1w) structural image, we

used each package's nonlinear registration tools to transform the

structural and functional data to the anatomical template, and six

motion regressors were included in the analysis design matrix for all

pipelines (while more than six motion regressors are often used, we

chose six as this could be easily implemented in all three software

packages).

Here, our first aim was to isolate whether the largest variation

between software occurs during the preprocessing or statistical

modeling of the functional data. To add to the analyses that were

conducted for BMN (where the entire workflow, including

preprocessing, was carried out within each software package), we

conducted a collection of similar pipelines except this time

implementing the same preprocessing strategy to the three datasets

before carrying out the rest of the analyses in the three packages.

Comparisons of these sets of results would distinguish the impact

each software package's preprocessing workflow can have on the

final group-level results.

For pipelines that used an identical preprocessing strategy, a com-

mon minimal preprocessing workflow was applied to each of the

datasets using fMRIPrep 20.0.02 (Esteban et al., 2019, 2020; RRID:

SCR_016216), which is based on Nipype 1.4.2 (Gorgolewski

et al., 2011, Esteban et al., 2020; RRID:SCR_002502). The fMRIPrep

pipeline combines procedures from a range of software packages to

provide the optimal implementation at each stage of preprocessing.

We will now describe the preprocessing sub-workflows that were

applied to all three datasets' anatomical and functional data within

fMRIPrep. These pipelines are also summarized in Table 1, where we

have included the tools implemented by fMRIPrep at each processing

step. Notably, apart from a few procedures that relied on tools from

FSL, most of the preprocessing performed by fMRIPrep used pack-

ages independent of AFNI, FSL, and SPM.

2.2.1 | Anatomical data preprocessing in fMRIPrep

For each of the three datasets, the preprocessing of the anatomical data

was carried out within fMRIPrep as follows. The T1w image was

corrected for intensity nonuniformity with N4BiasFieldCorrection

(Tustison et al., 2010), distributed with ANTs 2.2.0 (Avants, Epstein,

Grossman, & Gee, 2008, RRID:SCR_004757), and used as T1w-reference

throughout the workflow. The T1w-reference was then skull-stripped

with a Nipype implementation of the antsBrainExtraction.sh workflow

(from ANTs), using OASIS30ANTs as a target template. Brain tissue seg-

mentation of cerebrospinal fluid (CSF), white-matter (WM), and gray-

matter (GM) was performed on the brain-extracted T1w using fast (FSL

5.0.9, RRID:SCR_002823, Zhang, Brady, & Smith, 2001). Brain surfaces

were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847,

Dale, Fischl, & Sereno, 1999), and the brain mask estimated previously

was refined with a custom variation of the method to reconcile ANTs-

derived and FreeSurfer-derived segmentations of the cortical GM of

Mindboggle (RRID:SCR_002438, Klein et al., 2017). Volume-based spatial

normalization to one standard space (MNI152NLin2009cAsym) was per-

formed through nonlinear registration with antsRegistration (ANTs

2.2.0), using brain-extracted versions of both T1w reference and the

T1w template. The following template was selected for spatial normaliza-

tion: ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov,

Evans, McKinstry, Almli, & Collins, 2009, RRID:SCR_008796; Tem-

plateFlow ID: MNI152NLin2009cAsym).

2.2.2 | Functional data preprocessing in fMRIPrep

For each of the three datasets, the preprocessing of the functional

data was carried out within fMRIPrep as follows. For each of the

BOLD runs found per subject (across all tasks and sessions), the fol-

lowing preprocessing was performed. First, a reference volume and its

skull-stripped version were generated using a custom methodology of

fMRIPrep. Susceptibility distortion correction (SDC) was omitted. The

BOLD reference was then co-registered to the T1w reference using

bbregister (FreeSurfer) which implements boundary-based registration

(Greve & Fischl, 2009). Co-registration was configured with six

degrees of freedom. Head-motion parameters with respect to the

BOLD reference (transformation matrices, and six corresponding rota-

tion and translation parameters) are estimated before any spatiotem-

poral filtering using mcflirt (FSL 5.0.9, Jenkinson, Bannister, Brady, &

Smith, 2002). The BOLD time-series (including slice-timing correction

when applied) were resampled onto their original, native space by

applying the transforms to correct for head-motion. These resampled

BOLD time-series will be referred to as preprocessed BOLD in original

space, or just preprocessed BOLD. The BOLD time-series were res-

ampled into standard space, generating a preprocessed BOLD run in

MNI152NLin2009cAsym space. First, a reference volume and its

skull-stripped version were generated using a custom methodology of

fMRIPrep. Several confounding time-series were calculated based on

the preprocessed BOLD: framewise displacement (FD), DVARS and

three region-wise global signals. FD and DVARS are calculated for

each functional run, both using their implementations in Nipype (fol-

lowing the definitions by Power et al., 2014). The three global signals

are extracted within the CSF, the WM, and the whole-brain masks.

Additionally, a set of physiological regressors were extracted to allow

for component-based noise correction (CompCor, Behzadi, Restom,

Liau, & Liu, 2007). Principal components are estimated after high-pass

filtering the preprocessed BOLD time-series (using a discrete cosine

filter with 128 s cut-off) for the two CompCor variants: temporal

(tCompCor) and anatomical (aCompCor). tCompCor components are

then calculated from the top 5% variable voxels within a mask cover-

ing the subcortical regions. This subcortical mask is obtained by

heavily eroding the brain mask, which ensures it does not include cor-

tical GM regions. For aCompCor, components are calculated within

the intersection of the aforementioned mask and the union of CSF

and WM masks calculated in T1w space, after their projection to the

native space of each functional run (using the inverse BOLD-to-T1w

transformation). Components are also calculated separately within the
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WM and CSF masks. For each CompCor decomposition, the k compo-

nents with the largest singular values are retained, such that the

retained components' time series are sufficient to explain 50% of vari-

ance across the nuisance mask (CSF, WM, combined, or temporal).

The remaining components are dropped from consideration. The

head-motion estimates calculated in the correction step were also

placed within the corresponding confounds file. The confound time

series derived from head motion estimates and global signals were

expanded with the inclusion of temporal derivatives and quadratic

terms for (Satterthwaite et al., 2013). Frames that exceeded a thresh-

old of 0.5 mm FD or 1.5 standardized DVARS were annotated as

motion outliers. All resamplings can be performed with a single inter-

polation step by composing all the pertinent transformations

(i.e., head-motion transform matrices, SDC when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric)

resamplings were performed using antsApplyTransforms (ANTs), con-

figured with Lanczos interpolation to minimize the smoothing effects

of other kernels (Lanczos, 1964). Nongridded (surface) resamplings

were performed using mri_vol2surf (FreeSurfer).

2.3 | Manipulation of modeling methods and
hybrid pipeline generation

Alongside preprocessing, different parts of the three software pack-

ages' pipelines were interchanged to generate a collection of hybrid

analysis pipelines. For these pipelines, AFNI (version AFNI_20.0.20),

FSL (version 6.0.3), and SPM (standalone version of SPM12, r7771)

were used. At the subject-level, modeling was partitioned into three

separate components: the fMRI signal model, noise model, and low-

frequency drift model. Specifically, the fMRI signal model concerns

how each software package models the hemodynamic response func-

tion to obtain the task-related regressors in the GLM, as well as how

any parametric modulations or temporal derivatives are included in

the GLM to model aspects of the BOLD response to the task condi-

tions. The noise model pertains to how each package models temporal

autocorrelation for prewhitening the fMRI data (Olszowy, Aston,

Rua, & Williams, 2019), and the drift model concerns how each pack-

age implicitly includes predictors in the subject-level GLM to regress

out the low-frequency drifts that are present in functional time-series

data (Smith et al., 1999). In addition to these subject-level analysis

components, we also interchanged between each package's group-

level and inference model.

Regarding implementation, for the subject-level analyses it was

not feasible to apply one software's noise model inside another pack-

age (e.g., it was not viable to conduct a workflow in SPM that

implemented FSL's first-level noise model). However, exchanging the

fMRI signal and low-frequency drift models between software could

be done easily, by simply interchanging the relevant regressors in the

design matrix. Because of this, for each of our hybrid analysis pipe-

lines the choice of software used for modeling the noise ultimately

determined the package through which the subject-level analyses

were conducted. For example, a hybrid pipeline using FSL's first-level

noise model with AFNI's first-level fMRI signal model and drift model

would be implemented within FSL, except the regressors in the design

matrix for modeling the fMRI signal and low-frequency drifts were

then interchanged with the corresponding regressors from the design

matrix generated by running the complete analysis within AFNI. In

addition to this, six motion parameters (translations and rotations)

estimated as part of the preprocessing workflow were included in all

first-level analysis models as nuisance regressors. Finally, for each

hybrid pipeline the subject-level contrast of parameter estimate maps

were inputted into the software package specified by the workflow

for group-level analysis and inference.

Taking all combinations of software procedures considered across

the three datasets yielded a total of 59 unique workflows, shown dia-

grammatically in Figure 1. The diagrams labeled 1 (far-left) and 7 (far-

right) for each study display the pipelines that were carried out in

BMN, where a single software package was used to conduct the

entire analysis workflow (from preprocessing up to group analyses).

Pipelines labeled 2 and 6 are similar, except that preprocessing was

carried out using the fMRIPrep workflow described in the previous

section. Pipelines labeled 3–5 include further manipulations, each step

interchanging one aspect of the subject- and group-level modeling as

described above. For ds000001 and ds000109, modifications to the

workflow were considered relative to the pipeline where the entire

analysis was carried out within FSL (labeled 7F in Figure 1, the “refer-
ence” pipeline). In other words, pipelines were generated by sequen-

tially exchanging procedures from FSL with the corresponding

procedures from AFNI (AF pipelines) or SPM (SF pipelines), as well as

interchanging the preprocessing subflow with fMRIPrep. For

ds000120, where group-level analysis in FSL was not feasible, the

pipeline carried out entirely in SPM (labeled 7S in Figure 1) was used

as the reference instead, and pipelines were generated by exchanging

procedures from SPM with the corresponding procedures from AFNI.

As previously discussed, for ds000001 and ds000109 we considered

both parametric and nonparametric inference (purple lines in Figure 1)

at the group-level, while for ds000120 the repeated-measures permu-

tation test was not feasible in AFNI and therefore only parametric

inference was considered.

Processing within AFNI was carried out using the “afni_proc.py”
program. For ds000001 and ds000109, AFNI's “3dMEMA” program

(Chen, Saad, Nath, Beauchamp, & Cox, 2012) was used for the para-

metric group-level analyses, and “3dttest++” was used for the non-

parametric group-level analyses. For ds000120, “3dMVM” (Chen,

Adleman, Saad, Leibenluft, & Cox, 2014) was used for the parametric

group-level analysis. Across all the studies, the “3dClustsim” method

(Cox, Reynolds, & Taylor, 2016; Cox, Chen, Glen, Reynolds, &

Taylor, 2017) was used for clustering the group-level statistic maps.

Subject- and group-level analyses within FSL were carried out using

FSL's FEAT (Woolrich, Behrens, Beckmann, Jenkinson, & Smith, 2004;

Woolrich, Ripley, Brady, & Smith, 2001), and processing in SPM was

implemented by specifying the relevant modules from the Batch

Editor.
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2.4 | Comparison methods

Two comparison methods were considered to assess the nature of

pipeline-variability across each studies' collection of group-level statis-

tical results. Correlations (Pearson's r) were obtained for each pair of

unthresholded group-level statistic maps to evaluate differences in

the overall activation profiles produced from each analysis workflow.

As well as this, Dice coefficients were obtained for all pairwise combi-

nations of thresholded statistic maps in order to compare the final

locations of activation given by each analysis pipeline after correction

for multiple comparisons. For a pair of thresholded maps, the Dice

coefficient is calculated as the volume of the intersection of the two

maps divided by the average of the volume's of each separate

thresholded image. In other words, Dice measures the overlap of

voxels between two sets of thresholded maps relative to the total

spatial extent covered by both maps' activations (a Dice coefficient of

1 indicates identical locations of activation in both maps, while 0 indi-

cates complete disagreement). With each Dice coefficient, the per-

centage of “spill-over” activation was also computed, that is, the

percentage of activation in one pipeline's thresholded statistic map

that fell outside of the analysis mask of the other pipeline.

Finally, we applied a recently proposed image-based meta-

analysis method that aggregated information across all pipelines (for a

given dataset) to yield a “consensus” activation map, that is, the set of

brain regions where significant activation was unanimous across all

analysis pipelines applied to the data. The consensus analysis was per-

formed on the collection of unthresholded group-level z-statistic

images obtained across all pipelines, accounting for the correlations

between pipelines owing to the same underlying data and identical

procedures applied across parts of the analysis workflow. The method

was originally proposed in Botvinik-Nezer et al. (2020), where it was

used to infer a consensus across results obtained by many analysis

F IGURE 1 Diagrams to enumerate the complete set of 59 pipelines that were carried out on the three datasets. For ds000001 and
ds000109, 26 pipelines were implemented for each dataset (13 workflows using parametric inference at the group-level, and 13 parallel
workflows using nonparametric inference displayed by the purple lines). For these two datasets, FSL was used as the reference software package,
and hybrid pipelines were generated by interchanging procedures from either AFNI and FSL (AF pipelines) or SPM and FSL (SF pipelines) across
the analysis workflow. A total of seven pipelines were carried out on the ds000120 dataset, where it was not feasible to analyze the data in FSL
and nonparametric inference was unavailable in AFNI. Here, SPM was used as the reference software package, and hybrid pipelines were
generated by interchanging procedures from AFNI and SPM across the analysis workflow. Notably, in this arrangement only one specific analysis
procedure is changed between adjacent pipelines (from left-to-right). For instance, the only difference between the third and fourth pipelines on
the top row was whether AFNI's or FSL's first-level noise model was applied, and therefore any discrepancies between the group-level results for

these pipelines are wholly attributable to differences between the two softwares' noise models
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teams for a single task-fMRI dataset. Full details of the method are

provided in Section S8.1. We applied the consensus analysis methods

to further examine the robustness of the individual results obtained

for each dataset after accounting for the interpipeline variation.

For new analyses (all pipelines in Figure 1 excluding diagrams

labeled 1 and 7 that were carried out as part of BMN), AFNI and FSL

scripts were written in Python 3.7.6 and SPM scripts were written in

GNU Octave (version 4.4.1). Scripts were made generalizable using a

series of templates to extract the stimulus timings from the raw data,

carry out the fMRIPrep preprocessing workflow, and subsequently

conduct subject- and group-level analyses. A master script for each

dataset took the templates as inputs, replacing various holding vari-

ables to create distinct batch scripts for each of the unique pipelines.

These batch scripts were subsequently executed within the master

script to obtain all sets of group-level results.

3 | RESULTS

All analysis scripts and results have been made available, see the data

availability statement for more details.

The preprocessing of each subject's data for all three studies was

assessed using the summary reports provided as part of the fMRIPrep

workflow. This included checking that each participant's functional

data had been correctly masked and successfully registered to the

MNI template image. Inspection of these reports confirmed that

preprocessing had been successful for all-but-one subject, subject

4 from the ds000001 dataset. Exceptionally high intensities found in

this subject's raw T1w anatomical image (potentially due to an errone-

ous brain-extraction applied to the anatomical data before it was

shared) caused drop-out in sizable regions of the brain during bias-

field correction in the fMRIPrep preprocessing pipeline. This subse-

quently led to a highly shrunken brain mask, and failure to register this

subject's functional data to the template image. For these reasons

subject 4 was excluded from all further analyses, and we repeated all

ds000001 analyses that were previously carried out for BMN with

this subject removed. As such, all ds000001 results presented here

are for 15 subjects rather than the complete sample of 16 whose data

were originally shared.

3.1 | Main sources of pipeline-variability

A detailed review of the regions of activation found in the thresholded

maps across all pipelines for each dataset is provided in Section S8.2.

Further Supporting Information figures (including slice views of the

thresholded and unthresholded results maps obtained from all pipe-

lines) are provided in Section S8.3. Here we describe the main sources

of variation observed between the pipelines' results across the three

datasets.

Our analyses of the ds000001 dataset suggest that differences in

each software's first-level signal model were the largest contributor to

variation across the three software packages' final statistical results.

This is highlighted in Figures 2 and S1 (all Supporting Information fig-

ures described in this section can be found in Section S8.3), where in

both figures we compare the results from the two analysis workflows

which differed only by the choice of first-level signal model: In

Figure 2, pipeline 5SF applied SPM's first-level signal model while

pipeline 6SF applied FSL's; in Figure S1, pipeline 5AF applied AFNI's

signal model while pipeline 6AF applied FSL's. In both cases, switching

to FSL's signal model led to a considerable change in the final

thresholded results, evidenced by the sizable difference in the Dice

coefficients obtained for these two specific workflows (highlighted by

the blue windows in the Dice plots for Figures 2 and S1, bottom right).

Particularly, a large cluster of positive activation observed in the ante-

rior cingulate for the pipelines implementing SPM's and AFNI's first-

level signal model was not identified in the corresponding set of

thresholded results that used FSL's signal model (Figures 2 and S1,

thresholded maps, middle). However, these changes were not simply

caused by subtle differences magnified by the thresholding, as consid-

erable decreases in the correlation values for the unthresholded maps

can also be observed for these two workflows (Figures 2 and S1, cor-

relation plots, bottom left), indicating that dissimilarities between the

signal model's applied by the two pipelines ultimately led to radically

different activation profiles in the unthresholded group-level t-

statistic images.

In terms of preprocessing, the results from our analyses across all

studies indicate that AFNI's preprocessing pipeline was the most simi-

lar of the three software packages to fMRIPrep, while FSL's was the

least similar. Evidence for this is seen in Figures S2 and S3, where we

compare results obtained for ds000001 and ds000109, respectively,

for two pairs of workflows: pipelines 1A and 2AF, which differ only as

to whether fMRIPrep or AFNI's preprocessing procedure was carried

out, and pipelines 6AF and 7F, which differ only as to whether

fMRIPrep or FSL's preprocessing was applied. In each plot, differences

between the results from pipelines 1A and 2AF have been highlighted

with a blue window, while differences between 6AF and 7F have

been highlighted with a green window. In all cases, it can be seen that

the final results obtained with either fMRIPrep or AFNI's

preprocessing workflow had greater comparability than the

corresponding fMRIPrep/FSL results: the final thresholded activation

clusters for fMRIPrep/AFNI pipelines were more similar relative to

the fMRIPrep/FSL thresholded results (Figures S2 and S3, middle

plots), and the correlation and Dice coefficients comparing pipelines

1A and 2AF were consistently larger than the corresponding values

for pipelines 6AF and 7F (Figures S2 and S3, bottom-left and bottom-

right plots). The fMRIPrep/SPM Dice and correlation values can be

seen in Figures S9, S10, S13, S14, and S15; on the whole, these are

slightly better than the corresponding FSL values, and slightly worse

than the AFNI figures.

Aside from preprocessing, the single analysis step that caused the

most variation in the ds000109 results was the first-level noise model.

In Figures 3 and S4, we focus our attention on how changing from

AFNI's first-level noise model (Figure 3) or SPM's first-level noise

model (Figure S4) to FSL's noise model caused a more considerable

change in the final results relative to the other processing steps. In
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both figures, it can be seen that the correlation values (Figures 3 and

S4, bottom left plots) and Dice values (Figures 3 and S4, bottom right

plots) obtained for comparisons between pipelines 3 and 4 (which dif-

fer only by choice of first-level noise model) were generally worse

than all other comparisons of pipelines varying by a single analysis

step (values magnified by the blue windows in the bottom plots).

However, it is notable that all correlations and Dice values were

greater than 0.8 here, and the overall variation between results for

ds000109 was much less than that observed for ds000001.

For ds000120, the group-level model and inference procedure

was the largest source of variability between software. This is seen in

Figure 4, where the two analysis workflows which differed only by

the choice of group-level inference model are compared: pipeline 2AS

applying AFNI's group-level modeling and inference, and pipeline 3AS

F IGURE 2 Comparisons of the group-level thresholded t-statistic maps (cluster-forming threshold p <.01, clusterwise threshold p <.05 FWE-
corrected), correlation values, and Dice coefficients obtained from reanalyses of the ds000001 dataset, focusing on the collection of results
obtained from hybrid pipelines that implemented procedures from both AFNI and FSL. The axis labels on the correlation and Dice plots here
correspond with the pipeline labels given in Figure 1, that is, the label “1” on the correlation and Dice plot axes here correspond to the results
obtained from pipeline 1A shown in Figure 1. Blue windows highlight the disagreement between the two sets of results given by pipelines 5AF
and 6AF, which differed only as to whether AFNI's or FSL's first-level signal model was used. The interchange of the signal model between
packages led to more expansive differences in the final results than any other individual processing step: in the thresholded group-level t-statistic
maps (middle), the expansive clusters of positive activation in the anterior cingulate (among other brain regions) identified by the pipeline using
AFNI's signal model (workflow 5AF) were lost when interchanged with FSL's signal model (workflow 6AF). Differences in the thresholded maps
are also reflected in the Dice coefficient matrices (bottom right), where the Dice values dramatically fell due the change of signal model between
pipelines 5AF and 6AF. The moderate decreases also seen in the correlation values for these two pipelines (bottom-left) indicate that the
interchange of signal model led to a considerable difference in the overall activation profile of the unthresholded t-statistic image
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applying SPM's group-level modeling and inference. Similar to

ds000109, while the main effects were captured in the thresholded F-

statistic maps by both packages (for ds000120, both 2AS and 3AS

identified large clusters in the visual cortex), there was more disagree-

ment over the presence of weaker effects. In this case, pipeline 2AS

(that used AFNI's group-level inference model) determined a greater

quantity of smaller clusters scattered across central regions of the

brain compared to pipeline 3AS (that used SPM's group model). It is

also notable that AFNI's group-level model generally determined

larger F-statistic values in the main activated regions compared to

SPM (higher statistic values in the visual cortex for pipelines 1A and

2AS compared to 3AS and 7S in Figure 4).

Finally, we observed that the choice as to which software's first-

level drift model was applied in the analysis pipeline led to minimal

changes in the final analysis results. This is shown in Figures S5 and

S6, where we highlight the similarity in results obtained for ds000001

and ds000109, respectively, for two workflows (pipelines 4SF and

5SF) which only differed as to whether SPM or FSL was used to

model the drift. In both figures, it can be seen that the thresholded

results obtained for these two pipelines (Figures S5 and S6, middle

F IGURE 3 Comparisons of the group-level thresholded t-statistic maps (cluster-forming threshold p <.005, clusterwise threshold p <.05
FWE-corrected), correlation values, and Dice coefficients obtained from reanalyses of the ds000109 dataset, focusing on the collection of results
obtained from hybrid pipelines that implemented procedures from both AFNI and FSL. The two sets of results given by pipelines 3AF and 4AF
are displayed, which differed only as to whether AFNI's or FSL's first-level noise model was implemented. Preprocessing aside, the interchange of
the first-level noise model impacted the final group-level results more than any other modeling decision. This is highlighted in the correlation and
Dice plots at the bottom of the figure: the blue windows on the off-diagonals show that the pairwise correlation and Dice values for pipelines
3AF and 4AF are smaller than the corresponding values obtained for all other pairs of adjacent pipelines. In the thresholded t-statistic maps (blue
window, middle), it can be seen that while both of these workflows captured the main effects in the precuneus and frontal brain areas, pipeline
4AF (that used FSL's first-level noise model) also determined numerous smaller activation clusters which were not captured by pipeline 3AF (that
used AFNI's noise model)

BOWRING ET AL. 1121



plots) were qualitatively very similar, that the unthresholded maps

obtained with these two workflows were almost perfectly correlated

(Figures S5 and S6, bottom-left plots), and that Dice comparisons for

the thresholded maps were consistently around 90%.

3.2 | Consensus analyses

Slice views of the thresholded z-statistic maps from the consensus

analyses performed on the ds000001 and ds000109 datasets are

presented in Figures 5 and 6, respectively. For each dataset, the con-

sensus analysis took the form of an image-based meta-analysis

conducted on the unthresholded group-level z-statistic maps obtained

from all 26 pipelines through which the data had been analyzed. The

image-based meta-analysis computed a third-level z-statistic map,

where each statistic value in the image reflected the level of evidence

to which all pipelines had agreed activation was present at a given

voxel. This map was then thresholded to determine voxels for which

the consensus z-statistic was significantly greater than zero after a

voxelwise FDR correction (p <.05). The equivalent one-sided correc-

tion was also performed to determine voxels whose consensus statis-

tic was significantly less than zero.

For ds000001, the thresholded z-statistic image presented in

Figure 5 shows a consensus across pipelines of positive activation in

F IGURE 4 Comparisons of the group-level thresholded F-statistic maps (cluster-forming threshold p <.001, clusterwise threshold p <.05
FWE-corrected), correlation values, and Dice coefficients obtained from reanalyses of the ds000120 dataset, focusing on the collection of results
obtained from hybrid pipelines that implemented procedures from both AFNI and SPM. The two sets of results given by pipelines 2AS and 3AS
are displayed, which differed only as to whether AFNI's or SPM's group-level inference model was implemented. The interchange of the second-
level model impacted the final results more than any other modeling decision. This is highlighted in the correlation and Dice plots at the bottom
of the figure: the blue windows on the off-diagonals show that the pairwise correlation and Dice values for pipelines 2AS and 3AS are smaller
than the corresponding values obtained for all other pairs of adjacent pipelines. In the thresholded F-statistic maps (blue window, middle), while
both pipelines captured the main effects in the visual cortex, pipeline 2AS (that used AFNI's group-level model and inference) identified more
smaller clusters scattered across central brain regions compared to pipeline 3AS (that used SPM's group-level model and inference). It can also be
seen that AFNI's inference model reported larger F-statistic values in activated regions compared to SPM
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the anterior cingulate, the insular cortex (bilateral) and the inferior

frontal gyrus (right side only). Significant activation was also deter-

mined in these brain areas for nearly all of the thresholded group-level

t-statistic maps obtained from each individual analysis workflow, as

can be seen in Figures S7–S10. However, the thresholded z-statistic

for a consensus on negative activations failed to determine any brain

areas that were statistically significant after FDR correction.

For ds000109, the thresholded z-statistic image presented in

Figure 6 shows a consensus across pipelines of positive activation in a

variety of brain regions. Large activation clusters covered areas of the

precuneus, frontal pole and superior frontal gyrus, the bilateral supe-

rior occipital cortex and angular gyri (bilateral), and further activation

was determined in the middle temporal gyrus (posterior and anterior

divisions, bilateral), the left and right amygdalae, and the posterior cin-

gulate gyrus. The main effects seen here were also captured in all of

the thresholded group-level t-statistic maps obtained from each indi-

vidual analysis workflow, displayed in Figures S11–S14. Once again,

the thresholded z-statistic for a consensus on negative activations

failed to determine any brain areas that were statistically significant

after the voxelwise correction.

4 | DISCUSSION

Comparisons of the statistical maps obtained from the collection of

pipelines applied to the three datasets have shown both the robust-

ness and fragility of group-level task-fMRI results in response to varia-

tion of the software package at different stages of the analysis

workflow. While results were found to be highly stable across all

datasets when the analysis package used to model the low-frequency

fMRI drifts was interchanged, other analytic manipulations produced

more appreciable changes in the group-level results. For instance, the

final regions of activation obtained for the ds000001 dataset were

found to be highly contingent on the software package used to model

the fMRI signal; switching between AFNI/FSL's signal model (pipelines

5AF and 6AF in Figure 2) and SPM/FSL's signal model (pipelines 5SF

and 6SF in Figure S1) both produced considerable differences in the t-

statistic maps (Dice coefficients less than .35 for comparisons of the

thresholded maps, correlations less than .75 for unthresholded maps).

However, for ds000109 the change of signal model had minimal

impact on the final results (in Figure S11, comparisons of the 5AF and

6AF unthresholded maps yielded a correlation of .99, Dice coefficient

F IGURE 5 Results of the ds000001 image-based meta-analysis. A consensus analysis was performed on the unthresholded z-statistic maps
obtained from all 26 pipelines used to analyze the ds000001 dataset, accounting for the correlation between pipelines owing to the same
underlying data and identical procedures implemented across parts of the analysis workflow. The thresholded z-statistic map displayed shows
voxels for which the group-level consensus statistic was significantly greater than zero after a voxelwise FDR correction (p <.05). Activation was
found in the anterior cingulate, the insular cortex (bilateral) and the inferior frontal gyrus (right side only) after accounting for between-pipeline
variation. No (negative) activation was obtained when the equivalent inference was performed to determine voxels where the consensus statistic
was significantly less than zero
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of .94 for positive activations). In contrast, the interchange of

ds000109's first-level noise model produced greater relative differ-

ences, and for ds000120, the group-level model was found to be the

largest modeling source of between-software variability (Figures 3,

S4, and S11–S15).

Importantly, these results do not provide an indication as to

which software package is better or worse; without a gold standard to

compare to, no such claims can be made. However, these findings do

suggest that the main sources of software-variability across the analy-

sis pipeline can be heterogeneous and dependent on external factors

such as the analysis design or task paradigm under investigation. One

reason that the quantitative comparisons for the ds000001 dataset

were generally worse than the corresponding ds000109 and

ds000120 comparisons is likely to be due to the smaller sample size

for this study (15 for ds000001 vs. 21 and 17 for ds000109 and

ds000120, respectively). As well as this, the larger impact of the signal

model for ds000001 may be attributed to varying aspects between

the three studies' analysis designs. In particular, the event-related

design used for ds000001's balloon analog risk task could have been

more sensitive to differences between each package's hemodynamic

response model compared to the block design used for ds000109. In

addition to this, while ds000109 and ds000120 did not apply any

modulated regressor orthogonalization methods, for each of the three

ds000001 task events represented in the GLM (pumps, cash-outs, and

explosions) the response time regressors were orthogonalized with

respect to the average activity regressor (e.g., pumpsresponse_time condi-

tion orthogonalized with respect to pumpsaverage condition). It has

been previously observed in the fMRI literature that the three soft-

ware packages handle orthogonalization differently (Mumford,

Poline, & Poldrack, 2015): while in FSL each regressor can be orthogo-

nalized with respect to any other individual regressor the user has

specified, in SPM orthogonalization is applied automatically, and each

regressor is orthogonalized with respect to all other conditions pre-

ceding it in the model. We suspect that differences in the shared vari-

ance between regressors caused by divergent orthogonalization

procedures across the three packages is one of the reasons that the

choice of signal model proved to be so influential for ds0000001.

The inference procedure carried out specifically for ds000001

may have also contributed to variation in the activation clusters iden-

tified in the thresholded t-statistic maps, particularly for this study's

F IGURE 6 Results of the ds000109 image-based meta-analysis. A consensus analysis was performed on the unthresholded z-statistic
statistical maps obtained from all 26 pipelines used to analyze the ds000109 dataset, accounting for the correlation between pipelines owing to
the same underlying data and identical procedures implemented across parts of the analysis workflow. The thresholded z-statistic map displayed
shows voxels for which the group-level consensus statistic was significantly greater than zero after a voxelwise FDR correction (p <.05). Large
activation clusters included areas of the precuneus, frontal pole and superior frontal gyrus, the bilateral superior occipital cortex and angular gyri
(bilateral). Further activation was found in the middle temporal gyrus (posterior and anterior divisions, bilateral), the left and right amygdalae, and
the posterior cingulate gyrus. No (negative) activation was obtained when the equivalent inference was performed to determine voxels where the
consensus statistic was significantly less than zero
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collection of parametric inference results. Group-level inference was

conducted using a cluster-forming threshold of p <.01 uncorrected for

the ds000001 study. However, in Eklund, Nichols, and

Knutsson (2016) it was found that parametric clusterwise inference

using this cluster-forming threshold led to varying degrees of inflated

false activations across the three software packages. Notably, while

these findings may in-part explain the poor Dice coefficients for the

ds000001 parametric results, they do not have any bearing on the

correlation comparisons (since correlations were comparisons of the

unthresholded maps) or the collection of corresponding nonparametric

results (since permutation inference was shown to perform as

expected in Eklund et al.). These findings also do not affect the

ds000001 consensus analysis results in Section 3.2, which used a

voxelwise FDR correction for inference. Since the correlation and

nonparametric inference comparisons were observed to be poorer for

ds000001 compared to the other studies too, this could suggest that

divergence between the parametric results were also caused by other

factors than the cluster-forming threshold.

Our findings for the ds000109 dataset, where the choice of first-

level noise model had the largest impact on the results relative to any

other processing step, are supported by recent research where AFNI,

FSL, and SPM's autocorrelation models were empirically assessed

using resting-state and task fMRI data. In Olszowy et al., 2019, it was

found that the performance of the three package's noise models could

vary depending on the dataset and task-paradigm under investigation,

and specifically, that low-frequency block designs were affected the

most. Since ds000109 was the only study we reanalyzed using a block

design, this could explain why the choice of noise model was most

influential here.

Our findings for the ds000120 dataset, where the group-level

model had the largest influence on the final statistical results, may be

explained by differences in how AFNI and SPM model the repeated-

measures design that was used for this study. Specifically, while SPM's

“full factorial design” module assumes that the variance–covariance

structure of the repeated measures is uniform across all voxels, and

estimates these correlations by pooling across “similar” voxels

(i.e., activated voxels that are spatially close; Glaser & Friston, 2004),

AFNI's “3dMVM” computes these correlations separately at each

voxel instead (Chen et al., 2014). The divergence between these two

approaches may partially explain the larger values seen in the

thresholded F-statistic maps for pipelines that used AFNI's group-level

inference model (compared to SPM) in Figures 4 and S15.

From the quantitative comparisons presented for all studies, it is

notable how seemingly small differences in the unthresholded maps

could be amplified after thresholding. Even when pairwise correlations

of the unthresholded statistic maps were considerably high, in many

cases the corresponding Dice comparisons measuring the overlap of

activation in the thresholded maps were substantially lower. This is

illustrated by the comparisons of pipelines 6AF and 7F in Figures S3

and S11, where the correlation between these two pipelines'

unthresholded t-statistic maps was .93, but the Dice coefficient for

negative activations in the thresholded maps was 0. Ultimately, this

was due to pipeline 6AF identifying two clusters of negative activa-

tion in the left and right interior temporal gyri, while pipeline 7F did

not determine any negative activation. The overriding issue here is

the dichotomous nature of thresholding; because maps are binarized

into regions of activation and nonactivation based on a single cut-off

value, substantially different thresholded maps can be obtained

depending on whether a cluster's size is marginally above or below

the threshold. We believe this scenario demonstrates why the

unthresholded statistical maps should always be shared. Access to the

unthresholded maps enables further meta-analyses of the data to be

conducted, where the variation of clusters across diverse samples

(and analysis workflows) can be quantified in order to determine

where results converge. The consensus analyses carried out as part of

this work exemplify the benefits to such an approach, and notably the

thresholded consensus map for ds000109 (Figure 6) did not identify

any regions of negative activation after accounting for the inter-

pipeline variation between individual results.

One limitation of this work pertains to the sample sizes for the

three studies that have been reanalyzed. In total, for the ds000001,

ds000109, and ds000120 datasets respectively, our reanalyses used

data from 15, 21, and 17 participants. While these sample sizes may

be small, they are fairly representative of the typical samples that have

been used in task-fMRI studies up to this point (fig. 1 of Poldrack

et al., 2017 estimates that the median sample size for task-fMRI stud-

ies was below 20 until the last decade). Nonetheless, a further assess-

ment of the effects of analytic variability in response to increasing

samples sizes would be a valuable addition to the literature. The grow-

ing availability of “big” task-fMRI datasets is providing greater oppor-

tunities to carry out such an assessment.

Another limitation is the small number of studies that have been

reanalyzed in this work. Due to the restrictive requirements of our

study (and particularly, the need for task-based fMRI data with analy-

sis methods compatible within AFNI, FSL, and SPM), the three studies

examined here were the only datasets hosted on OpenNeuro deemed

suitable for extensive multi-software analyses at the onset of our

investigation. Nevertheless, a larger sample of studies will need to be

analyzed to provide a further understanding of how variation in fMRI

results caused by differences in analysis software generalizes across

diverse datasets and task designs. Alongside this, there are various

analysis parameters that were not explored in this work, including dif-

ferent registration methods (all our reanalyses applied nonlinear regis-

tration to the MNI template), different voxel sizes, further

thresholding methods (e.g., FDR, FSL's threshold-free cluster

enhancement (Smith & Nichols, 2009) and AFNI's equitable

thresholding and clustering (Cox, 2019), and two-tailed testing (Chen

et al., 2019). We are optimistic that increased data-sharing efforts and

further development of libraries that provide unified interfaces to dif-

ferent software packages (e.g., NiPype, Gorgolewski et al., 2011) will

help to facilitate a more comprehensive exploration of analytic vari-

ability in the field going forward.

In conclusion, we believe that multi-software analyses are essen-

tial to understanding the nature and origins of intersoftware
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differences. For pipeline elements that produce the greatest variation,

further study will be required to determine an optimal or preferred

method (Churchill, Spring, Afshin-Pour, Dong, & Strother, 2015).

However, until more research on pipeline harmonization has been car-

ried out it is important that individual task-fMRI datasets are analyzed

using a range of plausible workflows (and software packages), and

possibly by many analysis teams. To obtain multiple results from one

dataset, individual research teams may pursue a “multiverse” analysis

strategy (Simonsohn, Simmons, & Nelson, 2019; Steegen, Tuerlinckx,

Gelman, & Vanpaemel, 2016), where the raw data are analyzed using

a number of feasible workflows (as has been done in this work). By

deriving numerous analysis results from a single dataset, meta-analytic

methods can then be applied to account for the variability between

pipelines and integrate inconsistent findings. In this regard, we hope

that the consensus analysis approach utilized in this study (that also

considers the dependencies between different pipelines) can provide

researchers with a viable option here. Alongside the multiverse

approach, numerous results can also be obtained from one dataset

through traditional replication analyses. To this end, it is vital that

both practitioners and publishers embrace the importance of replica-

tion studies and the publication of null findings. Alongside this, repli-

cation can only become possible if data sharing practices become

commonplace in the field. In this work, we have shared all of our sta-

tistical results (both unthresholded and thresholded maps) and analy-

sis code via public online repositories (Neurovault and Github/

Zenodo), and we hope that other researchers will follow suit to

advance transparency in neuroimaging science.
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