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A B S T R A C T   

Amorphous solid dispersion (ASD) is one of the most important strategies to improve the solubility and disso-
lution rate of poorly water-soluble drugs. As a widely used technique to prepare ASDs, hot-melt extrusion (HME) 
provides various benefits, including a solvent-free process, continuous manufacturing, and efficient mixing 
compared to solvent-based methods, such as spray drying. Energy input, consisting of thermal and specific 
mechanical energy, should be carefully controlled during the HME process to prevent chemical degradation and 
residual crystallinity. However, a conventional ASD development process uses a trial-and-error approach, which 
is laborious and time-consuming. In this study, we have successfully built multiple machine learning (ML) models 
to predict the amorphization of crystalline drug formulations and the chemical stability of subsequent ASDs 
prepared by the HME process. We utilized 760 formulations containing 49 active pharmaceutical ingredients 
(APIs) and multiple types of excipients. By evaluating the built ML models, we found that ECFP-LightGBM was 
the best model to predict amorphization with an accuracy of 92.8%. Furthermore, ECFP-XGBoost was the best in 
estimating chemical stability with an accuracy of 96.0%. In addition, the feature importance analyses based on 
SHapley Additive exPlanations (SHAP) and information gain (IG) revealed that several processing parameters 
and material attributes (i.e., drug loading, polymer ratio, drug’s Extended-connectivity fingerprints (ECFP) 
fingerprints, and polymer’s properties) are critical for achieving accurate predictions for the selected models. 
Moreover, important API’s substructures related to amorphization and chemical stability were determined, and 
the results are largely consistent with the literature. In conclusion, we established the ML models to predict 
formation of chemically stable ASDs and identify the critical attributes during HME processing. Importantly, the 
developed ML methodology has the potential to facilitate the product development of ASDs manufactured by 
HME with a much reduced human workload.   

1. Introduction 

Poor aqueous solubility is a common issue for many drugs at 
different stages, including pipeline candidates in development and 
commercial products, leading to lower bioavailability. According to the 
biopharmaceutical classification system (BCS), approximately 40% of 
the marketed products and 90% of drugs in development can be clas-
sified as poorly water-soluble (Jermain et al., 2018). Prior research has 
demonstrated that ASDs can effectively improve the solubility of poorly 
water-soluble drugs and subsequently improve their bioavailability 
(Pandi et al., 2020; Schittny et al., 2019). ASDs are solid dispersions in 

which the amorphous drug is dispersed in an excipient matrix such as 
polymers (Chiou and Riegelman, 1971). The purpose of forming an ASD 
is to minimize this energy component by disrupting the drug crystal 
lattice (Jermain et al., 2018). By breaking the crystal lattice and hin-
dering the lattice formation, the crystalline drug converts into an 
amorphous state, resulting in higher chemical potential, improved sol-
ubility, and bioavailability (Alonzo et al., 2010). HME is one of the 
widely used techniques to prepare ASDs with several benefits, such as a 
continuous manufacturing process, efficient and highly automated, and 
solvent-free compared with other conventional techniques, including 
spray drying and antisolvent precipitation (Huang and Williams, 2018). 

Abbreviations: ASD, Amorphous solid dispersion; HME, Hot-melt extrusion; AI, Artificial intelligence; ML, Machine learning; RF, Random Forest; SVM, Support 
vector machine; SHAP, SHapley Additive exPlanations; ECFP, Extended-connectivity fingerprints; IG, Information gain. 
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However, thermal/chemical degradation of drug substance during HME 
processing is one of its most important limitations and should be care-
fully considered during formulation development (Lu et al., 2014). It has 
been reported that the melting point depression approach through 
intermolecular interaction by forming such as co-crystal and salt can 
effectively reduce the HME processing temperature, avoiding thermal 
degradation (Haser et al., 2018a; Liu et al., 2012). Wang et al. suc-
cessfully developed an integrated ML-based platform, PharmDE, to es-
timate the compatibility between drugs and excipients for the 
preformulation evaluation of solid dispersions (Wang et al., 2021). This 
system immediately identifies the potential chemical degradation of a 
solid dispersion but does not include information on processing in-
struments such as HME and spray-drying (Wang et al., 2021). On the 
other side, sufficient energy (i.e., thermal energy and specific mechan-
ical energy) is required during the HME process to fully convert crys-
talline API into amorphous and prevent the risk of residual crystallinity 
(Ma et al., 2019; Moseson and Taylor, 2018). Therefore, it’s important to 
identify an optimal design space for forming an ASD using the HME 
process to prevent both chemical degradation and residual crystallinity. 

Machine learning (ML) as a cutting-edge technique has gained more 
interest in the pharmaceutical industry, especially in drug formulation 
development. For example, ML models have successfully been applied to 
predict the aerosol performance of dry powder for inhalation (Jiang 
et al., 2022), detect tablet defects in XRCT images (Ma et al., 2020), and 
predict dissolution and storage stability of solid dispersions (Dong et al., 
2021). In addition, multiple ML algorithms, including Random Forest 
(RF), Support Vector Machine (SVM), XGBoost, LightGBM, K-Nearest 
Neighbors (KNN), and Artificial Neural Networks (ANN) have been 
widely used for different tasks during formulation development (Han 
et al., 2019; Jiang et al., 2022). RF is an ensemble algorithm consisting 
of multiple decision trees, which exhibits improved predictive perfor-
mance and reduced over-fitting (Breiman, 2001). SVM is a linear clas-
sifier based on the margin maximization principle, and the hyperplane 
can optimally separate the data into two or multiple categories (Adan-
kon and Cheriet, 2009). XGBoost and LightGBM are two gradient- 
boosting algorithms developed recently and have demonstrated higher 
efficiency, flexibility, and portability (Chen et al., 2023; Ke et al., 2023). 
As tree-based algorithms, RF and XGBoost performed well in predicting 
a solid dispersion’s physical stability and dissolution rate (Dong et al., 
2021). As a widely used traditional ML model, SVM has also demon-
strated exemplary performance in determining the glass forming ability 
(GFA) of pharmaceutical compounds (Alhalaweh et al., 2014). There-
fore, multiple supervised classification ML models, including RF, SVM, 
XGBoost, and LightGBM, will be implemented in this study. 

Conventional ASD development involves several processes, 
including preformulation studies, processing optimization, and charac-
terization. In addition, comprehensive understandings of APIs’ and 
polymers’ physiochemical properties are necessary, including glass 
forming ability, melt viscosity, miscibility, glass transition temperature, 
degradation temperature, and melting point, before conducting HME 
experiments. Therefore, a conventional ASD development approach re-
quires many trial-and-error experiments, which are time-consuming and 
highly laborious. ML provides opportunities to design ASD by poten-
tially reducing the human workload of conventional approaches. For 
example, Han et al. successfully applied multiple machine learning 
techniques to predict the physical stability over time from 646 formu-
lations (Han et al., 2019). In this study, the random forest was identified 
as the best model, with the highest accuracy of 82.5%. In addition, 
experimental validation using estradiol-polyvinylpyrrolidone formula-
tions and molecular modeling techniques was performed to further 
evaluate the model (Han et al., 2019). Moreover, Lee et al. successfully 
predicted the physical stability of amorphous solid dispersion using a 
deep neural network (Lee et al., 2022). The researchers first applied a 
hybrid data sampling method and principal component analysis (PCA) 
to process the initial dataset, then the processed data was fed into a deep 
neural network for modeling (Lee et al., 2022). However, most of the 

published literature regarding ML applications in ASD focuses on stor-
age stability, and limited research focuses on the HME process and the 
forming of an ASD. Therefore, we hypothesize ML models can accurately 
predict the forming of chemically stable ASDs and identify critical at-
tributes during the HME process to reduce thermal degradation and 
residual crystallinity. 

2. Methods and materials 

2.1. Data collection 

In this study, we first conducted data mining using PubMed with the 
terms “hot-melt extrusion” and “amorphous solid dispersion,” and the 
articles ranging between January 1, 2012, and January 31, 2022. We 
obtained a dataset containing 49 APIs and multiple types of excipients 
from 117 selected publications by literature mining. Pie charts displayed 
a brief description of the dataset in Fig. 1. Input variables consist of 
critical material attributes (CMAs) (i.e., APIs, excipients, drug loading 
(w/w), and excipient ratio (w/w)) and critical processing parameters 
(CPPs) (i.e., hot melt-extruder configuration, barrel temperature, screw 
speed, and feed rate). Histograms showed the distributions of different 
CPPs in Fig. 2. Amorphization and chemical stability were treated as two 
separate outputs for ML modeling. The amorphization of HME formu-
lations was determined by the solid-state characterization results such as 
differential scanning calorimetry (DSC), X-ray powder diffraction 
(XRPD), and polarized light microscopy (PLM) described in the articles. 
The chemical stability of the HME formulations was characterized by 
high-performance liquid chromatography (HPLC), and 95% of drug 
content was set as a threshold for data classification (i.e., chemical 
stable: drug content >95%; chemical unstable: drug content ≤95%). For 
amorphization, amorphous formulations were labeled as “1,” and crys-
talline formulations were as “0”. In addition, chemically stable and 
unstable formulations were labeled as “1” and “0”, respectively. After 
reorganizing the dataset, we obtained 760 and 495 formulation data 
points for amorphization and chemical stability modeling tasks, 
respectively. By reviewing the collected dataset, we observed that it is 
imbalanced concerning the portions of the targets’ categories. Specif-
ically, 16.3% (124) and 83.7% (636) formulations were determined as 
“crystalline” and “amorphous” among all amorphization data points, 
respectively. Moreover, 17.6% (87) and 82.4% (408) formulations were 
defined as “chemically unstable” and “chemically stable” in the chemi-
cal stability datasets. Therefore, data processing techniques such as class 
weights, upsampling, downsampling, and evaluation metrics, including 
F1 score and receiver operating characteristic and accuracy, must be 
considered for modeling imbalanced data. 

2.2. Data processing 

Train-test split is a data processing method to evaluate the model 
performance. The training subset of the data will be used to fit the model 
and feature learning, and a testing subset is the other portion to evaluate 
the model unbiasedly. An 80%: 20% ratio is a widely used train-test split 
method for ML modeling (Dong et al., 2021). Therefore, for amorph-
ization, all HME formulation data points were split into the training 
subset (608) and testing subset (152) by 80%: 20%. In addition, all 
chemical stability-related data points were split into the training subset 
(396) and testing subset (99) by 80%: 20%. In addition, five-fold cross- 
validation was performed to ensure the model’s generalization ability 
and prevent over-fitting. 

After the data visualization, we observed that some input variables, 
mostly extruder configuration and processing parameters, are missing 
(Fig. 3). This is because researchers: (1) didn’t mention the specific 
configurations of the instruments and (2) didn’t mention or use the 
feeder for HME process in the publications. In addition, those parame-
ters, such as feed rate and extruder configuration, are not symmetrically 
distributed. In this situation, the mean substitution of the missing values 
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Fig. 1. A brief description of the APIs and excipients used in this study. The pie charts show the categories and the corresponding proportions of APIs (Left) and 
excipients (Right) used for ML modeling. According to the data exploratory analysis by the pie charts, itraconazole, felodipine, and nifedipine are three of the most 
widely used drugs in the dataset collected from the published literature with portions of 8.7%, 7.9%, and 7.8%, respectively. For excipients, polyvinylpyrrolidone 
(PVPVA64), hypromellose acetate succinate (HPMCAS), and polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus) were the top 3 
most popular excipients in the obtained dataset. 

Fig. 2. Data distribution of 760 HME formulations. Initial dataset distribution of drug loading (w/w %) (A), screw diameter (mm) (B), screw speed (RPM) (C), barrel 
temperature (◦C) (D), extruder configuration (length/diameter ratio (L/D)) (E), and feed rate (g/min) (F). The histogram plots provide a visual description of the 
distributions for input variables. 
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is not appropriate for processing the dataset. Therefore, to make the best 
use of the dataset and obtain a robust trained model, we fixed the 
missing values by median substitution instead of removing the whole 
data point. 

To convert API and excipient molecules into computer-readable 
formats, multiple molecular representation methods, including 
extended-connectivity fingerprints (ECFP) and 2D molecular de-
scriptors, were applied (Jiang et al., 2022). Molecular descriptors con-
tained physical and chemical properties of the APIs and excipients were 
generated by computer (Raghunathan and Priyakumar, 2022). Some 
published literature compared the model’s predictive performance using 
different molecular representation methods and found that ECFP-based 
models outperformed 2D molecular descriptors-based ones (Dong et al., 
2021). Therefore, we will use both methods for just the representation of 
API since some formulations contain multiple excipients, and the data-
set’s dimension will be extremely high if using ECFP for all excipients. 
Specifically, excipients were represented by 208 2D molecular de-
scriptors in RDKit, and APIs were described by either 208 2D molecular 
descriptors or ECFP fingerprints with a length of 1024 and radius of 3 in 
RDKit (version: RDDkt 2020.09.10) (RDKit, 2023). Finally, a dataset 
containing formulation compositions (i.e., drug loading and excipient 
ratio), drug and excipient properties by molecular descriptors, pro-
cessing parameters (i.e., barrel temperature, screw speed, and feed rate), 
and extruder configuration (i.e., screw diameter and L/D) were obtained 
for ML modeling. 

2.3. Machine learning algorithms 

Multiple ML algorithms, including XGBoost, LightGBM, RF, and 
SVM, were applied to predict amorphization and chemical stability 
separately. Two sets of ML models were trained respectively for the two 
outputs because (1) the chemical stability dataset (760) has fewer 

observations than the amorphization dataset (495), and (2) the same ML 
algorithms may perform differently in another dataset. In addition, two 
different molecular representation methods, namely 2D-descriptors 
(2D) and ECFP were used for drug molecules, resulting in 8 different 
types of corresponding ML models for each target. The ML models were 
finely tuned by adjusting the hyperparameters of different algorithms. 
The hyperparameters of the models were tuned in by both grid search 
and random search. The hyperparameters of XGBoost (subsample, 
minimum child weight, maximum depth, learning rate, gamma, col-
sample_bytree, and colsample_bylevel), LightGBM (learning rate, mini-
mum child weight, number of estimators, and number of leaves), RF 
(bootstrap, maximum depth, maximum features, minimum samples leaf, 
minimum samples split, and the number of estimators), and SVM (the 
kernel function, the penalty parameter C, and the γ) are listed in Table 1. 
To solve the imbalanced data issue, the class weight of different 

Fig. 3. Visualization of the missing values of the dataset containing 760 formulations. Background (light-yellow) indicates information was available in the liter-
ature, whereas dark-blue bars indicate the data was missing. It shows that most missing values in the input variables were the extruder’s configuration, including 
screw diameter (mm), extruder L/D, and processing parameters consisting of screw speed (RPM) and feed rate (g/min). For the targets, all literature references 
contain amorphization information, whereas 495 formulations contain information on chemical stability. This graph provides an overview of the dataset regarding 
the missing values for specific variables, and the missing values of input variables will be fixed before ML modeling. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
ML model hyperparameter configurations. The prefix of each ML model is the 
molecular representation method of API. For example, 2D-XGBoost is the ML 
model using 2D-descriptors for API’s molecular representation as input, whereas 
ECFP-XGBoost is the ML model using ECFP for API’s molecular representation as 
input.  

ML model hyperparameter configurations 

ML algorithms Amorphization model Chemical stability model 

2D-XGBoost 0.6; 1; 4; 0.25; 0.5; 0.8; 0.3 0.8; 1; 5; 0.25; 0; 0.8; 1 
2D-LightGBM 0.1; 6; 1000; 30 1; 1; 1000; 30 
2D-RF True; 10; auto; 1; 2; 50 True; 30; sqrt; 2; 2; 50 
2D-SVM rbf; 100; 0.01 rbf; 1000; 0.01 
ECFP-XGBoost 0.6; 1; 3; 0.5; 1; 0.8; 0.5 1; 1; 4; 0.1; 0; 0.1; 1 
ECFP-LightGBM 0.01; 1; 1000; 20 0.25; 1; 20; 20 
ECFP -RF True; 30; sqrt; 1; 2; 200 True; 30; sqrt; 2; 2; 50 
ECFP -SVM rbf; 1000; 0.1 rbf; 1000; 0.01 

“;” Separates different hyperparameters 
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categories was applied in all ML models. The implementation of the ML 
models was conducted by Scikit-Learn 1.0.1, and Python 3.9.7 as the 
programming language. Pandas 1.3.4 and NumPy 1.23.0 were open- 
source packages to process tabular data in ML. Matplotlib 3.5.0 and 
seaborn 0.11.2 were used as plotting libraries to visualize the dataset 
and the modeling results. 

2.4. Model evaluation metrics and interpretability 

To evaluate the model’s predictive performance properly, multiple 
metrics, namely accuracy (ACC), F1 score (F1), and receiver operating 
characteristic (ROC) area under the curve (AUC), were used in this 
study. ACC and F1 were defined by the following Eqs. (1), (2): 

Accuracy =
TP + TN

TP + FN + TN + FP
(1)  

F1 =
2 × precision × recall

precisioin + recall
(2) 

ACC and F1 were calculated from the confusion matrix, where TP is 
true positive, TN is true negative, FP is false positive, and FN is false 
negative. The ROC curve shows the sensitivity and specificity results at 
every possible threshold. 

Furthermore, SHapley Additive exPlanations (SHAP) and informa-
tion gain (IG) were employed to further evaluate the model’s inter-
pretability and feature importance for the best prediction models, 
respectively. Interpretability is the process by which humans understand 
the ML model’s decision instead of treating it as a “black box”, and it 
contains local and global interpretability (Kopitar et al., 2019). Local 
interpretability refers to the explanation of each individual prediction, 
while global interpretability provides insights into the model in the 
whole dataset (Kopitar et al., 2019). In addition, feature importance 
analysis was conducted by IG, which is a method that measures the 
reduction in entropy by transforming a dataset (Ke et al., 2023). 
Therefore, we will use SHAP for a local explanation of the ML models 
and IG for global feature importance analysis. In addition, it’s critical to 
identify the important structural features indicated by ECFP fingerprints 
that relate to the model’s output. Previous studies have demonstrated 
that the important substructures associated with the corresponding 
models were extracted by implementing IG feature importance analysis. 
For example, ML has successfully been applied to predict lipid nano-
particle (LNP)-based mRNA vaccine, and the important ionized lipid’s 
substructures were extracted based on IG analysis (Wang et al., 2022). 
Furthermore, the substructures of compounds and solvents were studied 
from the ML solubility prediction model (Ye and Ouyang, 2021). 
Therefore, the top 12 most important substructures of API calculated 
concerning IG values will be analyzed. 

3. Model performance 

3.1. Machine learning modeling results 

3.1.1. Amorphization prediction results 
Multiple ML models were successfully applied to predict the 

amorphization of the crystalline drug during the HME process. The 
summary of amorphization model prediction results is shown in Table 2. 
Overall, all ML models except for 2D-SVM performed well in the training 
subsets with evaluation metrics values higher than 0.95. In the cross- 
validation sets, 2D-XGBoost, 2D-LightGBM, ECFP-XGBoost, and ECFP- 
LightGBM showed similar prediction performance with ACC, F1, and 
AUC values of higher than 0.91, approximate 0.95, and approximate 
0.92, respectively. 2D-SVM showed relatively poor performance with 
the lowest ACC, F1, and AUC of 0.895, 0.938, and 0.884, respectively. In 
the testing subsets, we found that two LightGBM-based ML models 
outperformed others. Specifically, ECFP-LightGBM performed best 
among all ML models, with the highest ACC, F1, and AUC of 0.928, 
0.958, and 0.932, respectively. 2D-ECFP also predicted well with the 
highest ACC and F1 but a relatively lower AUC value of 0.895 compared 
to ECFP-LightGBM. AUC is a more representative metric for evaluating 
the model, especially for an imbalanced dataset in this study. Therefore, 
by analyzing and comparing the results of different ML models, ECFP- 
LightGBM performed well in both cross-validation and testing subsets 
with good generalization ability and lower variance when feeding in 
new formulation data. Therefore, ECFP-LightGBM was selected as the 
best amorphization prediction model and will be further studied. 

3.1.2. Degradation prediction results 
Eight chemical stability ML models were successfully trained, and 

the prediction results are shown in Table 3. All ML models showed 
excellent prediction performance in the training subsets with metrics 
values higher than 0.950. In the cross-validation subsets, most ML 
models performed well with ACC, F1, and AUC values higher than 
0.950. However, both RF-based models showed relatively poor perfor-
mance, with an ACC of 0.917 in the cross-validation set. In addition, 
evaluating the results in testing is important because it reflects the 
model’s prediction variance when inputting new HME formulations. 
According to the ML model performance summary in the testing subsets, 
ECFP-XGBoost exhibited the highest ACC, F1, and AUC of 0.960, 0.976, 
and 0.944, respectively. 2D-XGBoost also performed relatively well, 
with all metrics results higher than 0.90. SVM and LightGBM models 
exhibited good ACC and F1 values higher than 0.90 but relatively lower 
AUC ranging from 0.828 to 0.882. Interestingly, 2D-RF and ECFP-RF 
showed relatively lower performance among all ML models in the 
testing set. Therefore, ECFP-XGBoost was chosen for further analysis 
because it offered excellent prediction performance in cross-validation 
and testing subsets. 

Table 2 
ML prediction model performance of amorphization. The evaluation metrics (i.e., accuracy (ACC), F1-score (F1), and receiver operating characteristic (ROC) area 
under the curve (AUC)) were calculated based on the confusion matrix results implemented in Scikit-Learn. This table describes the prediction performance of eight ML 
models in training, cross-validation, and testing subsets, respectively.   

Training set Cross-validation set Testing set 

ML Algorithms ACC F1 AUC ACC F1 AUC ACC F1 AUC 

2D-XGBoost 0.985 0.991 0.983 0.916 0.951 0.926 0.914 0.950 0.879 
2D-LightGBM 0.984 0.990 0.982 0.911 0.947 0.937 0.928 0.958 0.895 
2D-RF 0.979 0.987 0.948 0.906 0.944 0.911 0.908 0.945 0.839 
2D-SVM 0.934 0.962 0.922 0.895 0.938 0.884 0.875 0.928 0.792 
ECFP-XGBoost 0.982 0.989 0.973 0.914 0.950 0.916 0.914 0.951 0.897 
ECFP-LightGBM 0.990 0.994 0.986 0.913 0.949 0.926 0.928 0.958 0.932 
ECFP-RF 0.992 0.995 0.976 0.895 0.938 0.899 0.914 0.950 0.879 
ECFP-SVM 0.987 0.992 0.976 0.906 0.944 0.923 0.914 0.950 0.866  
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3.2. Feature importance analysis 

3.2.1. SHAP analysis results 
ECFP-LightGBM and ECFP-XGBoost were selected as the best models 

to predict amorphization and chemical stability during the HME process. 
SHAP was employed to investigate the model interpretability for these 
two models. The SHAP summary plot for ECFP-LightGBM is shown 
below in Fig. 4. The SHAP results displayed the top 20 most important 
features contributing to the model prediction. These features contain 
critical processing parameters such as barrel temperature, feed rate, 
screw speed, and screw diameter and critical material attributes, 
including the first dominant excipient’s loading, drug loading, excipi-
ent’s properties represented by 2D descriptors, and drug’s substructures 
which are indicated by ECFP. More importantly, the summary plot also 
provides an overview of the correlation between each feature and 
amorphization. For example, barrel temperature, first dominant excip-
ient’s loading, and screw speed exhibited positive correlations with the 
model output, while drug loading, some drug’s substructures (e.g., 

ECFP_506, ECFP_121, and ECFP_361), and screw diameter were nega-
tively correlated with the output. 

The SHAP summary plot for the ECFP-XGBoost chemical stability 
prediction model is displayed in Fig. 5. The top 20 most important 
features include critical processing parameters, drug’s properties, and 
excipient’s properties. Among all features, barrel temperature was the 
most critical, and it negatively affected the chemical stability of the drug 
during the HME process. In addition, the screw diameter of the extruder 
showed a negative correlation with the model output. Drug sub-
structures such as ECFP_875, ECFP_974, ECFP_440, and ECFP_721 are 
critical for the model to make the decision and will be discussed in the 
later session. The increased excipient one’s ratio will contribute to the 
drug’s chemical degradation. 

3.2.2. Information gain results 
To further evaluate the model interpretability and outputs-related 

structural features, information gain (IG) for each feature was calcu-
lated in two of the selected ML models. For the best amorphization 

Table 3 
ML prediction model performance of chemical stability. The evaluation metrics (i.e., accuracy (ACC), F1-score (F1), and receiver operating characteristic (ROC) area 
under the curve (AUC)) were calculated based on the confusion matrix results implemented in Scikit-Learn. This table describes the prediction performance of eight ML 
models in training, cross-validation, and testing subsets, respectively.   

Training set Cross-validation set Testing set 

ML Algorithms ACC F1 AUC ACC F1 AUC ACC F1 AUC 

2D-XGBoost 0.997 0.998 0.993 0.962 0.977 0.974 0.949 0.970 0.911 
2D-LightGBM 0.997 0.998 0.993 0.950 0.969 0.970 0.909 0.947 0.828 
2D-RF 0.975 0.984 0.946 0.917 0.947 0.952 0.838 0.899 0.720 
2D-SVM 0.995 0.997 0.992 0.956 0.976 0.961 0.939 0.964 0.882 
ECFP-XGBoost 0.992 0.995 0.990 0.952 0.972 0.965 0.960 0.976 0.944 
ECFP-LightGBM 0.995 0.997 0.992 0.965 0.979 0.983 0.929 0.958 0.857 
ECFP-RF 0.970 0.981 0.934 0.917 0.939 0.954 0.869 0.919 0.753 
ECFP-SVM 0.995 0.997 0.992 0.962 0.977 0.966 0.929 0.958 0.857  

Fig. 4. SHAP summary plot of top 20 fea-
tures for ECFP-LightGBM. It sorts all fea-
tures by the sum of SHAP values and shows 
the impact distribution on the model output. 
Excipient1(%), first dominant excipient’s 
loading; Barrel T(C), barrel temperature; 
API (%), drug loading; API_ECFP_506, 
drug’s substructure at ECFP 506; Feed rate 
(g/min); API_ECFP_121; API_ECFP_80; 
Excipient 1_VSA_Estate8, first dominant ex-
cipient’s MOE VSA descriptor; Excipient2 
(%), second dominant excipient’s loading; 
API_ECFP_361; Excipient 2_Chi0v, second 
dominant excipient’s topological descriptor; 
Screw speed (RPM); API_ECFP_486; API_EC 
FP_175; API_ECFP_162; API_ECFP_378; 
Excipient 1_Mw; first dominant excipient’s 
molecular weight; API_ECFP_561; Screw 
Diameter (mm); Excipient 1_MaxPartial-
Charge, first dominant excipient’s 
maximum partial charge. The colour bar 
depicts the value of each feature; blue in-
dicates a higher value, while red indicates a 
lower value. The higher the SHAP values, 
the more probability of generating an ASD. 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the web version of this article.)   
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Fig. 5. SHAP summary plot of top 20 fea-
tures for ECFP-XGBoost. It sorts all features 
by the sum of SHAP values and shows the 
impact distribution on the model output. 
Barrel T(C), barrel temperature; Screw 
Diameter (mm); API_ECFP_875, drug’s sub-
structure at ECFP 875; API_ECFP_974; 
API_ECFP_440; API_ECFP_721; API_ECFP_73; 
Excipient 1_PEOE_VSA6, first dominant ex-
cipient’s molecular surface area descriptor; 
API_ECFP_767; Excipient1(%), first domi-
nant excipient’s loading; API_ECFP_659; 
API_ECFP_841; Screw speed (RPM); Excip-
ient2(%), second dominant excipient’s 
loading; Excipient 3_BCUT2D_MRLOW, third 
dominant excipient’s topological descriptor; 
API_ECFP_504; API (%), drug loading; 
API_ECFP_372; Excipient 1_FractionCSP3, 
the fraction of C atoms that are SP3 hy-
bridized from first dominant excipient; 
Excipient 3_BCUT2D_MWHI, third dominant 
excipient’s topological descriptor. The 
colour bar depicts the value of each feature; 
blue indicates a higher value, while red in-
dicates a lower value. The higher the SHAP 
values, the more probability of being chem-
ically stable during the HME process. (For 
interpretation of the references to colour in 
this figure legend, the reader is referred to 
the web version of this article.)   

Fig. 6. IG results of the top 20 important 
features related to the ECFP-LightGBM 
model for amorphization prediction. Barrel 
T (C), barrel temperature; Excipient1(%), 
excipient one’s ratio; Excipient 1_VSA_Es-
tate8, first dominant excipient’s MOE VSA 
descriptor; Excipient2(%), excipient two’s 
ratio; Feed rate (g/min); API (%), drug 
loading; API_ECFP_561, drug’s substructure 
at ECFP 561; API_ECFP_361; API_ECFP_506; 
Screw Diameter (mm); Screw speed (RPM); 
API_ECFP_400; API_ECFP_486; API_ECF 
P_351; L/D; Excipient 1_MaxPartialCharge, 
first dominant excipient’s maximum partial 
charge; API_ECFP_121; API_ECFP_162; 
Excipient 1_PEOE_VSA8, first dominant ex-
cipient’s molecular surface area descriptor; 
Excipient 2_qed, second dominant excipi-
ent’s weighted sum of ADS mapped proper-
ties. This graph provides a global 
explanation of the ML model and summa-
rizes critical features attributed to the model 
prediction based on the IG values.   
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prediction model ECFP-LightGBM, the sorted IG values for the top 20 
important features were shown in Fig. 6. Like the SHAP results, barrel 
temperature and first dominant excipient’s loading ranked top two with 
regards to IG values among all features. First dominant excipient’s 
properties such as VSA_Estate8 (an MOE VSA descriptor), MaxPartial-
Charge (maximum partial charge), and PEOE_VSA8 (a molecular surface 
area descriptor), other processing parameters including feed rate, screw 
speed, and extruder configuration (L/D), and drug’s structural features 
are significant to predicting the amorphization. 

In addition, the IG results summary for the chemical stability model 
ECFP-XGBoost was shown in Fig. 7. Barrel temperature was determined 
as the most critical feature with the highest IG value. Interestingly, some 
third dominant excipient’s topological descriptors (e.g., BCUT2D_M-
WHI, BCUT2D_MRLOW, and BCUT2D_LOGPLOW) showed high impor-
tance. Screw speed and screw diameter were two other processing 
parameters that significantly affected chemical stability prediction, as 
shown in Fig. 7. Moreover, multiple API-related structure features such 
as ECFP_440, ECFP_792, ECFP_767, ECFP_721, and ECFP_875 are crit-
ical to predicting chemical stability and will be further investigated. 

Furthermore, we sorted the top 12 important API’s ECFP fingerprints 
calculated by IG analysis in Fig. 8 and Fig. 9. According to the results of 
the IG values, the critical structural features attributing to the 
amorphization and chemical stability predictions were identified. For 
the amorphization predictive model, API substructures: chlorine atom 
(Fig. 8.1), benzene (Fig. 8.2), nitrogen-containing heterocycles (Fig. 8.3 
and 8.8), pyrimidine (Fig. 8.4), amide (Fig. 8.5), benzenediol (Fig. 8.6), 
tertiary amine (Fig. 8.7), nitrogen atom (Fig. 8.9), phenyl chloride 
(Fig. 8.10), carbonyl group (Fig. 8.11), and sulfur-containing heterocy-
cles (Fig. 8.12) were found to impact the amorphization model’s pre-
diction significantly. 

For the chemical stability prediction model, API’s substructures: 
dihydropyridine (Fig. 9.1 and 9.7), secondary amine (Fig. 9.2), 

carbamate (Fig. 9.3), nitrogen-containing heterocycles (Fig. 9.4 and 
9.12), benzene (Fig. 9.5 and 9.9), aryl sulfide (Fig. 9.6 and 9.8), chlorine 
atom (Fig. 9.10), and propylthio benzene (Fig. 9.11) were critical for 
predicting the output. 

4. Discussion 

4.1. Model development and selection 

In this study, we first obtained a dataset containing 760 amorph-
ization and 495 chemical stability HME datapoints by literature mining 
from 117 publications. We note that some articles did not provide the 
drug content information after HME processing from HPLC, so the 
chemical stability data points were relatively less than the amorphiza-
tion data points. During the data processing, two molecular represen-
tation methods (i.e., 2D-descriptors and ECFP) were employed to 
compute API’s properties and evaluate the molecular description’s effect 
on the model performance. We observed that ECFP-based models 
showed a slightly better performance overall than the 2D-based model in 
the testing set. These two types of models performed similarly in the 
cross-validation sets. Dong et al. also found that ECFP-based models 
were superior to 2D-based models when evaluating the dissolution types 
of solid dispersion (Dong et al., 2021). According to the evaluation 
metrics results in Table 2 and Table 3, RF showed relatively poor per-
formance with lower ACC, F1, and AUC in cross-validation and testing 
subsets. This is because the RF algorithm is a collection of multiple de-
cision trees in a bagging ensemble method and makes the decision based 
on the majority of the trees, which would be problematic when having 
an imbalanced dataset (Fig. 10) (XGBoost versus Random Forest, 2023). 
In addition, RF fails to maintain its performance when the data are 
sparse (Richards et al., 2011). SVM-based models showed a moderate 
predictive performance for chemical stability but poor performance for 

Fig. 7. IG results of the top 20 important 
features related to the ECFP-XGBoost model 
for chemical stability prediction. Barrel T 
(C), barrel temperature; API_ECFP_440, 
drug’s substructure at ECFP 440; Excipient 
3_BCUT2D_MWHI, third dominant excipi-
ent’s topological descriptor; API_ECFP_792; 
Excipient 3_BCUT2D_MRLOW, third domi-
nant excipient’s topological descriptor; 
API_ECFP_767; API_ECFP_721; Excipient 
3_BCUT2D_LOGPLOW, third dominant ex-
cipient’s topological descriptor; API_ECF 
P_875; API_ECFP_811; Excipient1(%), 
excipient one’s ratio; API_ECFP_372; API_EC 
FP_649; Excipient 1_VSA_Estate8, first 
dominant excipient’s MOE VSA descriptor; 
Excipient2(%), second dominant excipient’s 
ratio; Screw speed (RPM); API_ECFP_177; 
API_ECFP_659; API_ECFP_597; Screw Diam-
eter (mm). This graph provides a global 
explanation of the ML model and summa-
rizes critical features attributed to the model 
prediction based on the IG values.   
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amorphization. Specifically, 2D-SVM exhibited the lowest ACC (0.875), 
F1 (0.928), and AUC (0.792) in predicting amorphization among other 
ML models. This is likely because (1) it’s sensitive to noise (i.e., target 
classes are overlapping), and (2) it doesn’t perform well when having a 
large dataset and high dimensional features (Atla and Tada, 2011). 
Among all ML algorithms, LightGBM and XGBoost perform well and are 
suitable for both amorphization and chemical stability. One of the ad-
vantages of gradient boosting models such as XGBoost and LightGBM is 
that it gives more importance to the misclassified categories and will 
minimize the loss by adding weak classifiers using gradient descent 
(Fig. 10). Then, a robust classifier was obtained through a gradient 
optimization process by all weak classifiers, which leads to high accu-
racy and prevents overfitting. Based on their specific structure, XGBoost 
and LightGBM are more robust than random forest, especially for 
imbalanced data in this study. Based on the metrics results, 
ECFP-LightGBM and ECFP-XGBoost performed well in the 

cross-validation and testing subsets are selected as the best models for 
amorphization and chemical stability, respectively. 

4.2. Effect of input variables on amorphization 

We successfully applied SHAP and IG analysis to further investigate 
the model’s interpretability. According to the results, excipient one’s 
ratio and barrel temperature are the top 2 important features in both 
methods. (Fig. 4 and Fig. 6) Barrel temperature, also regarded as thermal 
energy during the HME process, is one of the most critical factors when 
preparing ASDs (Ma et al., 2019). The thermal energy is typically 
generated by heat conduction from the screw elements and barrel. It has 
been reported that an increased barrel temperature would increase 
molecular motion and diffusivity, resulting in facilitating the drug sol-
ubilization into the polymer matrix (Ma et al., 2019). It has been 
demonstrated that increased barrel temperature can effectively convert 

Fig. 8. Top 12 important API substructures and IG values for amorphization. The highlight colour in the chemical structures indicates blue: the central atom in the 
environment; yellow: aromatic atoms; gray: aliphatic ring atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 9. Top 12 important API substructures and IG values for chemical stability. The highlight colour in the chemical structure indicates blue: the central atom in the 
environment; yellow: aromatic atoms; gray: aliphatic ring atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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the crystalline drug to amorphous in several studies concerning multiple 
drug molecules such as nifedipine, carbamazepine, and gliclazide 
(Huang et al., 2017; Huang et al., 2016; Yang et al., 2016). Most 
importantly, Ma et al. studied the effect of energy input (i.e., thermal 
energy and specific mechanical energy) on ASDs and illustrated that the 
amorphization process is more triggered by thermal energy (Ma et al., 
2019). Specifically, the increase in thermal energy would reduce the 
required specific mechanical energy, and the amorphization process is 
only attributed to thermal energy when the temperature is higher than 
140 ◦C (Ma et al., 2019). Therefore, barrel temperature is one of the 
most important features, and the model’s explanation of results corre-
spond to the literature. In addition, according to feature importance 
results, drug loading or excipient’s ratio is also significant for the 
model’s prediction. Based on SHAP local explanation, drug loading 
negatively correlates with amorphization. Drug loading must be care-
fully considered during ASD development, which is relevant to drug- 
polymer solubility and miscibility. Qian et al. proposed a hypothetical 
diagram of drug-polymer solubility, miscibility, and glass transition 
temperature (Tg) of an ASD system (Qian et al., 2010). This diagram 
studied the effect of temperature and drug loading on the miscibility and 
solubility between the drug and polymer. In addition, the diagram 
indicated that a supersaturated and immiscible mixture would form with 
high drug loading, which corresponds to the SHAP results in our study 
(Qian et al., 2010). Moreover, Tian et al. also studied the phase diagram 
of the drug-polymer system based on Flory-Huggins’ interaction pa-
rameters (Tian et al., 2019). The diagram demonstrated that phase 
separation happened within both the binodal and spinodal boundaries in 
which the drug loading is relatively high (Tian et al., 2019). In addition, 
according to SHAP and IG analysis, processing parameters, including 
feed rate (g/min) and screw speed (RPM), play important roles in the 
drug amorphization process. Changes in feed rate would impact the 
barrel fill rate, residence time, melt viscosity, and mechanical energy 
during the HME process. Screw speed also influences the residence time 
and specific mechanical energy (Butreddy et al., 2021). Specifically, a 
higher screw speed will lead to a shorter residence time and higher 
specific mechanical energy. In comparison, lower screw speed will 
contribute to a longer residence time and lower specific mechanical 
energy (Butreddy et al., 2021; Thompson and Williams, 2021). Extruder 
configurations, which can be indicated by screw diameter and L/D ratio, 
are also critical attributes, especially when scaling up for ASD 
manufacturing. It’s typical to use a small-scale extruder with a screw 
diameter of 16–20 mm, which yields a production rate of 1–10 kg/h 
(Brown et al., 2014). 24–30 mm-diameter extruder is typically used for 
intermedia scale manufacturing (10-50 kg/h) (Brown et al., 2014). 
However, it is difficult for intermedia scale extruders to conduct heat 
transfer, venting, and devolatilization compared to small scale units due 

to the lower barrel surface area (Brown et al., 2014). Haser et al. studied 
the scale-up development process of meloxicam ASD from Nano-16 to 
Micro-18 twin-screw extruder and found that full amorphous conversion 
of the crystalline drug was challenging due to the reduced peak shear of 
the bilobal geometry in Micro-18 (Haser et al., 2018b). Besides the 
above-mentioned CMAs and CPPs, other attributes, such as particle size 
distribution of the physical blends and die temperature, also affect the 
forming of ASDs. A reduced drug particle size or increased surface area 
can facilitate the dissolution rate of a drug in the rubbery polymer 
matrix, resulting in a higher degree of amorphization (Hempel et al., 
2020). However, most of the literature does not provide information on 
the particle size distribution of drugs and polymers, so this variable was 
not included in the dataset for ML modeling. In addition, die tempera-
ture is another critical parameter during HME processing, and the 
literature has shown that a slightly higher die temperature is important 
to reduce the die pressure (LaFountaine et al., 2016). Unfortunately, 
some literature failed to provide the information, which is likely because 
some instruments do not contain a separate heating element for the die. 
Therefore, we used barrel temperature as an HME processing parameter. 

The top 12 important structural features of API that contributed to 
amorphization prediction were identified by IG in Fig. 8. Among all 
features, the chlorine atom (ECFP_561) was the most critical for building 
the model. Suzuki et al. reported that the chlorine atom was covalently 
bound to the benzene ring in indomethacin and had unique intermo-
lecular interactions and halogen bonds with oxygen atoms, which 
probably contributed to the amorphization process (Suzuki et al., 2021). 
Kawakami comprehensively reviewed factors such as chemical struc-
ture, processing methods, and storage conditions that will affect the 
crystallization tendency of pharmaceutical glasses (Kawakami, 2019). In 
this review, a good glass former, synonymous with an amorphous solid, 
should have the following chemical-structural features: large molecular 
weight, low symmetry, low number of benzene rings, many rotatable 
bonds, and many more electronegative atoms, and high branching de-
gree (Kawakami, 2019). According to IG results for structural features 
(Fig. 8), structures containing nitrogen-containing heterocycles 
(ECFP_506 & ECFP_162), tertiary amine (ECFP_121), nitrogen atom 
(ECFP_378), and chlorine atom (ECFP_561), and sulfur-containing het-
erocycles (ECFP_721) were the critical substructures for amorphization 
prediction, which mostly agrees with the literature above. Therefore, the 
amorphization model (ECFP-LightGBM) has demonstrated good inter-
pretability based on SHAP and IG analysis. 

4.3. Effects of input variables on chemical degradation 

When analyzing the critical features for the selected chemical sta-
bility model (ECFP-XGBoost), barrel temperature was the most signifi-

Fig. 10. Schematic representation of ML algorithms (i.e., RF, XGBoost, LightGBM, and SVM) used in this study. RF is a bagging algorithm that first constructs data 
subsets from the original data using the bootstrapping method. Then each decision tree will be trained, and the ensemble classifier will aggregate the results and 
make a prediction from each tree using majority voting. XGBoost and LightGBM are two Boosting algorithms that utilize the tree-growing concept sequentially. This 
boosting approach can construct new classifiers from previous ones and learn errors, resulting in lower bias. Finally, SVM is a supervised algorithm aiming to find a 
hyperplane in an N-dimensional space that can separate the data points. 
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cant one, and it showed a negative correlation with chemical stability 
Fig. 5 and Fig. 7. Huang et al. stated that the effect of temperature on 
drug degradation rate could be described by Arrhenius kinetics 
(Equation): 

kT = kref exp
[

−
EA

R

(
1
T
−

1
Tref

)]

(3)  

where kT is the drug degradation rate at temperature T (K), kref is the 
drug degradation rate at the reference temperatureTref (K), EA is the 
activation energy (J/mol), and R is the gas constant value (8.3145 J/ 
mol⋅K) (Huang et al., 2017). According to Equation, the drug degrada-
tion rate is proportional to the processing temperature. In addition, 
chemical degradation during HME consists of oxidation and hydrolysis 
(Haser et al., 2017; Huang et al., 2017; Surasarang et al., 2016). Multiple 
thermally labile drugs such as albendazole, meloxicam, and gliclazide 
have shown severe chemical degradation when increasing barrel tem-
perature (Haser et al., 2017; Huang et al., 2017; Surasarang et al., 2016). 
Therefore, barrel temperature is the most important feature for building 
the chemical stability model. In addition, screw diameter, an important 
indicator of extruder configuration, is a critical feature and showed a 
negative correlation with chemical stability. Mati’c et al. studied the 
effect of extruder configuration on the API degradation and found that 
the ZSE18 extruder (screw diameter = 18 mm) tended to have a higher 
degree of drug degradation than the ZSE12 extruder (screw diameter =
12 mm) (Mati’cmati’c et al., 2021). Haser et al. also observed significant 
chemical degradation (75.5% purity) when scaling up from Nano-16 to 
Micro-18 extruder with no additional process change (Haser et al., 
2018b). Moreover, other processing parameters, such as screw speed, 
play an important role in chemical stability during the HME process. The 
increase in screw speed generally increases specific mechanical energy 
and ultimately affects the chemical stability of an ASD (Thompson and 
Williams, 2021). In addition, higher screw speed may contribute to 
viscous heating, especially when extruding low-conductivity polymers, 
which can be indicated by a low Nahme-Griffith number (Marschik 
et al., 2018). The excess thermal energy generated through high screw 
speed will further lead to chemical degradation. According to SHAP and 
IG results, drug loading or excipient’s ratio is important to the chemical 
stability model. This is likely because some vinyl polymers, such as 
copovidone and povidone with residual peroxides, can trigger oxidative 
degradation (Iyer et al., 2021). Some excipient features, including 
Excipient 1_PEOE_VSA6 (first dominant excipient’s molecular surface 
area descriptor), Excipient 3_BCUT2D_MWHI (third dominant excipi-
ent’s topological descriptor), and Excipient 3_BCUT2D_MRLOW (third 
dominant excipient’s topological descriptor), are also critical to building 
the prediction model, and further analysis must be conducted for 
evaluation. 

By analyzing and comparing the IG results, we identified the top 12 
important structural features related to the drug’s chemical stability 
during the HME process (Fig. 9). Dihydropyridine was identified as the 
most important substructure with an IG value of 46.9 that significantly 
affected chemical stability. Literature has demonstrated that drug 
compounds containing dihydropyridine structures tend to be chemically 
unstable and will degrade through oxidization. For example, Damian 
et al. observed the photo-degradation of nifedipine under UV and 
formed nitroso-nifedipine derivative as a chemical degradant (Damian 
et al., 2007). Dattatray et al. stated that meloxicam experienced oxida-
tive degradation and formed PV and MIV as degradation products 
(Modhave et al., 2011). In addition, amide in meloxicam (ECFP_792) 
will undergo chemical degradation through the hydrolysis pathway and 
form acid and an amine (Haser et al., 2017). And further degradation 
will happen to the acid through decarboxylation (Haser et al., 2017). 
Carbamate (ECFP_767) was also identified as a critical structural feature 
that affects chemical stability with an IG value of 34.2 (Fig. 9). API that 
contains carbamate structure may suffer chemical degradation during 
the HME process. For example, albendazole degrades into albendazole 

impurity A and methanol through basic hydrolysis (Surasarang et al., 
2016). Moreover, drug compounds containing aryl sulfide (ECFP_811) 
are also vulnerable to chemical degradation. Surasarang et al. observed 
the chemical degradation of albendazole under high processing tem-
perature or hydrogen peroxide (H2O2) and will form albendazole sulf-
oxide through the oxidation pathway as a result (Surasarang et al., 
2016). Nitrogen-containing heterocycles (ECFP_721 & ECFP_73) are also 
chemically unstable, and the drug containing this substructure may 
degrade during the HME process (Focante et al., 2006). Overall, the IG 
results of the drug’s structural features are mostly consistent with those 
reported in the literature, demonstrating the model’s interpretability. 
Most importantly, the feature importance analysis will provide guidance 
on developing ASD formulation by simply inputting tabular data (i.e., 
API, excipients such as polymer, and processing parameters), and it can 
identify the potential failures due to the chemical degradation of drugs. 

5. Conclusion 

This study describes a novel method for applying multiple ML models 
to predict a drug’s amorphization and chemical stability during the HME 
process. We first obtained a dataset to build up the ML models by 
literature mining from recent publications. Then, data processing steps 
such as train-test split, molecular representation, and solving missing 
values were performed. Multiple metrics and feature importance tools 
were applied to evaluate the model prediction performance and inter-
pretability. ECFP-LightGBM and ECFP-XGBoost were the best models for 
predicting amorphization and chemical stability, respectively. More 
importantly, the selected models showed good interpretability based on 
SHAP and IG results. Several important features, including barrel tem-
perature, drug loading, extruder configuration, and API’s chemical 
substructures, were identified and need to be carefully considered dur-
ing ASD development in the future. This study used the ASD data 
generated by HME to build up ML models, which may render it appli-
cable to ASD prepared by other techniques such as spray drying, 
KinetiSol, and antisolvent precipitation. By utilizing ML techniques to 
predict the forming of chemically stable ASDs, we may significantly 
reduce the workload of preliminary experiments and potentially facili-
tate the product development process of ASD. 
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