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Abstract: Contact and collision sports are believed to accelerate brain aging. Postmortem studies of
the human brain have implicated tau deposition in and around the perivascular space as a biomarker
of an as yet poorly understood neurodegenerative process. Relatively little is known about the effects
that collision sport participation has on the age-related trajectories of macroscale brain structure
and function, particularly in female athletes. Diffusion MRI and resting-state functional MRI were
obtained from female collision sport athletes (n = 19 roller derby (RD) players; 23–45 years old)
and female control participants (n = 14; 20–49 years old) to quantify structural coupling (SC) and
decoupling (SD). The novel and interesting finding is that RD athletes, but not controls, exhibited
increasing SC with age in two association networks: the frontoparietal network, important for
cognitive control, and default-mode network, a task-negative network (permuted p = 0.0006). Age-
related increases in SC were also observed in sensorimotor networks (RD, controls) and age-related
increases in SD were observed in association networks (controls) (permuted p ≤ 0.0001). These distinct
patterns suggest that competing in RD results in compressed neuronal timescales in critical networks
as a function of age and encourages the broader study of female athlete brains across the lifespan.

Keywords: female athletes; brain aging; mTBI; collision sports; structure–function coupling; graph
signal processing

1. Introduction

Physical activity and exercise promote healthy brain network organization across the
lifespan [1–4]. Sports are commonly touted as an enjoyable way to obtain these benefits, yet
sports carrying a risk of incidental contacts between a player and other people or objects
(contact sports) and sports that involve purposeful collisions (collision sports) can result in
mechanical loading of the athlete’s head [5–7], which may accelerate cognitive aging [8–11].
One recent retrospective cohort study highlighted the cost–benefit paradox of participating
in these sports, reporting that former professional soccer players exhibited lower rates
of all-cause mortality than matched controls but an elevated risk of neurodegenerative
disease [12]. The pathogenic mechanisms linking exposure and neurodegeneration are
as yet poorly understood. Currently, these processes are only detectable by postmortem
assays of phosphorylated tau in neurons, astrocytes, and the perivascular space around
small vessels at the depths of the cortical sulci [13]. Attempts to relate antemortem brain
imaging [14] or biofluid biomarkers [15] to clinical measures have yielded mixed results.

Ultimately, complex behaviors and cognition arise from brain structural and func-
tional organization, which is disturbed in a dose-dependent manner by a single season of
head mechanical loading [16–19], after many years of exposure in retired professional ath-
letes [20–23], and in patients with various tauopathies [24,25]. It is increasingly understood
that relationship between structure and function, so-called structure–function (de)coupling,
is more strongly associated with age than either constituent measure [26,27] and is dis-
rupted in neurodegenerative diseases [28,29]. Zhang and colleagues [30] recently reported
opposing relationships between global structure–function (de)coupling and amyloid beta
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deposition between patients with Alzheimer’s disease and patients with mild cognitive
impairment, suggesting that conversion may be due to the effects of protein accumulation
on brain network organization but not by protein burden per se. However, as the authors
note, structure–function (de)coupling is not a globally homogenous brain feature. Regional
patterns of structure–function (de)coupling produce a distinct ‘sensory-fugal’ gradient,
from tight BOLD alignment with the underlying white matter skeleton in sensorimotor
networks to liberal alignment and decoupling in transmodal networks and the association
cortex [31]. These patterns are associated with cognition [32], and differences in age-related
patterns of (de)coupling between collision sport athletes and controls may provide insight
into the effects that head mechanical loading has on intrinsic functional dynamics and brain
aging.

The study of age-related patterns of structure–function (de)coupling in collision-sport
athletes also has potential to reveal patterns that may be clinically meaningful for other
populations at risk for sustaining head mechanical loading, including military service
members [33] and victims of domestic abuse [34]. However, neuroimaging studies of
athletes have historically focused on college-age young adults, with small variance in age,
or retired professional athletes, whose experiences and exposure are unlikely to generalize
to broader populations. On the other hand, it is estimated that 30–50% of American adults
18–49 years old participate in sports and collision sports (e.g., soccer, football, basketball)
are some of the most popular [35]. To the authors knowledge, no report of brain structure
or function in this population of athletes has been previously published. Moreover, despite
evidence of sex differences in brain aging [36,37], few neuroimaging studies are designed
to exclusively study the brains of female contact or collision sport athletes [38].

In the current study, we sought to address these gaps by comparing trajectories
of brain aging between female roller derby (RD) athletes and non-roller derby athletes
(controls). RD is an understudied, collision sport that was developed as a combination
of ice hockey, football, and wrestling and is now played primarily by female amateur
athletes [39]. A 2018 survey of 1395 current female RD athletes revealed that 48.7% had
sustained one injury in the last year and 35% of those athletes reported a second injury
during the same time period [40]. While only 8% (n = 111) of the injuries in that study
were diagnosed concussions, a smaller study of female RD athletes reported that 58% of
respondents reported concussive symptoms in the previous year [41]. Specifically, we
tested a hypothesis that female RD athletes would exhibit a different age-related trajectory
of brain structure–function (de)coupling compared to females who were not competing in
contact or collision sports.

2. Materials and Methods
2.1. Participants

Experimental Dataset: Nineteen female athletes currently active in a competitive roller
derby league were recruited as participants. The roller derby (RD) athletes were 23–45 years
old (mean = 32.1 years) and were not diagnosed with a concussion at the time brain imaging
was performed. No other data were collected on these participants. Since the purpose of
this study was to characterize brain aging in female collision sport athletes, a convenience
sample of female control participants (i) not currently engaged in contact or collision sports
and (ii) not diagnosed with a concussion in the past three years (n = 15) were also recruited
to participate. Due to the nascent nature of research in this area, and to optimize sample
size, no other exclusionary criteria were used and there was not an attempt to rigorously
match participants on age. One control participant’s functional MRI data were deemed
unusable and thus that participant was removed from further analysis. The remaining
control participants (n = 14) were 20–49 years old (mean = 24.6 years) and also self-reported
their history of sport participation prior to MRI (Table 1). This study was approved by the
Institutional Review Board of the University of North Carolina at Greensboro and written
informed consent was obtained from each participant prior to study participation.
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Table 1. Athlete ages listed in ascending order for both roller derby athletes (left) and controls (right).
Head movement expressed as mean framewise displacement (FD). The sports that each control
subject reported participating in prior to the beginning of the study or at the time of the study (as
denoted by an asterisk *).

Roller Derby (n = 19) Controls (n = 14)
Age (Years) Mean FD (mm) Age (Years) Mean FD (mm) Sport History

23 0.191 19 0.069 Track, Soccer, Volleyball
24 0.059 20 0.054 Volleyball, Track
24 0.054 21 0.065 Gymnastics
26 0.146 21 0.062 Badminton, Swimming, Tennis
26 0.118 21 0.055 Tennis, Taekwondo, Soccer
27 0.159 22 0.045 Soccer
28 0.061 22 0.109 Volleyball *, Tennis
29 0.062 22 0.066 Track, Volleyball *
30 0.476 23 0.07 Cheerleading, Volleyball, Track
31 0.066 25 0.062 Dance, Competitive Cheer
32 0.095 25 0.138 No
32 0.062 26 0.047 Basketball
35 0.073 29 0.065 Tennis, Lacrosse, Softball, Cheerleading
35 0.072 49 0.069 Soccer, Field Hockey, Basketball, Lacrosse, Softball
36 0.163
40 0.137
41 0.076
41 0.077
45 0.064

2.2. MRI Data Acquisition and Preprocessing

Brain imaging was performed using a Siemens Tim Trio 3T system (Siemens, Germany)
and a 16-channel head coil. Foam padding was used to minimize the participants’ head
motion and all participants wore foam earplugs and headphones to attenuate scanner noise.
Before the scan, the participants were instructed to keep their eyes closed, stay awake,
and move as little as possible during data acquisition. High-resolution, three-dimensional
anatomical images were obtained over 5 minutes using a T1-weighted magnetization-
prepared rapidly acquired gradient-echo (MPRAGE) sequence (TR/TE = 1950/4.18 ms;
slice thickness = 1 mm; gap = 0 mm; FOV = 256 × 224 mm2). An echo-planar imaging
(EPI) sequence (TR/TE = 3000/28 ms; flip angle = 73◦; slice thickness = 3.3 mm; in-plane
resolution: 3.3 × 3.3 mm, 49 slices; matrix = 64 × 64) was used to obtain four-dimensional
functional images of the blood oxygen-level-dependent (BOLD) signal at rest over 5 minutes.
Diffusion MRI (dMRI) was collected over 12 min using a spin-echo single-shot EPI sequence
(TR/TE = 9000/94 ms; 72 directions with b = 0 and 1300 s/mm2; flip angle = 90◦; slice
thickness = 2.7 mm; matrix = 128 × 84).

Structural (T1w) and rs-fMRI data from RD and control participants were preprocessed
a containerized version of fMRIPrep version 20.1.2 [42] (RRID:SCR_016216). Boilerplate lan-
guage is included in the Supplemental Methods. Briefly, brain surfaces were reconstructed
from skull-stripped and non-uniformity corrected T1-weighted images using FreeSurfer
v6.0.1 [43] (RRID:SCR_001847). Individual reconstructions were spatially normalized to the
ICBM 152 Nonlinear Asymmetrical template [44] (RRID:SCR_008796) using the antsReg-
istration tool [45] (ANTs v2.1.0 RRID:SCR_004757). T2-weighted images were slice-time
and motion corrected and co-registered in T1w (native) space using boundary-based reg-
istration with six degrees of freedom [46], sampled into high-resolution (164k) fsaverage
space as an intermediate step before being re-sampled to 32k fsLR space. fsLR space is a
standard mesh comprised of greyordinates represented by 32k vertices (per hemisphere)
in cortical surface reconstructions and 28k voxels in subcortical volume. This means that
each individual’s resting-state ‘run’ is represented as a 91k greyordinate x 106 TR dense
timeseries.
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Three region-specific global signals, six head motion parameters (and their respective
temporal derivatives and quadratic terms), and framewise displacement (FD) [47] and
DVARS [48] were computed from the preprocessed T2-weighted timeseries. Head motion
was low for the entire sample (mean FD < 0.5 mm; Max FD < 0.9 mm; Table 1) and did
not differ between groups (t(32) = 1.75, p = 0.09, Cohen’s d = 0.113). For each partici-
pant component-based noise correction was performed using temporal (tCompCor) and
anatomical (aCompCor; CSF and WM) physiological noise regressors from an eroded brain
mask [49]. The components (CSF, WM, combined, or temporal) that were sufficient to ex-
plain 50 percent of variance were retained as confounds. All confounds were regressed out
in a single step using ciftify [50], and the resulting mean BOLD timeseries was extracted as
the mean signal from 360 cortical areas according to the Cole-Anticevic Brain Network Par-
cellation [51,52], representing 12 intrinsic connectivity networks: a task-negative network
(default), sensorimotor networks (somatomotor, auditory, visual), higher-order associative
networks (orbito-affective, frontoparietal, cingulo-opercular, dorsal attention, language),
and two novel multimodal networks (ventral, posterior).

Preprocessing of diffusion MRI data was performed using QSIPrep 0.13.0RC [53]
and boilerplate language is included in the Supplemental Methods. Briefly, denoising was
performed using MP-PCA with a 5-voxel window [54], Gibbs unringing was performed [55],
and images were corrected for magnetic field inhomogeneity [56]. Head motion was
corrected using the SHORELine method [53,57], wherein each b > 0 image is predicted
as a target based on all other b > 0 images. This image was registered to its predicted
target and the vector rotation was used to transform the entire set of images. The DWI
timeseries were resampled to ACPC, generating a preprocessed DWI run in ACPC space
with 2 mm isotropic voxels. No outlier scans were detected based on corrected neighboring
DWI correlation values (i.e., all scans were within 3 median absolute deviations).

2.3. Structure–Function Coupling

We leveraged recent advances in graph signal processing to characterize the align-
ment and misalignment (coupling and decoupling) of the observed BOLD timeseries
relative to what would be predicted by the structural connectome [58–60]. This is different
than the more commonly used correlational approach, which defines structure–function
(de)coupling based on the strength of the relationship between structural and functional
connectivity between one area and all other areas (i.e., the whole-brain weighted degree of
each area). All post-processing analytic steps are visualized in Figure 1.

First, preprocessed diffusion data were imported into DSI Studio (http://dsi-studio.
labsolver.org (accessed on 13 March 2021)) and reconstructed in template space (R2 ≥ 0.78)
using q-space diffeomorphic reconstruction [61]. Restricted diffusion imaging [62] was
performed to obtain spin distribution functions [63]. One million tracts were reconstructed
using a deterministic fiber tracking algorithm based on quantitative anisotropy [64] with
parameter saturation, atlas-based track recognition (HCP-1065) [65], and topology-informed
pruning to improve rigor and reproducibility [66]. Tracts shorter than 10 mm or longer
than 400 mm were discarded. A random angular threshold (15 degrees to 90 degrees) and
random step size (0.5 voxel to 1.5 voxels) were used. Fiber propagation direction was
averaged with a randomly selected percentage (0% to 95%) of the previous direction to
smooth fiber trajectories. Using the same multimodal parcellation to which the functional
data were aligned, individual structural connectivity matrices (360 × 360) were defined as
the total number of reconstructed tracts connecting areal pairs normalized by the median
fiber length. In other words, each individual’s brain is expressed as a network of 360 nodes
wherein the edge between any pair of nodes represents the normalized size of the white
matter tracts between them.

http://dsi-studio.labsolver.org
http://dsi-studio.labsolver.org
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variables for which p-values are generated through permutations (shuffling) of the original data (G). 

Figure 1. Whole-brain fiber tracking was performed on preprocessed diffusion data to generate a
structural connectome as the weighted adjacency matrix (360 × 360) (A). Preprocessed resting-state
BOLD data were mapped to individual surface reconstructions and averaged within each of 360
cortical areas to represent the graph signal (B). Eigen decomposition of the structural connectome was
used in a graph Fourier transform of the graph signals into their constituent components such that
coupling (SC, blue) is observed in the high-energy signals at low spatial frequencies and decoupling
(SD, red) is observed in the low-energy signals at the highest spatial frequencies (C). The norm of
high and low energies across TRs reveals the degree of SC (top, blue) and SD (bottom, red) for each
cortical area (exemplar control subject) (D). In the PLS analysis, each participant is represented by a
1 × 360 vector representing SC (blue) and a 1 × 360 vector representing SD (red) (E) and the resulting
sample brain matrix (66 × 360) is multiplied by an age vector (66 × 1) to generate correlation matrices
(2 × 360) (F). These correlation matrices undergo singular value decomposition, revealing 4 latent
variables for which p-values are generated through permutations (shuffling) of the original data (G).

Second, a graph Fourier transform was performed such that each individual’s SC
matrix was converted from a weighted, symmetric adjacency matrix (A) to a symmet-
ric normalized graph Laplacian (L) and then subjected to an eigenvector decomposition
(LU = UA). This yielded low-frequency eigenmodes (smaller Laplacian eigenvalues) and
high-frequency eigenmodes (larger Laplacian eigenvalues). Third, brain activity was de-
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composed at each timepoint (or TR) by multiplying the preprocessed functional (BOLD)
signal by the greatest Laplacian eigenvectors (to represent decoupled structure–function)
and the lowest Laplacian eigenvectors (to represent coupled structure and function). Graph
signal filtering was performed based on a median split of the energy spectral density of
the decomposed BOLD timeseries. Analyzing the alignment between the BOLD time-
series at each time point (TR) allowed us to determine where and to what extent brain
function was coupled or decoupled with white matter anatomy. Thus, the normalized
mean of the high-pass filtered, eigenvector-weighted timeseries at each node was inter-
preted to represent the degree of structural decoupling (SD) and the low-pass filtered
eigenvector-weighted timeseries at each node was interpreted to represent the degree of
structural coupling (SC) [67]. The latter steps were performed using modified, publicly
available code. (https://github.com/gpreti/GSP_StructuralDecouplingIndex (accessed on
16 March 2021).)

2.4. Statistical Analysis

Behavior partial least squares (PLS) correlation analysis was used to test for a joint
pattern of areal SC and SD that predicted age and differed between RD and controls [68,69].
The PLS approach was deemed preferrable to traditional, parametric statistical testing
since (i) permutation and bootstrapping statistics do not make assumptions about the
distribution or normality of the data and (ii) the influence of outliers is mitigated by
bootstrap resampling. Analyses were performed on both areal SC and SD because, just as
a BOLD timeseries can exhibit low- and high-frequency components, so too can an area
exhibit both coupled and decoupled components [67].

A group SC matrix (33 rows × 360 columns) was created by stacking individual SC
vectors for controls (14 rows) and RD athletes (19 rows). A SD matrix was created in the
same manner. Both matrices were stacked (as ‘within-subject’ conditions nested in groups)
to create a 66 row x 360 column matrix as a ‘brain’ input to the PLS. Participants’ ages
(years) were stacked similarly to create an ‘age’ input matrix (66 rows × 1 column).

PLS then decomposes the brain-age correlation matrix into orthogonal latent variables,
each representing a correlation between some pattern of structural (de)coupling, repre-
sented on an individual level as a ‘brainscore’ and age. In total, 10,000 permutations of the
multivariate pattern were used to assess the statistical significance of the latent variables,
wherein the p-value is equivalent to the number of permutations resulting in a singular
value greater than what was observed divided by the number of permutations. In other
words, only latent variables with fewer than 500 permutations returning greater singular
values than what was observed were considered statistically significant (p < 0.05). The sta-
bility (or reliability) of the contribution of each ‘brain’ feature (SD, SC) to the latent variable
was assessed by bootstrap resampling over 1000 iterations. The resulting distribution was
used to compute a standard error, which in turn was used to (i) create a 95% confidence
interval around the correlation for each feature and (ii) compute a bootstrap ratio (BSR),
essentially a z-score, as each areal feature’s weight over its estimated standard error [68].
Highly positive BSRs are interpreted to mean that (de)coupling contributed reliably to the
brain-age relationship identified by the latent variable. Highly negative BSRs to mean that
(de)coupling contributed reliably to the opposite brain-age relationship represented by the
latent variable. BSRs > 2.58 (corresponding to a 99% confidence interval), representing areas
contributing the most to the observed relationship, were averaged within their respective
networks to describe which networks contributed, and characterize the direction (coupling,
decoupling) of their contribution, to the observed brain-age relationship. In a confirma-
tory step, we tested for a relationship between the observed patterns and head motion
by computing the Pearson correlation coefficients between brain scores for each metric
(SC and SD) within each LV. Small and non-significant associations were interpreted as
evidence that individual differences in head motion were not driving the observed patterns
of (de)coupling.

https://github.com/gpreti/GSP_StructuralDecouplingIndex
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Finally, we considered the possibility that any differences in trajectory might actually
be due to non-linear aging trajectories [70], which the PLS is not able to test, and thus be
explained by differences in ages between the groups. To address this, we fit two multiple
linear regression models (fitglm function) for each cortical area:

y = 1 + AGECEN + AGE2
CEN + e

In other words, we attempted to predict either structural coupling (SC) or decoupling
(SD) (y) using participant age (centered on the sample mean; AGECEN) and participant
age centered and squared (AGECEN

2). The Benjamini–Hochberg procedure was used to
correct for multiple comparisons based on the false discovery rate [71]. The absence of
any significant quadratic effect (p-adjusted < 0.05) would lend strength to conclusions
about group differences, whereas a statistically significant quadratic effect would require
interpretation in the context of the data-driven PLS results. Sensitivity analysis (G*Power,
3.1.9.6) revealed power (α = 0.05, 1 − β = 0.80) to detect a medium-to-large effect (Cohen’s
f2 = 0.25) of two ‘age’ variables in jointly predicting structural (de)coupling in each area.

3. Results

The PLS analysis testing the primary hypothesis of different age-related trajectories of
structural coupling (SC) and decoupling (SD) between RD athletes and controls revealed two
latent variables (LVs). LV1 (p < 0.0001) revealed a set of brain areas for which SC increased
and SD decreased with age across both groups (Figure 2a,b). Figure 2b illustrates that,
although the correlations between SC, SD, and age were statistically significant, the pattern
revealed by LV1 primarily represents age-related changes in controls. This relationship
was primarily attributed to areas comprising sensorimotor (secondary visual, auditory,
language, ventral multimodal) networks and the orbitoaffective network (Figure 2c,d).
The opposite pattern (increased SD with age in controls) was driven by areas comprising
associative networks (i.e., frontoparietal, cinguloopercular, dorsal attention, and default
networks).

LV2 (p = 0.0006) revealed brain areas for which SC increased with age in RD athletes
and SD increased with age in controls (Figure 3a,b). Figure 3b illustrates that, although
the correlations were again statistically significant for both groups, the pattern revealed
by LV2 primarily represents age-related changes in RD athletes. Similar to LV1, this
pattern was driven by areas comprising sensorimotor networks (secondary visual, language,
auditory) and increasing SD in the cinguloopercular network. However, contrasting with
the patterns in LV1, LV2 also revealed increasing SC in frontoparietal and default networks
with increasing age in RD athletes (Figure 3c,d). The latent patterns revealed by PLS were
not associated with head motion (Pearson r < |0.12|, p > 0.503).

Multiple linear regression models revealed that no cortical area exhibited a quadratic
relationship between age and SC (FDR > 0.068) or between age and SD (FDR > 0.70).
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areal bootstrap ratios contributed reliably to the observed pattern and negative areal bootstrap
ratios contributed to the opposite pattern (i.e., greater decoupling with age in controls) (C). Bootstrap
ratios were averaged within networks to reveal the contribution of each network to the observed
(de)coupling–age relationships (D).
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Figure 3. Second latent variable from a decomposition of (de)coupling–age correlations between
groups (LV2) represented as correlations at the group level (A) and individual level (B). Positive
areal bootstrap ratios contributed reliably to the observed pattern and negative areal bootstrap ratios
contributed to the opposite pattern (i.e., greater decoupling with age in RD athletes) (C). Bootstrap
ratios were averaged within networks to reveal the contribution of each network to the observed
(de)coupling–age relationships (D).

4. Discussion

Compared to male athletes, relatively little is known about brain structure and func-
tion in female athletes, particularly post-collegiate female athletes competing in collision
sports. Data collected to fill this gap are especially important for understanding the ef-
fects, both healthful and deleterious, of sport participation on brain aging. To this end,
we hypothesized that roller derby (RD) athletes and controls would exhibit different age-
related trajectories of brain structural coupling (SC) and decoupling (SD), representing the
degree of alignment and misalignment, respectively, between the areal BOLD signal and
the underlying white matter skeleton.

Our novel finding was the group differences in age-related (de)coupling in regions
comprising the frontoparietal and default networks; in contrast to females not engaged
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in RD, female RD athletes exhibited age-related increased SC in regions comprising the
frontoparietal and default networks. Greater SC could be interpreted to represent timescale
shortening, or faster neuronal dynamics, in the frontoparietal and default networks in RD
athletes. Aging brains appear to exhibit more global structure–function decoupling [27,72],
particularly in subcortical and cerebellar areas and in the frontoparietal and attentional cor-
tical networks [32]. Age-related shifts toward coupling in transmodal networks have also
been interpreted to represent healthy aging in older samples than those analyzed here [73],
and they form the basis of ‘posterior–anterior shift’ [74] and ‘compensation-related utiliza-
tion’ [75] models of brain aging. Therefore, it is possible that the pattern we observed does
not represent aberrant physiology per se, but instead represents accelerated brain aging: a
pattern normally observed in older adults but characterized in young and middle-aged
RD athletes in the current study. On the other hand, it is possible to interpret greater SC in
the frontoparietal and default networks as representing declining BOLD variability, which
recently correlated with declining cognition in a large heterogenous sample of middle-age-
to-older adults (43–89 years, n = 422) [76], or as the desegregation of the frontoparietal and
default networks from the somoto-sensory networks. Although network desegregation is a
common feature of aging [77,78], loss of differentiation in the frontoparietal and default
networks may represent network-specific decreases in oxygen metabolism [79]. Focal
hypometabolism has also been observed in patients with Alzheimer’s disease [80,81] and
individuals with a history of concussive exposure [82,83]. Substantial work in the basic
science of concussion suggests a time course of cerebral dysmetabolic regulation that begins
with acute hypermetabolism, and an insufficient energy supply to meet the demand, giving
way to a prolonged period of hypometabolism [84]. Thus, it is possible that increasing
structure–function coupling in RD athletes may represent long-term effects of chronic
exposure to head mechanical loading. A complete medical history and measurements of
head mechanical loading, using head- or mouth-mounted telemetry, would be useful for
testing this postulate.

We observed similar patterns of age-related increased SC in areas comprising sec-
ondary visual, language, and auditory networks among both RD and control athletes.
Control females also exhibited increasing SD with age in regions comprising several trans-
modal association networks: cinguloopercular, default, frontoparietal, and dorsal attention.
These patterns of (de)coupling are consistent with those reported by Preti and DeVille (2019)
from a large sample of similarly aged (male and female) participants from the Human
Connectome Project Young Adult dataset [67]. As noted by those authors, greater SC is
consistent with the shorter timescales observed in firing rates of primary sensory neurons,
necessary for the quick transmission of sensory inputs, whereas greater SD likely arises
from the slower, tonic firing of neurons in association networks to guide higher-order
cognition, such as working memory and decision making [73,85,86]. These patterns are
also consistent with patterns of myelin maturation across the age range represented in
the current study (20–49 years) [87]. A different analysis of that same dataset (n = 420
unrelated males and females aged 22–37 years) reported the most pronounced increases
in age-related structure–function decoupling in frontoparietal and attentional cortical net-
works [32]. Those authors did not report the same age-related increases in coupling in
sensorimotor networks, but this may be due to their use of a whole-brain correlational
approach—characterizing coupling based on structural and functional connectivity of one
area to all other areas—which has different implications for network-based effects than the
graph signal processing approach employed in the current study. However, compared to
other larger studies correlating brain organization and age, which have not accounted for
sport participation, the age range in the current study is relatively narrow, and it is plausible
that the study of older athletes (aged 50+ years) would result in a different trajectory.

Our findings are not without limitations. First, participants in our control group were
not age-matched with athletes from the RD group, which resulted in a younger control
group. Group age differences are partially addressed by the multiple linear regression
analysis, which did not support quadratic patterns of age-related (de)coupling across the
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entire sample. This supports an interpretation that patterns revealed by the PLS analysis
represent group differences related to current sport participation rather than artifacts
related to these differences in age. Second, roughly one-third of the control participants had
previously played soccer, a ‘contact’ (but not a ‘collision’) sport, which, when played at the
professional level, appears to increase the risk of neurodegenerative disease [12,88]. If the
risks for amateur soccer players are similar, then it is possible that the patterns we observed
in LV1 are confounded by the chronic effects of soccer competition. However, this would
also lead us to speculate that the patterns observed in RD (LV2) are driven by the acute
effects of participation in RD rather than the chronic effects of exposure. Future studies
designed to relate brain structure and function to head mechanical loading (e.g., using
instrumented mouthguards) in RD athletes is warranted. Third, the lack of behavioral data
in the current study also makes it difficult to contextualize the findings. Including a battery
of standard neurocognitive tests would clarify whether these patterns represent unhealthy
brain aging or not.

Notwithstanding these limitations, the patterns we observed in the current study
suggest that participating in roller derby, an aggressive collision sport, is associated with
accelerated brain aging, even in the absence of any diagnosed injury. Different patterns of
structure–function (de)coupling have been observed in patients with diagnosed neurode-
generative disease [89,90] and after acquired brain injury [91] relative to healthy controls.
To the authors’ knowledge, this is the first neuroimaging study to report on the brain orga-
nization of post-collegiate female contact and collision sport athletes and is an important
first step in characterizing and understanding the risks these sports carry for female brain
aging. However, further research is necessary to clarify whether these patterns are consis-
tent across different sports and to what degree they may be mitigated or accelerated by
other lifestyle factors. These future investigations are clearly warranted, as policy makers,
clinicians, and researchers alike advocate the benefits of sport participation for promoting
physical and mental health without a clear understanding of the potential risks for brain
aging.

5. Conclusions

We compared age-related differences in brain structural and functional networks
between adult female roller derby athletes and females not engaged in collision sports.
Group differences were observed in patterns of age-related structure-function (de)coupling
in the default and frontoparietal networks. These patterns suggest that collision sport
participation is associated with faster brain functional dynamics in networks which are
typically characterized by neuronal firing on slower timescales. Future studies comparing
multimodal imaging and behavior in diverse athlete populations will be necessary to fully
understand the risks of collision sports, and head mechanical loading more broadly, for
brain aging.
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