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We reach walking optimality from a very early age by using natural supports, which can be
the hands of our parents, chairs, and training wheels, and bootstrap a new knowledge
from the recently acquired one. The idea behind bootstrapping is to use the previously
acquired knowledge from simpler tasks to accelerate the learning of more complicated
ones. In this paper, we propose a scaffolded learning method from an evolutionary
perspective, where a biped creature achieves stable and independent bipedal walking
while exploiting the natural scaffold of its changing morphology to create a third limb. The
novelty of this work is speeding up the learning process with an artificially recreated
scaffolded learning. We compare three conditions of scaffolded learning (free, time-
constrained, and performance-based scaffolded learning) to reach bipedalism, and we
prove that a performance-based scaffold, which is designed by the walking velocity
obtained, is the most conducive to bootstrap the learning of bipedal walking. The scope of
this work is not to study bipedal locomotion but to investigate the contribution from
scaffolded learning to a faster learning process. Beyond a pedagogical experiment, this
work presents a powerful tool to accelerate the learning of complex tasks in the
Robotics field.

Keywords: robotics scaffolded learning, bootstrapping, bio-inspired learning, bio-inspired robotics, bipedal
locomotion

1 INTRODUCTION

Scaffolding is a learner-centered teaching method based on the constructivist learning theory, aiming
at cultivating the problem-solving ability and autonomous learning ability of the students. Pedagogy
explains it as providing small-step clues or hints (scaffolds) for students to learn step by step to
discover and solve problems gradually. This method leads to students mastering the knowledge to be
learned, improving their problem-solving ability, and eventually growing into independent learners.
Vygotsky, a famous psychologist in the former Soviet Union, derived this teaching idea from the
“zone of proximal development” theory (Chaiklin, 2003). Pedagogical applications have actively used
scaffolding to bootstrap knowledge (Quarles et al., 2009; Al Mamun et al., 2020), and some
researchers tried to understand its associations with human locomotion: the ontogenetic
development (Lungarella et al., 2003) of bipedal walking in human infants (Susa, 1981), and the
mechanism of acquiring general motor skills and of human walking (Okamoto, 1985; Thelen et al.,
1991). Besides, reaching bipedal locomotion (Wahde and Pettersson, 2002; Vukobratovic et al., 2012;
Giardina and Mahadevan, 2021) during early childhood requires individuals to be strong enough to
support their weight, stable enough to resist an ever oscillating center of gravity, and to move in a
state of dynamic balance when the body alternates between the double support and the single support
(Bril and Brenière, 1993; Owaki et al., 2013; Swan et al., 2020). Along these lines, the work from Hase
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and Yamazaki (1998) simulated a supported infant walking by
applying linear springs and dampers to a bipedal walking model,
which was controlled by a rhythm-generation mechanism called
central pattern generator (Grillner and Wallen, 1985; Reil and
Husbands, 2002). As this simulated infant learned to walk, it
naturally became upright and prescinded from the spring
support, but A. the mechanisms deciding the amount of/need
for supports to be given or B. the benefits compared to the
absence of such supports were not investigated.

In this article, we present a scaffolded learning method for
bipedalism to bootstrap its ontogenetic development with
gradual morphological and control changes (Owaki et al.,
2008; Saar et al., 2017). Although AI and statistics usually
have a specific meaning for bootstrap, the one that we used is
more related to cognition, as seen in the works of Owaki and
Ishiguro (2006); Kaipa et al. (2010); Schmidt et al. (2013);
Giardina and Iida (2016); Howard et al. (2019).
Bootstrapping is the concept of capitalizing the previously
acquired skills to accelerate the learning of new skills on top
of existing ones. Inspired by the mechanisms of a child
learning to ride a bike with training wheels, as shown in
Figure 1, our simulations consist of a two-legged creature
with a long body that can be dragged through the floor as a
tripod, providing a scaffold during the learning of bipedalism.
Since our work is based on scaffolded learning, in the context
of evolutionary robotics, we decided to choose genetic
algorithms (Back, 1996; Chernova and Veloso, 2004) to
evolve both morphology (the dimensions of the body, the
leg and the foot) and control (virtual model control) of the
creature. In the work of Karl Sims (Sims, 1994), genetic

algorithms are used to generate the morphology of virtual
creatures and neural systems for controlling their muscle
forces, while they describe a system for creating virtual
creatures. The difference is that our work is not creating
virtual creatures for computer animation, but proposing a
scaffolded learning method to bootstrap the learning of the
bipedal walking. In addition, we define the fitness function as
the walking distance traveled in 15 seconds divided by the leg
length to maximize the forward walking speed of bipedal
walkers. In our initial simulations, the creature tries to
maximize its walking velocity while evolving freely, and
later we introduce two evolving conditions where we force
the creature to reduce its body length (abdicate from its
scaffold) over fixed time intervals or once the creature
makes gradual performance improvements. We show that
the performance-based scaffold is superior to the time-
constrained case and the free scaffolded case, as it allows
the controller to be robust before becoming independent
from the morphological support. We explain the
effectiveness of the bootstrapping mechanism, draw
parallels to robotic implementations of ontogeny (Vujovic
et al., 2017), and propose a framework where real-world
robots can use a similar approach to bootstrap knowledge
(Rosendo et al., 2017). InMaterials and Methods, we describe
our adopted methods and present the performance metrics
for our simulation, along with three scaffolded learning cases.
We show the results in Results and discuss the implication of
these results in Discussion. In Conclusion, we conclude
our work.

2 MATERIALS AND METHODS

2.1 Genetic Algorithm
Genetic Algorithms (GA) (Chernova and Veloso, 2004) uses
simulated evolution to search for solutions to complicated
problems. The algorithm adapts to select, recombine, and
mutate processes on encoded genotypes, where they are leg
lengths, body sizes, foot sizes, spring stiffness, damper
viscosity, step offset, and stand offset, and evaluate the
fitness of each individual to evolve it over generations. We
adopt a subset of the generation containing the fittest
individuals to create the new generation under an
exploration-exploitation trade-off so that GA can find a
globally optimal solution.

As the pseudo-code shown in Algorithm 1, we choose the
population size n as 16, and the number of generations G as
4,000. At first, we create the initial population by the default
parameter set and calculate their fitness to obtain the set of
the fittest individuals F, while F has the same size as the
population size. Then we create the new population by
crossover and mutation with Gaussian distributions, while
the individuals are from the fittest individual set. Here, we
add Gaussian noise in order to ensure sensible results. Next,
we evaluate the new individual one by one and compare them
with the individual in F. If the fitness of the new individual is
higher than the lowest one in F, the lowest individual in F will

FIGURE 1 | The general idea of scaffolded learning can be exemplified
with a child on training wheels (the left figure). The long body length of a
biped creature can be adjusted to act as a tripod with shorter legs (the upper
right figure), sacrificing speed to gain stability, while a longer leg and
short body would be optimal bipedalism (the lower right figure).
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be replaced. If not, the next individual will conduct the same
replacement until all the new individuals have been
compared. After that, the algorithm will do the next loop
of new generations.

2.2 Virtual Model Control
Virtual Model Control (VMC), developed by Pratt et al. (1997),
is a motion control framework that uses a desired virtual force,
combined with the kinematics model (see 1) and its Jacobian
(see 2), to generate desired joint torques on the stance leg (see
3). The combination of these joint torques creates the same
output that the virtual force would have created, thereby
creating the intended motion on the creature. Such forces
can be emulated as products from many components, such
as springs, dampers, masses, dissipative fields, or any other
imaginable component.

Figure 2 shows the virtual model control for a single leg of the
creature to perform a forward walking with horizontal, vertical,
torsional springs, and dampers components. The horizontal
spring and damper are used to create a virtual force in the
horizontal direction, so the biped creature can move
horizontally by the force. The wall which the spring and the
damper are attached is virtual, and only exists to create the virtual
force. The biped model can be shown in two dimensions or three
dimensions. In order to let the reader more clearly see the posture
change of bipeds during the walking learning, we decide to show
the model in three dimensions. Table 1 lists the virtual model
parameter used in our work. In addition, the mass is calculated
depending on the body size, and the foot size, for instance, if the
body length becomes longer, the body mass will proportionally
increase. As for the moment of inertia, it is depending on the
mass, the body size, and the foot size, so if the body length
increases, the moment of inertia of the body will become larger.
We defined the offset parameters standOffset in the standing
phase and stepOffset in the step phase, which can control the
natural length of the virtual springs, determined by the genetic
algorithm, as shown in Table 1.

In the standing phase, both feet are on the floor. We use the
forward kinematics from the foot coordinate frame B{ } to the hip
coordinate frame C{ } to calculate the pose of the hip.

X �
x
y
θ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Ltca + Lf ca+k
Ltsa + Lf sa+k
θa + θk − θh

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

Where (x, y) is the position of the hip, θ is the orientation of the
hip, θa is the angle of the ankle, θk is the angle of the knee, θh is the
angle of the hip, Lf is the femur length, and Lt is the tibia length.

For convenience we represent the sine and cosine of θa, θa + θk as
sa, ca, sa+k, ca+k, respectively.

Then we can calculate the Jacobian by first-order partial
derivatives of the pose with respect to each variable.

J �

zx
zθa

zx
zθk

zx
zθh

zy
zθa

zy
zθk

zy
zθh

zθ

zθa

zθ

zθk

zθ

zθh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

−Ltsa − Lf sa+k −Lf sa+k 0
Ltca + Lf ca+k Lf ca+k 0

1 1 −1
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2)

Finally, we use the transpose of the Jacobian and the virtual force
to obtain the joint torques.

τ �
τa
τk
τh

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � JTF �
−Ltsa − Lf sa+k Ltca + Lf ca+k 1

−Lf sa+k Lf ca+k 1
0 0 −1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ fx
fy
fθ

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (3)

Where τa, τk, τh are the joint torques of the ankle, the knee, and
the hip, and fx, fy, fθ are the forces applied on the hip in the
horizontal direction, the vertical direction and the rotation.

Due to the spring-damper components, we can obtain these
forces by the following control laws.

fx � kx xd − x( ) + λx _x
fy � ky yd − y( ) + λy _y
fθ � kθ θd − θ( ) + λθ _θ (4)

Where kx, ky, kθ, λx, λy, λθ are the spring stiffness and the damping
coefficient in x, y, and θ directions, xd, yd, θd are the desired
position and the desired angle of the hip, and x, y, θ, _x, _y, _θ are the
current position, angle, velocity, and angular velocity of the hip.
In our work, we set the desired position xd, yd as the original
location, and set the desired angle θd as zero.

In the step phase, one leg needs to swing to take a step
forward, so the joint torques of two legs are different. For the
one whose foot is on the floor, the joint torques of the ankle, the
knee, and the hip are the same as the standing phase, while for
the swing leg, the joint torques of the ankle and the knee become
zero, and the joint torque of the hip τstep is applied by the
torsional spring with kstep spring stiffness, as shown in figure 2,
which is calculated by

τstep � −kstep θd − θ( ) (5)

The benefits of VMC are that it is compact, requires relatively
small amounts of computation, and can be implemented in a
distributed way. We could implement a high-level controller as a
state machine that changes virtual component connections or
parameters at the state transitions. Even though we use a discrete
high-level controller, the overall motion can be smooth if the
virtual components have a low-pass filter effect.

2.3 Walking State Machine
We choose a finite state machine (Syed, 2015) to conduct
transitions between different states during the learning of
walking. It allows the controller to use suitable virtual
components for the current position and the walking cycle
phase of the individual.
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Figure 3 shows the finite state machine used in our bipedal
walking algorithm, and there are three states: double support
state, left support state and right support state. Table 2 lists the
trigger events and the virtual components used in each state. The
first state is the double support state. When the individual is
stable, the state machine will check which foot is in front of the
other foot. If the left foot is in front, the state machine will move
into the left support state. In this state, the virtual components of
the granny walker and swinging the right leg are activated.
Similarly, the state machine will move into the right support
state if the right foot is in front of the left foot, and the virtual
components of granny walkers and swinging the left leg are
activated. Since the swing leg is activated, both feet contact the
floor, and the state machine will return to the double support
state. The virtual granny walker is a mechanism with the vertical
spring and the vertical damper which helps the creature maintain
a constant height and regulate its pitch angle, while the virtual
dogtrack bunny is a mechanism with the horizontal spring and

the horizontal damper, which helps apply a virtual force in the
forward horizontal direction to acquire the desired velocity, as
shown in figure 2.

2.4 Simbody Simulator
Simbody is a high-performance, open-source C++ library
providing sophisticated treatment of articulated multibody
systems with particular attention to the needs of biomedical
simulations. It is useful for predictive dynamic simulations of
diverse biological systems such as neuromuscular biomechanical
models and coarse-grained biomolecular modelling. It is also well
suited to related simulation domains such as robotics, avatar
simulations, and controls, and provides real-time capabilities that
make it useful for interactive scientific simulations and virtual
worlds (Sherman et al., 2011).

The simulation was conducted in a DELLOptiPlex 7,060 series
desktop with Ubuntu 18.04 system, i7-8,700 processor, 12
threads, and 32 GB internal memory. We will terminate the

FIGURE 2 | The virtual model in our simulation. We attach linear springs and dampers to the hip position of the individual as the granny walker mechanism, to
maintain a constant height, and the dog-track bunnymechanism applies a virtual force in the forward horizontal direction to obtain the desired velocity. In addition, it has a
torsional spring and a rotary damper acting on the hip joint to keep the upper body straight in the standing phase, while in the step phase, the hip joint only has a torsional
spring with kstep spring stiffness to swing the leg. The wall which the spring and the damper are attached is virtual, and only exists to create the virtual force fx, fy, and
fθ. Each component of the individual is a changeable genotype, such as the stiffness of the spring kx, ky, kθ, and kstep, the viscosity of the damper λx, λy, and λθ, the length
of the femur Lf and the tibia Lt, and three dimensional sizes of the torso and the foot.
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learning process of the bipedal walking if the individual falls,
while the upper body falls to below one half of the total body
height, and it overruns a time limit of 15 seconds. The foot
collision and ground reaction forces are realized by the
Simbody simulator using Collision Detection Algorithm and
MobilizedBody_Ground SimTK toolkits.

2.5 Performance Metric
Our ultimate goal in this work is to evolve independent bipedal
walking in 15 seconds, where the fitness function aims to
maximize the forward walking speed (the forward walking
distance traveled divided by the total leg length). Here, we
refer to the walking Froude number (Vaughan and O’Malley,

2005) to define the fitness function, where it is used to study
trends in animal locomotion, and takes the total leg length into
considerations.

Fitness � forward walking distance within 15 s
total leg length

(6)

It is important to note that in a simulation environment
creatures can have drastically different sizes in length. It is
equally easy to make a 1 m creature and a 1 km creature, and
it would be very unfair if one step from the bigger creature was
longer than 100 steps from the shorter one. In this case, the use of
Froude number keeps an even field between creatures with
different body structures.

Since we start the simulation at a supported tripod walking,
there will be tripod walking individuals, bipedal walking
individuals, and even individuals with alternating gaits. We
use this behaviour as a metric to measure the performance of
bipedal walkers. Also, we observe the growth rate of the fitness
and the degree of body length decay as the other two performance
metrics. We conduct the following three cases in different body
length constraints in 4,000 generations. To verify the repeatability
and the reliability of our results, we decide to do three replicates
for each case.

2.5.1 Free Body Length Scaffold
According to the current fitness, the genetic algorithm will choose
the appropriate combination of body parameters and control
parameters, benefiting from the algorithm.We let the body length
evolve freely without additional restrictions. The body length
constraint is set to as long as possible, which can provide as a
scaffold to the biped creature, so that we set the upper bound of
the body length as 1.8 m based on the leg length of the initial
individual, while the lower bound is 0.05 m and equals to the
diameter of the leg.

FIGURE 3 | The finite state machine in the bipedal walking algorithm. There are three states during the walking cycle to allow transitions of different virtual
components. The first state is the double support, which means both feet are contacting the floor, and the second state of left support means only the left foot contacting
the floor. Similarly, the third state right support only has the right foot on the floor. The arrow indicates the conditions that need to be met for the transition. “Delay”means
the delay time to allow for the swing leg to fall to the ground, so that the single support phase can transit to the double support phase. “Stable”means the creature
has the possibility to walk forward, while in our work, we set a velocity threshold parameter stableTolerance to decide whether the angular velocity of the hip, the knee,
and the ankle are smaller than the threshold. If they are all smaller than the velocity threshold, this situation is stable.

TABLE 1 | Virtual Model Parameters.

Parameter Description

halfBodyX Half size of the body in x direction
halfBodyY Half size of the body in y direction
halfBodyZ Half size of the body in z direction
halfFootX Half size of the foot in x direction
halfFootY Half size of the foot in y direction
halfFootZ Half size of the foot in z direction
Lf Femur length
Lt Tibia length
kx Spring stiffness in x direction
ky Spring stiffness in y direction
kθ Spring stiffness in θ direction
kstep Spring stiffness in the step phase
λx Damping coefficient in x direction
λy Damping coefficient in y direction
λθ Damping coefficient in θ direction
standOffset Offset of the natural length of the virtual spring in the stand phase
stepOffset Offset of the natural length of the virtual spring in the step phase
stableTolerance Velocity threshold of the transition from the double support to the

single support
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2.5.2 Time-Constrained Body Length Scaffold
In order to analogize the gradual reduction of the external
stability support for the body during the development of
bipedal walking, we keep the lower bound as 0.05 m and
restrict the body length by shortening the upper bound of the
body length proportionally as the generations increase. The
formula of the upper bound is as follow:

upper bound � 1.8 − 0.4 p i, i �

0 if G ∈ [1, 500)
1 if G ∈ [500, 1000)
2 if G ∈ [1000, 1500)
3 if G ∈ [1500, 2000)
4 if G ∈ [2000, 4000]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

WhereG is the number of generations, the value of 1.8 is the body
length of the initial individual, and the value of 0.4 is set as a decay
coefficient.

2.5.3 Performance-Based Body Length Scaffold
Considering the limitation of the number of generations, it is
likely that the learning of bipedal walkers cannot be better
searched. Therefore, we have balanced exploitation and
exploration and designed a scaffold that limits the upper
bound of the body length according to the current
performance. The lower bound of the body length remains
0.05 m, which allows the algorithm to explore better at the
beginning and focus on exploitation to maximize the
performance. As for the calculation of the upper bound, we
set a maximum operation between the performance-based
scaffold and 0.05 (see 8). Therefore, the upper bound will
never be less than the lower bound.

upper bound � max 1.8 − 0.4 p
AveBest3F

InitF
, 0.05( ) (8)

Where InitF is the fitness of the initial individual, AveBest3F is the
average fitness of the current best three individuals, and the value
of 1.8 and 0.4 are kept to be consistent with the time-constrained
scaffold case.

3 RESULTS

After finishing all three cases, we started with a comparison
between the fitness of the best biped and tripod from our
simulations, as shown in figure 4A. Here, the best biped was
found in the performance-based scaffold case and the best tripod

FIGURE 4 | The fitness and snapshots of the best biped and best tripod
creatures. (A) Fitness of the best biped and best tripod creatures over a
15 seconds interaction time, which is the creature interacting with the
simulation environment per generation. The best biped has a femur
length of 0.36 m and a tibia length of 0.81 m, while the values for the best
tripod are 0.20 and 0.21 m. (B) The trajectory is generated by the motion
analysis, with blue and red lines showing the path of the center of the body.

TABLE 2 | Transitions of Walking State Machine.

State Trigger Event Virtual Component a

Double Support Delay after left or right support VC1 & VC2
Left Support Move right foot forwards VC1 & VC3
Right Support Move left foot forwards VC1 & VC4

aGranny walker (VC1), Dogtrack bunny (VC2), Swing the right leg (VC3), Swing the left
leg (VC4).
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FIGURE 5 | Individuals of bipeds and tripods with different leg lengths, body sizes and foot sizes evolved in the simulation. At the beginning of the generation, the
length of the foot is very large, so that the foot has enough contact area with the ground, which benefits the individual to maintain stability. When the individual reaches the
optimal bipedal gait (the upper right figure), the short feet are more conducive to the swing of its legs and obtain faster forward speed. The upper figure of individuals
are all bipedalism, and the lower figure of individuals perform supported tripod walking gaits.

FIGURE 6 |Gait analysis of best biped and best tripod. We pre-processed all data and divided it by the leg length to eliminate the inherent advantage of the biped
creature with longer leg length than the tripod creature. The values have oscillations due to characteristics of the virtual model and the data captured at the center of the
body. About the unit, ll represents the leg length, and ll/s represents the leg length per second. The upper three blue lines are the relative Center of Gravity (CoG) position,
relative horizontal and vertical velocities of the best biped while the lower red lines are for the best tripod. Here, the relative CoG position is calculated based on the
original CoG of the biped and tripod from the beginning of the simulation. For instance, 0 relative CoG position means the position of center of gravity at the beginning of
the simulation.
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was found in the time-constrained scaffold case. The interaction
time is the creature interact with the simulation environment per
generation, which is 15 seconds. Although these two creatures
presented a very similar fitness initially, the biped gradually
outperformed the tripod from the 4-s mark on-wards and
reached a fitness value 37.5% larger than the tripod. We
generated their body trajectories and plotted snapshots of
these two creatures walking for 5 seconds (instead of the total
15 seconds), as shown in Figure 4B. From the figure, the stride
length from the best biped was gradually increasing while the
stride length of the best tripod was almost constant. In Figure 5,
we demonstrated a variety of tripodal and biped creatures
obtained during generations, and all their body lengths were
gradually decreasing. Interestingly, we observed that most tripod
creatures had long and broad feet, while the feet of biped creatures
were continuously shrinking over generations.

We obtained the gait information from the relative Center of
Gravity (CoG) position, the relative horizontal velocity, and the
relative vertical velocity for both creatures, shown in Figure 6.
Here, we defined the relative displacement unit as a leg length (ll),
and the unit of the relative velocity as a leg length per second (ll/s)
to fairly compare the locomotion from the best biped and the best
tripod. Since we adopt a virtual model control method and
capture the data at the center of the body, the value has some
oscillations, such as the oscillation of the spring component of the
virtual model. As for the CoG, the best biped first fell to -0.35 ll
and returned to 0 ll, finally oscillating at the original position. The

best tripod first fell to -0.2 ll and oscillated for the first 8 seconds.
Then, it fell again to -0.3 ll, gradually rose back to -0.15 ll, and
stabilized at that height. About the relative horizontal velocity, the
best biped creature reached a maximum of eight ll/s, while the
best tripod creature merely obtained six ll/s, so the relative
horizontal velocity from bipeds was 30% higher than tripods.
Regarding the relative vertical velocity, the best biped creature

FIGURE 7 | Parameters for the body length and the leg length over
generations of the fast bipedal winner in the performance-based scaffolded
case. The green curve and the orange curve are the tibia length and the femur
length parameters, respectively. Their ranges are from 0.05 to 0.9 m,
and they are set to mutate freely. The light-blue curve is the body length
parameter which is forced to decrease based on the current performance
observed, and the original range is from 0.05 to 1.8 m. Here, we squeeze the
display range to 0.9 and use a smoothness function to draw the data clearly,
which is conducive to investigate the changes of body parameters. The red
line labels the place where the tibia length starts gradually increasing with the
support of the body length.

FIGURE 8 | The scatter map of all three cases in three different trials with
different body lengths at every bump of the current fitness. Case 1 is the body
length with free constraint during generations, Case 2 is the constraint body
length with decreasing value during generations, and Case 3 is the
constraint body length based on the best fitness obtained during generations.
Red stands for tripods, green for a hybrid bipedal-tripods, and blue for bipeds.
Here, bipedal-tripod is the transition morphology between bipeds and tripods,
while a creature walks supported with a long body occasionally. Since the
simulations started from a tripod individual with the longest body length, the
scatter map is red in the beginning. By growing with different body length
constraint mechanisms, most individuals become bipeds (blue) at the end.
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reached a maximum of two ll/s while the best tripod creature was
half of it, at one ll/s. We plotted the variations that happened with
body, femur and tibia length throughout the evolution of the
biped creature, and we show it at Figure 7. The body length
gradually decreases from 1.8 to 0.2 m over 1,000 generations,
while the femur and tibia lengths had very few changes in this
interim. After 1,000 generations, the body length continued
decreasing, reaching 0.07 m, near the minimum value set in
the simulation, while the tibia length increased 0.15 m and the
femur length kept oscillating stably at 0.4 m. As shown in
Figure 7, the body length rapidly decreases while the tibia and
femur lengths are near-constant in the stability stage. It shows
that the support for the body gradually shortens and loses contact
with the floor, but the creature is still capable of walking forward.
As the speed becomes faster, this method shows that the tripod
walking converts to an unsupported biped gait.

The results described above were based on the best
creatures, and those motivated us to create three cases
(described at section 2.5) to understand the mechanisms
leading to that difference. Initially, we wanted to identify
the biped and tripod creatures in our simulation, and we plot
Figure 8 to help us visualize the relationship between their
gait and fitness. Over the course of 4,000 generations for each
run, these creatures present a strong tendency to evolve from
tripod to biped while also drastically decreasing their body
length. We run each case three times, and observe that tripod
creatures rely on a bigger body to support their gait, never
reaching the minimum length possible. After averaging the
results from those three trials for each case, we plot Figure 9,
where we show the mean and standard deviation from each

case. We observed that Case 1 (free scaffold) and Case 3
(performance-based scaffold) presented the bipedal results,
while two-thirds of the runs from Case 2 (time-constrained
scaffold) produced tripods as their best solutions.

In a comparison between Case 1 and Case 3 we can notice, from
Figure 9, that the variance of the performance-based scaffold (Case
3) is greater than the free scaffold (Case 1) between 400 and 900
generations, but the learning curve in Case 3 is the steepest, and
ultimately reaches the highest fitness. As for the difference of the
variance, it is because we restrict the range of the body length of
Case 3 based on the current fitness, while we let the body length of
Case 1 evolve freely. Considering all the 4,000 generations, Case 3 is
superior to Case 1 in 83% of the generations, even comparing the
lower and higher bounds of the variances from both cases. Case 2,
on the other hand, struggles to evolve and only reaches 66% of the
fitness from Case 1.

4 DISCUSSION

4.1 Body Length Supports Leg Growth
During the learning process of the best creature observed, the tripodal
gait phase started with a long body and a short leg length, as shown in
Figure 7. The definition of long and short for the body length and the
leg length was relative to the optimal body parameters. Upon
analyzing our results, we found that the creature experienced two
stages before achieving the optimal parametric combination of body
and leg lengths. From 0 generations to 1,000 generations, we observed
a stability stage, with the body length rapidly decreasing from 1.8 to
0.2m while the tibia and femur lengths were near-constant. The
second stage, marked by a gradual speed increase, is defined by an
increase in the femur length while the body length nearly reaches the
minimum value set in the simulation.

In the first stage, the long body/short leg and its tripodal gait
guaranteed the system to be stable to form a simple tripod control.
Naturally, with an ever decreasing support, the short legs transition
to a bipedal gait with a robust controller, and this triggers an increase
in leg length to reach higher fitness values with an upright posture.
This gait analysis allowed us to hypothesize on the internal
mechanism of a scaffolded learning approach and strongly agreed
with the work from Lungarella et al. (2003), where it is stated that
roboticists could develop better systems by exploiting insights gained
from studies on ontogenetic development. In this work, we state that
A. stable tripodal gaits scaffold bipedal gaits and B. stable walking
scaffolds speed increases, as seen in the transition from the first stage
to the second, and our results are in strong agreement with a gait
studywith infants (Thelen et al., 1991). In this study toddlers who are
still incapable of walking are supported on a treadmill and are
capable of performing well-coordinated alternate stepping
movements, in a very strong resemblance to an upright bipedal
locomotion.

4.2 Performance-Based Scaffolds
Bootstrap Learning
We proposed three cases of the scaffolded learning method in this
paper. From the results shown in Figures 8, 9, we can state that the

FIGURE 9 | Results for all three cases within 4,000 generations. The
median values of the brown dashed, purple dotted, and black dashdotted
lines stand for free scaffolded learning case (Case 1), time-constrained
scaffolded learning case (Case 2) and performance-based scaffolded
learning case (Case 3), respectively. The shaded regions represent the
standard deviation of each case. The variance of Case 2 and Case 3 are
greater than Case 1 because we restrict the range of the body length of Case 2
and 3 based on the time and the current fitness, while we let the body length of
Case 1 evolve freely.
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time-constrained scaffold (Case 2) hinders bipedal evolution,
forcing the evolutionary process into a local optimum. On the
other hand, a performance-based scaffold (Case 3) not only
evolved bipedalism from tripods but also bootstraps its self-
growth. Here, we set the free scaffold (Case 1) as the baseline of
independent bipedal walking learning. Although Case 1 is better
than Case 2, the learning curve seen in Case 3 is the steepest.
Case 3 takes the correct cues to transition from tripodal to
bipedal, by shortening its body length gradually to allow the
controllers to mature, in strong agreement to the results shown
in Rosendo et al. (2017); Zhu et al. (2019), where the role of
morphology in the control development is studied. Case 1 is free
scaffolded learning, and the freedom provided prevents the
system from assigning a higher priority on the contribution
from the body parameter. Case 2 shows the negative effects of a
poorly conceived support system, where the controller for the
creature over-matures at a longer body length and stagnating at
a tripod gait in most of the times.

We can take the human ontogenetic development for the
performance of a cognitive task as a child as the example of
scaffolded learning cases. One is that parents deliberately do not
interfere with the learning of their children, as seen in free scaffolded
learning (Case 1), another is that parents slowly reduce their assistance
for this child based on their age, as seen in time-constrained scaffolded
learning (Case 2), and the other is that as this child performs this task
parents adjust their support based on their perceived performance, as
seen in performance-based scaffolded learning (Case 3). Broadening
to pedagogical applications, Al Mamun et al. (2020) provides a
positive example of how to implement inquiry-based learning in
an online environment, considering the lack of direct teacher or peer
support. However, they mentioned that recent research rises more
attention as challenges increase when adopting a free scaffold in the
self-regulated learning environment without direct support from
teachers. Therefore, only by choosing a suitable method can we
effectively accelerate the learning process, which is in agreement
with our work of physical robots (Vujovic et al., 2017), where we
show the negative effects of an improperly enforced developmental
process on a robot.

5 CONCLUSION

In this paper, we introduced a scaffolded learning method on a
creature capable of adapting its body and controller, hence
bootstrapping a bipedal controller from a stable tripodal gait.
Our results show that scaffolded learning with the optimal
parameters is more productive than leaving a system free to
learn independently. It is only true when the appropriate
incentives behind scaffolded learning exist, effectively
shortening the learning process with a performance-based
scaffold, while a time-constrained scaffold is worse than the
free learning case. Although bipedal walking can be reached
through robust control methods, the study that we present
here does not focus on the walking itself but on the capacity
to use what is already known to bootstrap the unknown. We
introduce a scaffolded learning method that accelerates the
learning process, which can be combined with any learning

method to improve the learning rate. We believe that the
findings of this study are meaningful for machine learning in
general, as our methods are not bound to genetic algorithms or
one experiment, and could be adapted to different learning
methods and different systems.

We would like to emphasize that this is the first time that such
scaffolded learning method is used artificially, although pedagogy
and cognitive scientists have observed animals and babies using
scaffolds to support their learning processes, such as bike riders
using training wheels or babies learning to stand while supporting
themselves with chairs and sofas. In addition, this paper is not
about locomotion, genetic algorithm, virtual model control, nor
finite state machine, but about scaffolded learning being used to
speed up a learning process, which can be used in any process and
with any kind of learning algorithm. We use bipedal locomotion
and tripod locomotion as a proof of concept for scaffolded
learning. It could have been manipulation, jumping, standing
or any other behavior that can have its initial steps supported by
something. We propose the use of a structure combined with the
software part, leaving the readers free to use a scaffolding method
of their choice. As the field of Robotics suffers from the curse of
dimensionality and the Reality Gap, our proposed method should
be used on robots for faster deployment of learning algorithms
and a bottom-up construction of this knowledge base. The same
concept explained herein could be transposed to a simulation-
scaffolded reality, with the eventual removal of the training
wheels to reproduce a reality-compatible behavior. As is the
case with humans, robots should also be capable of using their
previously acquired knowledge to aid their learning of complex
tasks. After all, if Newton could see further, it was by standing on
the shoulder of giants.
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