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Summary
Background Kwashiorkor is a childhood syndrome of edematous malnutrition. Its precise nutritional precipitants
remain uncertain despite nine decades of study. Remarkably, kwashiorkor’s disturbances resemble the effects of
experimental diets that are deficient in one-carbon nutrients. This similarity suggests that kwashiorkor may repre-
sent a nutritionally mediated syndrome of acute one-carbon metabolism dysfunction. Here we report findings from
a cross-sectional exploration of serum one-carbon metabolites in Malawian children.

Methods Blood was collected from children aged 12�60 months before nutritional rehabilitation: kwashiorkor
(N = 94), marasmic-kwashiorkor (N = 43) marasmus (N = 118), moderate acute malnutrition (N = 56) and controls
(N = 46). Serum concentrations of 16 one-carbon metabolites were quantified using LC/MS techniques, and then
compared across participant groups.

Findings Twelve of 16 measured one-carbon metabolites differed significantly between participant groups. Mea-
sured outputs of one-carbon metabolism, asymmetric dimethylarginine (ADMA) and cysteine, were lower in maras-
mic-kwashiorkor (median µmol/L (§ SD): 0¢549 (§ 0¢217) P = 0¢00045 & 90 (§ 40) P < 0¢0001, respectively) and
kwashiorkor (0¢557 (§ 0¢195) P < 0¢0001 & 115 (§ 50) P < 0¢0001), relative to marasmus (0¢698 (§ 0¢212) & 153
(§ 42)). ADMA and cysteine were well correlated with methionine in both kwashiorkor and marasmic-kwashiorkor.

Interpretation Kwashiorkor and marasmic-kwashiorkor were distinguished by evidence of one-carbon metabolism
dysfunction. Correlative observations suggest that methionine deficiency drives this dysfunction, which is implicated
in the syndrome’s pathogenesis. The hypothesis that kwashiorkor can be prevented by fortifying low quality diets with
methionine, along with nutrients that support efficient methionine use, such as choline, requires further investigation.
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Research in context

Evidence before this study

Kwashiorkor is an often-lethal syndrome of childhood
malnutrition. Unlike marasmus, kwashiorkor is defined
by nutritional edema rather than severe weight loss.
Although kwashiorkor was formally described in 1933
its pathogenesis remains uncertain. The current piece-
meal understanding of kwashiorkor is inadequate. Why
do some children develop marasmus while others develop
kwashiorkor? Discovery of the nutrient deficiencies that
precipitate kwashiorkor will allow the development of
better strategies for its alleviation. In addition to edema,
kwashiorkor is distinguished by a consistent pattern of
molecular and organ-level disturbances. These distur-
bances resemble those that occur in animals subjected
to diets deficient in essential one-carbon nutrients,
especially methionine and choline. This resemblance
offers support for the hypothesis that kwashiorkor is a
nutritionally mediated syndrome of one-carbon metab-
olism dysfunction that is precipitated by inadequate
intake of particular one-carbon nutrients. However, the
current understanding of one-carbon metabolism in
kwashiorkor and marasmus remains limited. This knowl-
edge gap hinders efforts to develop better strategies
for the treatment and prevention of kwashiorkor.

Added value of this study

Kwashiorkor’s unique risk factors and lesions have not
been integrated into a gathered syndrome of malnu-
trition. The purpose of this study was to explore the
hypothesis that kwashiorkor is a nutritionally medi-
ated syndrome of one-carbon metabolism dysfunc-
tion. To do so, we characterized one-carbon
metabolites in Malawian children who differed by
nutritional status. This study is the largest published
comparison of one-carbon metabolites in kwashior-
kor and marasmus to date. We observed that kwashi-
orkor (including marasmic-kwashiorkor) was
distinguished by evidence of greater one-carbon
metabolism dysfunction relative to other groups of
acutely malnourished children and controls. These
observations suggest that one-carbon metabolism
offers a molecular grammar for narrating the patho-
genesis of kwashiorkor, from its preceding risk factors
to its end-stage lesions.

Implications of all the available evidence

The findings of this study are consistent with the con-
cept that kwashiorkor is nutritional syndrome of sys-
temic one-carbon metabolism dysfunction. Correlative
findings presented here suggest that methionine defi-
ciency is necessary for the pathogenesis of this dys-
function. We also observed that methionine was well
correlated with methyl donors. Methyl donors sustain
efficient methionine recycling. These observations sug-
gest that methyl donors support methionine status in
this population of children. Together these findings
support the hypothesis that kwashiorkor can be pre-
vented by fortifying meager diets with methionine and
methyl donors, such as choline. Clinical trials are
needed to test this hypothesis.
Introduction
Kwashiorkor and marasmus are separate conditions of
severe acute malnutrition. Both contribute to the global
burden of childhood undernutrition,1 which is associ-
ated with 45% of deaths occurring before the age of
five.2 The cause of marasmus is not mysterious; a nega-
tive energy balance that results in severe wasting.
Kwashiorkor is different. Most children with kwashior-
kor are not wasted.3 Instead of wasting, kwashiorkor is
characterized by a constellation of disturbances. This
syndrome includes fatty liver disease, skin disturbances,
glutathione depletion, as well as kwashiorkor’s defining
disturbance, edema.1 Although the cause of kwashior-
kor remains uncertain4,5 it is established that this dis-
tinctive syndrome only occurs in children who have
been subjected to monotonous low quality diets.6,7

Kwashiorkor’s association with meager diets transcends
economic, sanitary, and geographical differences.8�11

The consistentcy of this pattern indicates that kwashior-
kor is fundamentally a problem of poor nutrition. The
first formal description of kwashiorkor12 sparked
debates about its etiology.13 Later, by the middle of the
20th century, the belief that kwashiorkor is simply due
to protein deficiency became popular.14 This reasonable
theory was supported by the observations that children
who consume ample quantities of animal protein do
not develop kwashiorkor and that skim milk powder is
an effective therapeutic regimen.15,16 However, subse-
quent epidemiologic studies demonstrated that children
with kwashiorkor do not necessarily consume less pro-
tein than those who develop marasmus.6,7 Nor is edema
in kwashiorkor consistently correlated with plasma pro-
teins, such as albumin.17�20 Likewise, the incidence of
kwashiorkor among children who consume low-protein
cereal-based diets is perplexingly sporadic. Sometimes
kwashiorkor even varies between identical twins eating
the same food in the same home.21 Low-protein diets
are the syndrome’s etiologic context, not its precise
cause; where kwashiorkor happens, not why. Additional
hypotheses need testing. Kwashiorkor’s distinctive met-
abolic and organ lesions bear a striking resemblance to
the effects of experimental diets that are deficient in
nutrients that support one-carbon metabolism. This cat-
egory of biochemical processes sustains the movement
of methyl groups and the transsulfuration pathway
(Figure 1).22�24 Kwashiorkor’s phenotypic overlap with
the pathologic effects of one-carbon nutrient deficient
diets suggests that it may be a syndrome of one-carbon
metabolism dysfunction, which is precipitated by one-
www.thelancet.com Vol 75 Month January, 2022



Figure 1. One-carbon metabolism schematic, adapted with permission.170
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carbon nutrient deficiencies. This concept may be use-
ful for defining the underlying molecular pathways that
link kwashiorkor’s environmental determinants with its
hallmark organ level lesions and serum biochemical dif-
ferences. However, one-carbon metabolism in malnutri-
tion remains poorly characterized. The purpose of this
cross-sectional study was to compare circulating concen-
trations of one-carbon metabolites in groups of Mala-
wian children who differed by nutritional status:
kwashiorkor, marasmic-kwashiorkor, marasmus, mod-
erate acute malnutrition (MAM), and controls.
Methods

Study design
This cross-sectional study was undertaken among par-
ticipants who were recruited from a network of 25 rural
community-based malnutrition surveillance clinics in
southern Malawi. These clinics are operated by the St.
www.thelancet.com Vol 75 Month January, 2022
Louis Nutrition Project, a non-governmental research
organization affiliated with Washington University in
St. Louis School of Medicine and the University of
Malawi College of Medicine.
Ethics
This study was approved and supervised by the Univer-
sity of Malawi College of Medicine Research and Ethics
Committee (P.07/15/1766), as well as the Institutional
Review Boards of Washington University in St. Louis
(201,512,104), and Baylor College of Medicine (H-
37,400). The local safety monitoring board of the Uni-
versity of Malawi College of Medicine supervised the
portions of this study conducted in Malawi. The institu-
tional review boards at Baylor College of Medicine and
Washington University in St. Louis supervised the por-
tions of this investigation conducted in the USA. Writ-
ten and verbal informed consents were obtained from
each participant’s parent or guardian in their preferred
3
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language. Ineligible children, as well as those whose
guardians declined to participate, received the same
cost-free care that was provided to study participants.
Participants
Participants were recruited during a 20-week period
spanning January to May of 2016. Children were
brought to the aforementioned network of clinics for a
variety of reasons. These ranged from referrals by local
clinicians who were concerned about a child’s nutri-
tional status to routine nutritional surveillance visits for
children without any apparent malnutrition. Eligible
participants were between the ages of 12 and 60 months
at the time of enrollment, without any prior treatment
for malnutrition in the preceding 28 days. Aside from
undernutrition, participants did not have chronic medi-
cal conditions, such as cerebral palsy, congenital heart
disease, tuberculosis, or HIV. Caregivers were ques-
tioned as to whether their child had experienced cough,
diarrhea, and fever during the preceding seven days.
Reports of such symptoms are common among chil-
dren who present to this network of malnutrition sur-
veillance clinics, and were not used as exclusionary
criteria for malnourished participants or controls. Par-
ticipants who met criteria for acute malnutrition were
categorized according to their specific condition: kwash-
iorkor, marasmic-kwashiorkor, marasmus, or moderate
acute malnutrition (MAM). These diagnoses were based
on the detection of edema and anthropometric measure-
ments on the day of enrollment, using cutoffs estab-
lished by the World Health Organization (WHO).1

Thus, in the context of this study Marasmus (i.e. ‘non-
edematous severe acute malnutrition’) means that a par-
ticipant had severe wasting (i.e. weight for height Z
score (WHZ) < �3 SD or mean upper arm circumfer-
ence (MUAC) < 11¢5 cm). Kwashiorkor (i.e. ‘edematous
severe acute malnutrition’ or ‘nutritional edema’)
means that a child had bilateral pitting pedal edema (+,
++, or +++) without severe wasting. Marasmic-kwashior-
kor means that a participant had bilateral pitting edema
and severe wasting. MAM was defined by the presence
of moderate wasting (i.e. WHZ <�2 or MUAC
< 12¢5 cm). Anthropometric values, WHZ, and height
for age Z score (HAZ), were calculated using Anthro
(version 3¢2¢2), an anthropometric Z-score calculator
developed by the WHO. Controls were recruited as a
convenience sample from the same network of malnu-
trition surveillance clinics. Controls were distinguished
by the absence of acute malnutrition, as evidenced by
edema, or wasting, whether severe or moderate. Chil-
dren with stunting, a condition of chronic undernutri-
tion, and those who reported acute health complaints
(i.e. diarrhea or fever), were not excluded from partici-
pating as controls. This approach ensured that controls
were distinguished primarily by the absence of acute
malnutrition rather than generally superior health. In
the context of this study control does not mean that the
child was entirely well-nourished and free of all health
complaints. Rather, control means that the child did not
meet WHO diagnostic criteria for acute malnutrition.
Participation
After obtaining informed consent, health histories were
collected by Malawian research staff in the caregiver’s
preferred language. Malawian nurses then collected one
mL of venous blood into a vacuum-sealed collection
tube containing an inert silica-based pro-coagulant.
Whole blood specimens were stored at 2 °C during
transport to laboratories at the University of Malawi Col-
lege of Medicine in Blantyre, (» transport time 6 h).
There, the serum component was separated for storage
at �80 °C before transport to Baylor College of Medi-
cine in Houston Texas. After venipuncture, participants
received a 30 g test dose of ready-to-use therapeutic food
(RUTF) under the supervision of a study nurse. After
demonstrating appropriate feeding technique to the
child’s caregiver a study nurse confirmed that the partic-
ipant had sufficient appetite for outpatient nutritional
rehabilitation. RUTF was provided by Project Peanut
Butter, a non-governmental organization based in
Malawi. RUTF was administered for up to 12 weeks, in
accord with the local standard of care. Participants
whose condition deteriorated and those who failed to
improve after 12 weeks of outpatient treatment, were
considered to have failed outpatient treatment. These
children were referred for inpatient care. Adequate
serum from 357 participants was available for analysis
(Patient flow-chart: Supplemental Figure 1).
Metabolic parameters
A panel of sixteen circulating one-carbon metabolites
and functional outputs was quantified in order to assess
one-carbon metabolism in different conditions of mal-
nutrition, and in controls. These included choline, beta-
ine, dimethylglycine (DMG), glycine, sarcosine, 5-
methyltetrahydrofolate (MTHF), serine, methionine, S-
adenosylmethionine (SAMe), S-adenosylhomocysteine
(SAH), homocysteine, cysteine, cystathionine, pyridoxal
phosphate (PLP) and asymmetric dimethylglycine
(ADMA). Individual un-pooled serum samples were
analyzed in batches. All metabolic analyses were con-
ducted at the Center of Metabolomics, Baylor Scott &
White Research Institute, Dallas Texas. Serum homo-
cysteine was quantified using a liquid chromatography-
�electrospray ionization tandem mass spectrometry
(LC�ESI/MS-MS) approach,25 with additional modifica-
tions for the measurement of total cysteine. Serum con-
centrations of betaine, choline, methionine,
cystathionine, PLP, SAMe, and SAH were measured
using previously described LC-ESI/MS/MS
methods,26,27 which were modified to include glycine,
DMG, sarcosine, and ADMA.25 Serum MTHF was
www.thelancet.com Vol 75 Month January, 2022



Kwashiorkor
(N = 94)

Marasmic-Kwashiorkor
(N = 43)

Marasmus
(N = 118)

Moderate Acute
Malnutrition
(N = 56)

Controls
(N = 46)

Demographics & anthropometry1

Number of females (total /%) 47 (50%) a 19 (44%) a 68 (58%) a 44 (79%) b 28 (61%) a, b

Age mo. (§ SD) 29 (11) a 25 (9) a 26 (11) a 28 (11) a 28 (11) a

MUAC cm. (§ SD) 13¢04 (0¢89) a 10¢9 (0¢79) b 11¢21 (0¢78) b 12¢19 (0¢36) c 13¢99 (1¢03) d
Weight for Height Z score (§ SD) �1¢4 (0¢9) a �3¢29 (0¢9) b �3¢01 (0¢90) b �2¢11 (0¢63) c �0¢30 (0¢74) d
Height for Age Z score (§ SD) �2¢66 (2¢43) a �3¢56 (1¢54) a �3¢15 (1¢58) a �2¢60 (1¢67) a �2¢67 (1¢42) a
Nutritional characteristics

Breastfeeding2 (no. /%) 17 / 19 a 7 / 17 a,b 46 / 40 b 18 / 33 a,b 18 / 43 b

Age solids introduced (mo. / § SD) 9 (6) a 9 (6) a 8 (4) a 8 (5) a 8 (5) a

Cassava consumption3 (no. /%) 5 (5¢3%) a 1 (2¢3%) a 5 (4¢2%) a 4 (7¢1%) a 4 (8¢7%) a

Egg consumption3 (no. /%) 17 (18%) a 9 (21%) a 19 (16%) a 13 (23%) a 10 (22%) a

Vitamin A use4 (no. /%) 16 (17%) a 3 (7%) a 29 (25%) a 16 (29%) a 12 (26%) a

Health history

Diarrhea5 no. (%) 53 (58%) a 30 (71%) a 64 (56%) a 15 (28%) b 13 (30%) b

Bloody diarrhea5 no. (%) 8 (15%) a 3 (12%) a 7 (11%) a 0 (0%) a 2 (13%) a

Fever5 no. (%) 71 (79%) a 29 (66%) a,b 87 (75%) a 22 (39%) b 19 (45%) b

Rash5 no. (%) 21 (23%) a 10 (23%) a 23 (20%) a 6 (11%) a 3 (7.0%) a

Vomiting5 no. (%) 26 (28%) a 12 (29%) a 31 (27%) a 12 (22%) a 9 (21%) a

Cough5 no. (%) 41 (44%) a 23 (53%) a 51 (44%) a 28 (50%) a 26 (60%) a

Use of deworming medicine6 no. (%) 26 (29%) a 11 (26%) a 48 (42%) a,c 39 (72%) b 23 (53%) b,c

Treatment outcome7

Completed treatment 86 (94%) 34 (75%) 107 (91%) 54 (96%)

Lost to follow-up 7 (7%) 4 (9%) 11 (9%) 2 (4%)

Death 1 (1%) 5 (12%) 0 (0%) 0 (0%)

Table 1: Demographic, nutritional, and health history characteristics of subjects.
1 Shared letters indicate insignificant that pairwise differences were insignificant (i.e. P > 0¢05).
2 Any reported consumption of breastmilk at enrollment.

3 Consumption reported during the preceding two weeks.

4 Vitamin A supplementation in the preceding 6 months.

5 Symptoms reported in the 7 days preceding enrollment.

6 Any reported use of deworming medicine.

7 Low event frequency precluded formal statistical comparison.
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quantified using previously described LC�ESI/MS-MS
techniques.28 Inter-assay coefficients of variation for all
analytes were less than 15%. Analyses were performed
on a 4000 QTrap and 5500 QTrap mass spectrometry
instruments (Sciex, Framingham, MA) coupled to LC
systems (Shimadzu, Columbia, MD) with data collected
and processed using Analyst Software Version 1¢6¢2
(Sciex, Framingham, MA). Specimens were allocated to
separate batched groups in a randomized fashion. A sys-
tem of randomly generated participant identifiers was
used to keep laboratory personnel blinded to each spec-
imen’s diagnosis group. Two quality control measure-
ments were made for each batch of serum specimens by
using internal standards to assess within and between
assay variations, which was < 10% for all metabolites.
Relevant calculated metabolite ratios were used to
approximate the activity of certain metabolic reactions
within one-carbon metabolism.
www.thelancet.com Vol 75 Month January, 2022
Statistical analyses
Prior to this study most of the metabolites that were tar-
geted for quantification had not been characterized in mal-
nourished children before treatment. Hence, the precise
calculation of sample sizes for detecting intergroup differ-
ences between measured metabolites was not possible. A
target sample size of 350�425 participants was estimated
using previous reports of similar serummetabolites in this
population.29,30 The normality (i.e. Gaussian distribution)
of each parameter was first established visually, and then
confirmed using a Kolmogorov-Smirnov (K-S) test. Param-
eters with missing data points (i.e. cysteine, MTHF, and
PLP) were also normally distributed. Hence, these were
analyzed using the same statistical procedures. Missing
data points were not imputed or inferred. Reported
medians and standard deviations were calculated using
raw data. Kernel probability density plots for one-carbon
metabolites and relevant one-carbon metabolite ratios were
5



Metabolic parameter1

(Median (§SD))
Marasmic
kwashiorkor
(N = 43)

Kwashiorkor
(N = 94)

Marasmus
(N = 118)

Moderate acute
malnutrition (N = 56)

Controls
(N = 46)

Methionine (µmol/L) 10¢9 (5¢0) a 12¢4 (4¢7) a 16¢5 (7¢1) b 16¢1 (5¢6) b 16¢3 (6¢0) b
SAMe2 (nmol/L) 125 (80) a 98 (35) b 104 (40) b 92 (37) b 85 (19) b

SAH3 (nmol/L) 58 (57) a 46 (42) a 46 (45) a 22 (18) b 23 (18) b

Homocysteine (µmol/L) 4¢3 (2¢5) a 6¢3 (4¢2) a,c 8¢0 (4¢8) b 8¢0 (3¢6) b,c 8¢5 (4¢5) b
Glycine (µmol/L) 287 (99) a 271 (96) a 274 (96) a 241 (84) a,b 215 (64) b

Serine (µmol/L) 180 (63) a 133 (50) b 173 (69) a 136 (49) b 122 (34) b

Choline (µmol/L) 9¢1 (4¢0) a 9¢2 (3¢6) a 10¢7 (4¢7) a 9¢8 (5¢3) a 10¢0 (2¢8) a
Betaine (µmol/L) 230 (213) a 128 (80) b 107 (81) b,c 80 (31) c 79 (28) c

DMG4 (µmol/L) 6¢0 (4¢1) a 5¢9 (4¢1) a 7¢7 (7¢9) a 6¢3 (5¢9) a 5¢5 (3¢2) a
Sarcosine (µmol/L) 2¢34 (0.97) a,b 2¢02 (1.16) a 2¢89 (1¢86) b 2¢27 (1¢52) a,b 2¢16 (1.03) a

ADMA5 (nmol/L) 549 (217) a 557 (195) a 698 (212) b 647 (208) a,b 648 (125) a,b

SDMA6 (nmol/L) 910 (692) a 640 (163) b,c 678 (279) b 555 (167) b,c 517 (82) c

PLP7 (nmol/L) 10 (4) a 20 (56) a 19 (14) a 23 (16) a 21 (11) a

MTHF8 (nmol/L) 28 (21) a 38 (34) a 41 (28) a 46 (24) a 47 (29) a

Cysteine9 (µmol/L) 90 (40) a 115 (50) a 153 (42) b 178 (38) c 178 (26) c

Cystathionine (µmol/L) 0¢79 (0¢44) a 0¢59 (0¢42) b 0¢41 (0¢34) c 0¢28 (0¢17) c 0¢25 (0¢18) c
Methionine/SAMe 0¢11 (0¢06) a 0¢14 (0¢07) a 0¢18 (0¢09) b 0¢19 (0¢08) b 0¢20 (0¢08) b
SAMe/SAH 2¢84 (1¢25) a 3¢07 (1¢59) a 3¢35 (1¢79) a 5¢74 (3¢66) b 5¢15 (2¢85) b
SAH/Homocysteine 17 (20) a 11 (15) b 7 (7) b,c 3 (2) c 3 (2) c

Homocysteine/Cysteine 0¢055 (0¢022) a,b 0¢058 (0¢028) a 0¢057 (0¢033) a,b 0¢045 (0¢018) b 0¢047 (0¢022) a,b
Homocysteine/Methionine 0¢46 (0¢33) a 0¢55 (0¢37) a 0¢57 (0¢46) a 0¢55 (0¢30) a 0¢58 (0¢34) a
Betaine/DMG 52 (75) a 28 (25) b 18 (11) b 17 (8) b 17 (6) b

Choline/Betaine 0¢06 (0¢05) a 0¢10 (0¢06) b 0¢12 (0¢05) c 0¢13 (0¢05) c 0¢13 (0¢04) c
Glycine/Sarcosine 143 (89) a,b 165 (101) a 122 (66) b 125 (54) b 114 (42) b

SDMA/ADMA 1¢72 (1¢20) a 1¢24 (0¢41) b 1¢01 (0¢40) c 0¢88 (0¢23) c 0¢82 (0¢18) c

Table 2: Metabolic parameters in kwashiorkor, marasmic-kwashiorkor, moderate acute malnutrition, and controlsy.
1: Shared letters indicate insignificant pairwise comparisons (Tukey post-hoc analysis, P>0.05) after adjusting for multiple comparisons.

2: S-adenosyl methionine.

3: S-adenosyl homocysteine.

4: Dimethylglycine.

5: Asymmetric dimethylarginine.

6: Symmetric dimethylarginine.

7: Pyridoxyl phosphate, N=304 (Kwashiorkor: 89, Marasmic-kwashiorkor: 21, Marasmus: 93, MAM: 55, Controls: 46).

8: Methyl tetrahydrofolate, N=298 (Kwashiorkor: 87, Marasmic-kwashiorkor: 19, Marasmus: 91, MAM: 55, Controls: 46)

9: Cysteine, N=306, (Kwashiorkor: 89, Marasmickwashiorkor: 22, Marasmus: 94, MAM: 55, Controls: 46).
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estimated using an existing software package,31 (Supple-
mental Figs. 2�4). Intergroup differences were detected
using a one-way ANOVA on ranks (i.e. Kruskal-Wallis
test).32 Pairwise comparisons for continuous variables were
made using Tukey’s post-hoc test, which was adjusted for
multiple comparisons. Categorical variables were assessed
using Pearson’s chi-square procedure. P values reported in

Tables 1, 2, and Figure 2 were adjusted for multiple com-

parisons. Shared superscripted letters in Tables 1, 2, and

Figure 2 indicate that P values were not significantly differ-

ent (i.e. P > 0¢05), after adjusting for multiple compari-

sons. Logistic regression was used to characterize

associations between one-carbon metabolites and the pres-

ence of edematous malnutrition (i.e. kwashiorkor or

marasmic-kwashiorkor), after adjusting for sex, study visit

WHZ,MUAC, and HAZ, as well as reports of fever or diar-

rhea during the preceding seven days. Metabolite
interquartile range effects were summarized as odds ratios
with 95% confidence intervals (CIs). ANOVA plots were
created using an existing software package for the Wald
chi-square test,33 (Figure 3 and Supplemental Figs. 6�8).
Additionally, we calculated Pearson’s correlation coeffi-
cients between metabolic parameters and individual meas-
ures of nutritional status: MUAC, WHZ, and HAZ.34

These univariate correlation coefficient values are depicted
in Supplemental Figs. 9�16. Statistical analyses were per-
formed using SPSSTM Version 25 and R Statistical Soft-
ware, Version 4¢0¢2.
Role of funding sources
Funders did not contribute to the conceptualization,
study design, data collection, analysis, data interpreta-
tion, manuscript preparation, or journal selection for
this research.
www.thelancet.com Vol 75 Month January, 2022



Figure 2. One-carbon metabolites in serum: Subject groups are reflected by gray-scale differences according to the legend: kwashi-
orkor (N = 94), marasmic-kwashiorkor (43), marasmus (N = 118), moderate acute malnutrition (N = 56) controls (N = 46). Box plots
depict serum concentrations (y axis) of methionine, S-adenosyl methionine (SAMe), S-adenosyl homocysteine (SAH), homocysteine,
asymmetric dimethylarginine (ADMA), cysteine, cystathionine, and betaine. Lower, middle, and upper boundaries of bars represent
the 25th, 50th, and 75th percentiles respectively. Lower and upper whiskers represent the 5th and 95th percentiles respectively.
Shared letters indicate that pairwise comparison of means was insignificant (i.e. Tukey post-hoc test P > 0¢05), after adjusting for
multiple comparisons.
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Results

Participants
Serum was collected from 422 children. Of these, suffi-
cient quantities of non-hemolyzed serum for metabolic
analyses were available from 357, (43 marasmic-kwashi-
orkor, 94 kwashiorkor, 118 marasmus, 56 MAM, and
46 controls; Supplemental Figure 1). All participants
lived in rural communities where household food secu-
rity is linked to subsistence patterns of agriculture. In
this respect participants’ economic and living condi-
tions resembled those of other children in rural areas of
Sub-Saharan Africa, where risk for malnutrition is high.
Overall, there were slightly more female participants
(58%) than male. Among the 137 participants with
www.thelancet.com Vol 75 Month January, 2022
edema (i.e. edematous malnutrition) there were 43
(33%) who also had severe wasting (WHZ < �3 or
MUAC < 11¢5 cm) at the time of enrollment. These par-
ticipants were grouped together for separate consider-
ation as marasmic-kwashiorkor. Enrollment age was
similar across participant groups (Table 1). Stunting is
widespread in Malawi.29 Stunting (i.e. HAZ< 2), which
was present in 267 of 357 participants (75%), was dis-
tributed similarly in each participant group (Pearson’s
chi square � 0¢2 for all pairwise comparisons). Reports
of rash, vomiting, and cough, were similar in all three
groups (Table 1). In contrast, diarrhea and fever were
more common in children with marasmus, kwashior-
kor, or marasmic-kwashiorkor (Table 1). Like malnour-
ished participants, caregivers for controls reported
7



Figure 3. Covariate regression analysis: Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regres-
sion. Depicted ORs and CIs reflect interquartile range effects for the prediction of kwashiorkor (including marasmic-kwashiorkor),
before and after adjusting for mean upper arm circumference (MUAC), height for age Z score (HAZ), weight-for-height Z score
(WHZ), age, sex, diarrhea, and fever. *N = 345: Kwashiorkor: 89, Marasmic-kwashiorkor: 22, Marasmus: 94, MAM: 55, Controls: 46. S-
adenosyl-methionine (SAMe), S-adenosyl-homocysteine (SAH), asymmetric dimethylarginine (ADMA). y Cysteine, N = 306. Asymmet-
ric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA).
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frequent acute health complaints. Specifically, the total
number of health complaints in controls was not lower
relative to other participant groups: i.e. controls (3¢3/
§1¢3), marasmic-kwashiorkor (2¢6 SD § 1¢2), kwashior-
kor (2¢7/ § 1¢3), marasmus (2¢8/ § 1¢3), and MAM (3¢5/
§ 1¢4). Controls were distinguished by the absence of
acute malnutrition rather than perfect health. Empiric
use of antibiotics to treat routine childhood illnesses is
common in Malawi. There were 33 participants whose
caregivers reported use of one or more antibiotics dur-
ing the preceding two weeks (sulfamethoxazole-trimeth-
oprim N = 23, artemether-lumefantrine N = 12, and
amoxicillin N = 3). Of these antibiotics, only sulfameth-
oxazole-trimethoprim targets one-carbon metabolism.
Reports of sulfamethoxazole-trimethoprim use were
distritubted asymmetrically across participant groups
www.thelancet.com Vol 75 Month January, 2022



Feature 1CNDDs Kwashiorkor

Organ changes

Liver steatosis "24 "88

Pancreatic atrophy "89 "88

Exocrine pancreas fxn. #90 #91

Intestinal thickness #48,92 #93

Intestinal permeability "94 "95

Intestinal inflammation "96 "97

Skin disturbances "98,99 "100

Cellular immune fxn. #101 #102

Edemay "103,y "14

Molecular changes

Transmethylation #104 #57

DNA methylation #105 #80

Plasma carnitine #106 #107

Plasma cysteine #123 #57

Plasma glutathione #108 #71

Sulfated GAGsz #109 #110

Plasma albumin #111 #112

Hepatic PPARax #113 #?114
Plasma triglycerides{ #115 #116

Fatty acid oxidation #117 #118

Lipid peroxidation "119 "120

‘Oxidative stress’ "24 "82,83

Metalloproteinase-2 "121 " 199

Plasma TNF-a "122 "123

Table 3: Disturbances in kwashiorkor and experimental one-
carbon nutrient deficient diets* (1CNDDs).
* Most experimental diets referenced here are deficient in methionine

and choline.
y Nutritional edema in rats is prevented completely by supplementa-

tion with choline, and prevented partially with cobalamin.
z Glycosaminoglycans.
x Hepatic PPARa signaling in kwashiorkor has not been directly char-

acterized. Hepatic peroxisomes are reduced in kwashiorkor, suggesting

that PPARa signaling is suppressed.
{ In kwashiorkor plasma triglycerides are lower at diagnosis, then rise

during treatment.

Articles
(marasmic-kwashiorkor N = 1, kwashiorkor N = 5,
marasmus N = 14, and controls N = 1), and were not
associated with evidence of greater one-carbon distur-
bances.
Methionine cycle
The four intermediates of the methionine cycle differed
among participant groups. Methionine and homocyste-
ine were lower in kwashiorkor (P � 0¢0025) and maras-
mic-kwashiorkor (P < 0¢0001), relative to marasmus
and controls (Figure 2, Table 2). We did not observe a
consistent pattern of SAMe and SAH differences in
kwashiorkor and marasmic-kwashiorkor. SAMe, the
universal methyl donor, was significantly higher in
marasmic-kwashiorkor, relative to the other four partici-
pant groups. In contrast, SAH, the demethylated ana-
logue of SAMe, was not significantly different in
www.thelancet.com Vol 75 Month January, 2022
kwashiorkor or marasmic-kwashiorkor, relative to
marasmus. However, SAH was significantly higher in
kwashiorkor, marasmic-kwashiorkor, and marasmus
when these three participant groups were compared
individually with MAM or controls. SAMe to SAH ratios
were similar in kwashiorkor, marasmic-kwashiorkor,
and marasmus, but lower (P < 0¢0001) when these
three conditions of severe acute malnutrition were com-
pared individually with MAM and controls (Table 2).
SAMe to SAH ratios fall when transmethylation capac-
ity is limited.35 The observation of lower SAMe to SAH
ratios in kwashiorkor, marasmic-kwashiorkor, and
marasmus suggests that reduced transmethylation
potential is common in each of these three conditions
of malnutrition. Although SAMe to SAH ratios were
not significantly lower in kwashiorkor and marasmic-
kwashiorkor when compared directly with marasmus,
this indicator of transmethylation capacity was signifi-
cantly associated with edema in an adjusted multivariate
model (Figure 3). This observation suggests that
decreased methylation potential is a predictor of which
children develop kwashiorkor (including marasmic-
kwashiorkor), as opposed to marasmus. Ratios of gly-
cine to sarcosine in kwashiorkor and marasmic-kwashi-
orkor were numerically higher relative to marasmus,
MAM, and controls (Table 2). However, this difference
was only significant in the case of kwashiorkor
(P � 0¢02). Glycine to sarcosine ratios are subject to the
activity of glycine N-methyltransferase (GNMT),36,37

which by sinking SAMe derived methyl groups into the
sarcosine pool regulates SAMe availability and SAMe to
SAH ratios.23 Higher glycine to sarcosine ratios in
kwashiorkor may reflect lower GNMT activity. Ratios of
SAH to homocysteine were higher in kwashiorkor and
marasmic-kwashiorkor (P < 0.0001), relative to MAM
and controls (Table 2). Higher ratios of SAH to homo-
cysteine may reflect more limited SAH hydrolase activ-
ity. SAH hydrolase catalyzes the conversion of SAH to
homocysteine. Hence, suppression of SAH hydrolase
preserves SAH. SAH is a potent inhibitor of transme-
thylase enzymes.38 Thus, suppression of SAH hydrolase
causes both SAH and SAMe to accumulate intracellu-
larly.39 Together, these observations are consistent with
the hypothesis that GNMT and SAH hydrolase are sup-
pressed in kwashiorkor and marasmic-kwashiorkor.
Experimental models indicate that these SAMe regula-
tory enzymes are broadly influenced by one-carbon
nutrients. For example, transcription of SAH hydrolase
is suppressed by deficiencies of methionine, choline,
and folate.40 Similarly, GNMT transcription is stimu-
lated by excess methionine,41 whereas GNMT activity is
suppressed by choline deficiency.42
Remethylation
5-methyltetrahydrofolate (MTHF) is a reduced form of
folate. It is a direct cofactor for the remethylating activity
9
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of methionine synthase, which converts homocysteine
to methionine (Figure 1). PLP is the active isomer of
vitamin B6. It is necessary for the activity of serine
hydroxyl methyl transferase (SHMT),43 which catalyzes
the methylation of tetrahydrofolate. Although PLP and
MTHF were numerically lower in marasmic-kwashior-
kor compared to all other participant groups, these dif-
ferences were not statistically significant (Table 2). Nor
was homocysteine higher. Homocysteine rises when
remethylation is limiting.44 Choline, sarcosine, glycine,
and serine, which furnish labile methyl groups for the
remethylation of homocysteine, were not well differenti-
ated in kwashiorkor and marasmic-kwashiorkor, relative
to other participants (Table 2). In contrast, betaine, a
methyl donor and intracellular osmolyte, was notably
higher in kwashiorkor (P = 0¢047) and marasmic-
kwashiorkor (P < 0¢0001), relative to controls (Table 2).
One-carbon metabolism synthetic function
One-carbon metabolism’s synthetic activities decline when
one-carbon nutrient intake is deficient. For instance,
methionine deficiency causes reduced serum concentra-
tions of ADMA and cysteine, products of transmethylation
and transsulfuration respectively.45�48 In this single time
point observational study we used serum concentrations of
ADMA and cysteine as proxy measures of one-carbon
metabolism synthetic activity. ADMA was lower in kwashi-
orkor (P < 0¢0001) and marasmic-kwashiorkor
(P = 0¢00032), relative tomarasmus (Figure 2 and Table 2).
Cysteine was also lower in kwashiorkor (P < 0¢0001) and
marasmic-kwashiorkor (P < 0¢0001), relative to other par-
ticipant groups. Among all participants with edematous
malnutrition (i.e. either kwashiorkor or marasmic-kwashi-
orkor, Supplemental Figure 11), both ADMA and cysteine
were well correlated with homocysteine (P < 0¢01) and
methionine (P < 0¢01). Importantly, both ADMA and its
enantiomer, SDMA, are formed by the sequential methyla-
tion of arginine.49 However, SDMA is mainly excreted by
the kidneys. Therefore, its serum concentration tends to
increase as kidney function declines. This causes SDMA to
ADMA ratios to rise.50,51 To our knowledge, this report of
higher SDMA to ADMA ratios in kwashiorkor (P � 0¢012)
and marasmic-kwashiorkor (P < 0¢0001), relative to other
participant groups, is the first published characterization of
SDMA to ADMA ratios in edematous malnutrition.
Higher SDMA to ADMA ratios suggest that renal dysfunc-
tion is a frequent complication of kwashiorkor and maras-
mic-kwashiorkor. These observations correspond with past
reports of glomerular injury and renal dysfunction in
kwasiorkor.52�54
Transsulfuration
The transsulfuration pathway supports the transfer of
sulfur from homocysteine to numerous vital molecules.
Homocysteine is thus an essential substrate for synthe-
sis of transsulfuration pathway products, including
cysteine and glutathione (Figure 1). Homocysteine was
lower in kwashiorkor (P = 0¢034) and marasmic-kwashi-
orkor (P < 0¢0001), relative to marasmus (Figure 2,
Table 2). We did not measure glutathione in this investi-
gation, due to the logistical constraints associated with
its proper collection and preservation in the field. How-
ever, we did observe that cysteine was markedly lower
in kwashiorkor and marasmic-kwashiorkor
(P < 0¢0001). This has been reported previously.55,56

Cysteine was well correlated with homocysteine
(P < 0¢01) in both kwashiorkor and marasmic-kwashi-
orkor (Supplemental Figs. 9�11). Notably, ratios of
homocysteine to cysteine were not higher in kwashior-
kor and marasmic-kwashiorkor (Table 2). This ratio
rises when homocysteine flux through the transsulfura-
tion pathway is impaired. These observations corre-
spond with the past observation that flux of labeled
methionine through the transsulfuration pathway is
similar in kwashiorkor and marasmus.57 Unexpectedly,
we observed that cystathionine, a transsulfuration inter-
mediate, was higher in kwashiorkor (P � 0¢0019) and
marasmic-kwashiorkor (P < 0¢0001) relative to other
participants. The cause cannot be determined from
these data. Serum cystathionine rises in the setting of
SAH hydrolase deficiency and GNMT deficiency, herita-
ble syndromes of one-carbon metabolism
dysfunction,58,59 as well as during folate and cobalamin
deficiencies, nutritionally mediated conditions of one-
carbon metabolism dysfunction.60
Marasmic-kwashiorkor
The combination of nutritional edema with severe wasting
is referred to as marasmic-kwashiorkor. Separate consider-
ation of this condition is relevant because children with
marasmic-kwashiorkor tend to die more often than chil-
dren with uncomplicated marasmus or kwashiorkor with-
out wasting.61�63 We enrolled fewer participants with
marasmic-kwashiorkor (N = 43) than marasmus (N = 118),
or kwashiorkor without severe wasting (N = 94). This dis-
tribution is similar to the observations of prior studies in
the same population.63 The character of one-carbon distur-
bances in marasmic-kwashiorkor was similar to that
observed in participants with kwashiorkor without wasting
(Table 2). However, the magnitude of one-carbon distur-
bances in marasmic-kwashiorkor was generally greater.
Although children with marasmic-kwashiorkor comprised
a minority of participants, five of six confirmed deaths
occurred in this group (Table 1). The sixth death occurred
in a child who had kwashiorkor without wasting. Each
death reportedly occurred after a brief medical illness. The
precise cause of death could not be ascertained in any of
these six cases.
Metabolite associations adjusted for covariates
Logistic regression was used to assess the association of
one-carbon metabolites with the presence nutritional
www.thelancet.com Vol 75 Month January, 2022
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edema (i.e. kwashiorkor or marasmic-kwashiorkor) after
adjusting for age, sex, wasting (i.e. WHZ and MUAC),
stunting (i.e. HAZ), diarrhea, and fever. These findings
are represented in Figure 3 and Supplemental Figure 5,
which depict predictive odds ratios (ORs) and 95% CIs
associated with an increase of each metabolic parameter
from its 25th to 75th percentile (i.e. interquartile range
effect). Among those metabolites that were significantly
altered in kwashiorkor and marasmic-kwashiorkor, we
observed that methionine, homocysteine, cystathionine,
cysteine, and ADMA were consistently associated with
kwashiorkor and marasmic-kwashiorkor (P < 0¢05), in
both adjusted and unadjusted regression models.
ANOVA plots demonstrating the relative importance of
each variable during regression are located in Supple-
mental Figs. 6�8. Linear correlations between each
metabolic parameter, as well as MUAC, WHZ, and
HAZ, offered additional insights into potential associa-
tions between wasting and individual metabolic param-
eters. These univariate correlations are depicted in
Supplemental Figs. 9�16. Highlighted values reflect
correlation coefficients with unadjusted P values< 0¢01.
Discussion
The idea that kwashiorkor may result from an essential
nutrient deficiency was first proposed in 1933 by Cecily
Williams, who suggested that “some amino acid. . . defi-
ciency cannot be excluded as a cause.”12 Various theo-
ries for kwashiorkor’s pathogenesis have since been
proposed. However, none has been established.4,5 The
aim of this study was to explore the hypothesis that
kwashiorkor is a nutritional syndrome of one-carbon
metabolism dysfunction that is precipitated by inade-
quate intake of certain one-carbon nutrients. The find-
ings of this study offer insight for considering this idea.
Importantly however, the interpretation of these find-
ings is restrained by a number of limitations, particu-
larly regarding conclusions about causality. Foremost
among these is the study’s single time point cross-sec-
tional design, which does not reveal which metabolic
differences preceded the onset of different diagnoses of
malnutrition. Additional challenges stemmed from the
need to select controls who were distinguished primar-
ily by the absence of acute malnutrition. Although con-
trols were not acutely malnourished, a number of those
who were recruited for this convenience sample were
stunted or had acute health complaints. Another chal-
lenge was posed by the need to deliver prompt care.
This necessarily prevented us from collecting fasting
blood samples from untreated participants. Doing so
would have required a dangerous and unethical delay of
therapy. We are mindful that these limitations may
have affected the observations of this study, as individ-
ual circulating amino acids and their metabolites are
influenced by stunting, meals, and infections, as well as
www.thelancet.com Vol 75 Month January, 2022
their inherent circadian periodicities.29,64�68 The
assessment of circulating metabolites in malnutrition is
also complicated by the simultaneous occurrence of
edema and wasting. This overlap leaves open the ques-
tion of whether observed metabolic differences resulted
from wasting or the underlying disturbances that pre-
cipitate edema. Additionally, in severe edema, both
MUAC and weight may be positively skewed to the
extent that marasmic-kwashiorkor is missed. Similarly,
changes in body water partitioning in kwashiorkor may
accentuate reductions of some molecules while mask-
ing accumulations of others. These challenges are com-
mon to any assessment of circulating metabolites in
kwashiorkor. Nevertheless, despite these limitations,
this exploration of one-carbon metabolites in malnour-
ished children contributes testable hypotheses regard-
ing the pathogenesis of kwashiorkor.

Most of what is known about one-carbon metabolism
in acute malnutrition was learned in Jamaica. There it
was discovered that during treatment kwashiorkor and
marasmic-kwashiorkor are distinguished by one-carbon
disturbances, including reduced transmethylation and
slower methionine flux.57,69�72 Elsewhere it has been
reported that kwashiorkor is differentiated from maras-
mus by lower circulating concentrations of molecules
that depend on one-carbon metabolism for their genera-
tion, such as phosphatidylcholine and acylcarnitine spe-
cies.30 To date however, there has been no focused
comparison of one-carbon metabolites in kwashiorkor
and marasmus before treatment. The central process of
one-carbon metabolism is the methionine cycle. This
cycle sustains the synthesis of numerous transmethyla-
tion and transsulfuration products, many of which are
critical for homeostasis (Figure 1). To assess the methio-
nine cycle we measured its four intermediates: methio-
nine, SAMe, SAH, and homocysteine (Figure 1). The
observation that methionine was lower in kwashiorkor
(P < 0¢0001) and marasmic-kwashiorkor (P < 0¢0001),
relative to marasmus, corresponds with previous
reports.30,69,73�75 Unexpectedly, we observed that
serum concentrations of methionine’s adenosylated
analogues, SAMe and SAH, were not lower in kwashior-
kor and marasmic-kwashiorkor (Table 2). Various
causes may be considered. For instance, in the case of
marasmic-kwashiorkor, it is hypothesized that higher
serum concentrations of SAMe and SAH may reflect
compensatory suppressions of GNMT and SAH hydro-
lase. These one-carbon regulatory enzymes are down-
regulated in animals that are subjected to one-carbon
nutrient deficient diets.42,76 Looking beyond the methi-
onine cycle, we compared one-carbon synthetic activity
across participant groups by assessing cysteine and
ADMA, stable outputs of transsulfuration and transme-
thylation respectively (Figure 1). Both of these func-
tional outputs were lower in kwashiorkor (including
marasmic-kwashiorkor), relative to marasmus
(Figure 2). Together these observations suggest that
11
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one-carbon metabolism is relatively preserved in maras-
mus, whereas it is relatively dysfunctional in kwashior-
kor. One-carbon metabolism dysfunction appears to be
a distinguishing feature of kwashiorkor. What are the
likely precipitants of one-carbon metabolism dysfunction in
kwashiorkor?

Evidence of one-carbon metabolism dysfunction
increased in a step-wise fashion across participant
groups. It was not evident in controls and MAM, who
were poorly differentiated from each other. Certain one-
carbon differences were apparent in marasmus, relative
to controls. These disturbances became more pro-
nounced in kwashiorkor without severe wasting. How-
ever, the greatest one-carbon disturbances were
observed in marasmic-kwashiorkor. Overall, this pattern
is consistent with the interpretation that one-carbon
metabolism dysfunction is a hallmark disturbance of
edematous malnutrition (i.e. kwashiorkor and maras-
mic-kwashiorkor), but not marasmus. We also consid-
ered the possibility that serum concentrations of one-
carbon metabolites are influenced by malnutrition or
acute illness. To do so, we compared each one-carbon
parameter in a multivariate regression model, which
was adjusted for MUAC, WHZ, HAZ, age, sex, fever,
and diarrhea. We also compared unadjusted univariate
correlations, in order to assess the relationship of indi-
vidual one-carbon metabolites with continuous meas-
ures of nutritional status (i.e. MUAC, WHZ, and HAZ),
across participant groups (Supplemental Figs. 9�16).
The observations of these multivariate and univariate
correlative analyses suggest that one-carbon disturban-
ces in malnutrition are not primarily attributable to age,
sex, acute illness, stunting, or wasting. Rather, evidence
of one-carbon metabolism dysfunction was most associ-
ated with lower serum concentration of methionine and
its demethylated analogue, homocysteine.

Efficient remethylation of homocysteine to methio-
nine is critical for one-carbon homeostasis (Figure 1).
Nutrients that support remethylation limit the severity
of the disturbances that stem from remethylation dys-
function, including DNA hypomethylation and phos-
phatidylcholine disturbances.77�79 Such disturbances
are prominent in kwashiorkor (including marasmic-
kwashiorkor).30,80 We therefore considered the possibil-
ity that one-carbon metabolism dysfunction in kwashi-
orkor results from impaired remethylation of
homocysteine. Remethylation is supported by methyl
donors and certain vitamin co-factors. However, mea-
sured serum concentrations of methyl donors (choline,
glycine, sarcosine, and serine) and vitamin co-factors
that support remethylation (PLP and MTHF), were not
reduced in kwashiorkor or marasmic-kwashiorkor
(Table 2). Neither were ratios of homocysteine to methi-
onine, nor homocysteine itself, higher in kwashiorkor
and marasmic-kwashiorkor. These two inverse indica-
tors of remethylation function rise when remethylation
is limiting.81 Overall, these observations do not suggest
that impaired remethylation of homocysteine to methio-
nine is the main driver one-carbon metabolism dysfunc-
tion in kwashiorkor and marasmic-kwashiorkor. ADMA
and cysteine, stable outputs of one-carbon metabolism,
were well correlated with both methionine and homo-
cysteine in kwashiorkor and marasmic-kwashiorkor
(Supplemental Figure 11). Likewise, edema was corre-
lated best with reductions of methionine and two of its
metabolites, homocysteine and cysteine, in a multivari-
ate regression model (Figure 3). Together, these obser-
vations are consistent with the hypothesis that
methionine deficiency is essential for the pathogenesis
one-carbon metabolism dysfunction and edema in
kwashiorkor.

It is established that kwashiorkor is distinguished
from marasmus by lower circulating concentrations of
cysteine and glutathione.100 Both of these transsulfura-
tion products have antioxidant properties.84 However, it
is not known whether these antioxidants are lower in
kwashiorkor because of excess utilization or inadequate
synthesis. When kwashiorkor’s hallmark redox distur-
bances were first described, it was proposed that envi-
ronmental ‘oxidative stress’ may drive excess use of
cysteine and glutathione, thereby precipitating the
kwashiorkor syndrome.101 However, follow-up clinical
studies have not provided consistent support for this
theory.85,86 Homocysteine is the source of the sulfur
atoms that are present in cysteine and glutathione. As
such, homocysteine is an essential substrate for the
transsulfuration pathway. Like others, we observed that
cysteine is lower in kwashiorkor (including marasmic-
kwashiorkor) (Figure 2).56,82 More uniquely, we also
observed that homocysteine is lower in kwashiorkor. To
our knowledge this is the first published comparison of
homocysteine status in malnourished children before
treatment. Homocysteine was well correlated with both
cysteine and methionine (P < 0.01) in kwashiorkor
(including marasmic-kwashiorkor). The requirement
for homocysteine is satisfied by its methylated precur-
sor, methionine.87 These observations are consistent
with the hypothesis that redox disturbances in kwashi-
orkor result from homocysteine insufficiency, which is
precipitated by methionine deficiency.

A unifying molecular driver for kwashiorkor’s vari-
ous organ lesions has not yet been identified. However,
it is notable that kwashiorkor bears a striking resem-
blance to the pattern of organ and molecular perturba-
tions precipitated by experimental one-carbon nutrient
deficient diets in animals (Table 3). This phenotypic
overlap suggests that nutritionally mediated systemic
one-carbon metabolism dysfunction may drive the path-
ogenesis of kwashiorkor. A full consideration of all the
sub-cellular mechanisms implicated by this concept
falls beyond the scope of this discussion. Two are pre-
sented briefly here: fatty liver of undernutrition and
edema. Children with kwashiorkor have fatty livers.
This prominent visceral lesion persists even when
www.thelancet.com Vol 75 Month January, 2022
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accompanied by severe wasting.88,124 Why do skinny chil-
dren have fatty livers? Notably, assembly of the main
vehicle for lipid export from the liver, very low-density
lipoprotein (VLDL), requires phosphatidylcholine that is
synthesized by phosphatidylethanolamine methyltrans-
ferase (PEMT), an enzyme that is prominently
expressed in the liver.125,126 PEMT activity is sustained
by methyl groups, particularly those derived from cho-
line.127 PEMT dysfunction leads to fatty liver disease in
humans.128�130 Current observations and the past dem-
onstration of reduced transmethylation activity in
kwashiorkor57 support the hypothesis that PEMT activ-
ity is suppressed in kwashiorkor, a disturbance that is
expected to increases liver steatosis. It is hypothesized
that nutritionally mediated suppression of PEMT is a
critical driver in the pathogenesis of the characteristic
fatty liver of undernutrition, which distinguishes kwash-
iorkor from marasmus. PEMT status in kwashiorkor
and marasmus has not yet been characterized. The
pathogenesis of edema in kwashiorkor is also
uncertain.4,5 The hypothesis that edema in malnutrition
is caused directly by protein deficiency, which sup-
presses plasma protein synthesis and hence intravascu-
lar oncotic pressure, was introduced more than a ninety
years ago.131 Although this idea became popular, a num-
ber of subsequent observations conflict with this
straight forward hypothesis. For instance, plasma con-
centrations of albumin, the leading constituent of intra-
vascular oncotic pressure, are poorly correlated with the
onset, resolution, and severity of edema in
malnutritrion.20,132 Nor is albumin synthesis lower in
kwashiorkor relative to marasmus.17 However, despite
these inconsistencies, albumin and oncotic disturban-
ces are not entirely exonerated. Plasma albumin is often
lower in kwashiorkor.112 Lower albumin is often, but
not always, associated with edema.133,134 The pathogene-
sis of edema in kwashiorkor may have more to do with
albumin’s redistribution into the interstitium than an
absolute deficiency. Modern microanatomical studies of
capillary ultrastructure suggest that edema is often the
result of increased microvascular permeability to pro-
tein macromolecules, including albumin.135,136 Plasma
proteins are normally retained within the vascular space
by the endothelial glycocalyx. This negatively charged
sieve like structure lines the luminal surface of blood
vessels. Endothelial glycocalyx damage allows plasma
proteins to escape from the microvasculature into the
interstitium.137,138 The subsequent leveling of protein
concentration gradients between the intravascular and
interstitial environments permits fluid to flow from the
vascular space into the interstitium.139 Golden has pro-
posed that endothelial glycocalyx damage may contrib-
ute to the pathogenesis of edema in kwashiorkor by
allowing plasma proteins, including albumin, to leak
into the interstitium.140 Close consideration of this idea
is warranted by various strands of evidence. Endothelial
glycocalyx damage leads to tissue edema in a number of
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conditions, including sepsis, myocardial ischemia, and
COVID-19 associated lung injury.141�143 Importantly,
the structural integrity of the endothelial glycocalyx is
supported by sulfated glycosaminoglycans
(GAGs),144,145 which are reduced in kwashiorkor.146

Animal models of methionine deficiency deplete sul-
fated GAGs,109 the synthesis of which depends on free
sulfur derived from methionine.147 Does methionine defi-
ciency contribute to the pathogenesis of edema in kwashior-
kor by limiting sulfated GAG synthesis, thereby increasing
endothelial permeability to plasma proteins such as albu-
min, and hence fluid escape from small vessels into the inter-
stitium?More study is needed on this topic.

Unexpectedly, we observed that serum betaine was
markedly higher in kwashiorkor and marasmic-kwashi-
orkor. The cause is not apparent from these data. Die-
tary differences are not implicated, as participants
reported consuming similar maize-based diets. A por-
tion of the betaine pool is derived from the oxidation of
choline. However, choline was not notably lower in
kwashiorkor or marasmic-kwashiorkor. This suggests
that higher betaine in kwashiorkor is not likely to be
due to increased oxidation of dietary choline alone. Beta-
ine has two roles. It is a methyl donor and a ubiquitous
intracellular osmolyte.148 Higher serum betaine may
reflect the release of intracellular betaine. Regardless of
the cause, higher extracellular betaine in kwashiorkor
has the potential to alter osmolar gradients. This is pre-
dicted to favor the accumulation of extracellular fluid at
the expense of intracellular fluid, as occurs in
kwashiorkor.149,150 The possibility that osmolar distur-
bances contribute to the pathogenesis of edema in
kwashiorkor warrants further study.

One-carbon metabolism may offer mechanistic
insight into kwashiorkor’s risk factors. Kwashiorkor’s
only established universal risk factor is consumption of
monotonous high carbohydrate diets that provide low-
quality protein.6,7 Such diets are often deficient in one-
carbon nutrients.151,152 However, only a minority of chil-
dren who consume these diets get kwashiorkor. Risk for
kwashiorkor is multifactorial. Certain environmental
determinants render some children more vulnerable to
the ill-effects of their meager diets. Kwashiorkor’s non-
universal second hits include gut microbiota
disturbances,21,153 acute infections,154 antenatal meta-
bolic programming,155,156 aflatoxin exposure,157,158 and
cyanogens in cassava.159 Polymorphisms in genes for
enzymes that regulate one-carbon metabolism may
impart additional risk.160,161 A shared molecular focus
that is common to each of these risk factors has not
been identified. It is intriguing however that
kwashiorkor’s known risk factors are each associated
with one-carbon disturbances in other disease
states.156,162�165 One-carbon stressors are expected to
result in more frequent dysfunction in children who
consume limited quantities of one-carbon nutrients. It
is hypothesized that kwashiorkor’s environmental
13
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determinants increase one-carbon stress during the run-
up before the acute syndrome by either increasing
demand for specific one-carbon nutrients or by reducing
their absorption from the diet. Importantly, certain one-
carbon nutrient deficiencies may be more detrimental
than others. The observations of this study support the
possibility that methionine deficiency is essential for
the pathogenesis of one-carbon metabolism dysfunction
in kwashiorkor. This hypothesis is succinct but not sim-
ple, since demand for methionine and its metabolism
are influenced by various one-carbon nutrients, which
are in turn influenced by genetics,166 antenatal pro-
gramming,156 infections,167 dietary toxins,162 and the
gut microbiome.163,168 One-carbon metabolism appears
to offer a molecular framework for gathering
kwashiorkor’s genetic determinants, environmental risk
factors, underlying biochemical disturbances, and organ
level lesions into an integrated mechanistic disease
model. Prospective studies are needed. In due course it
may become established that kwashiorkor results from
the accretion of various one-carbon stressors, the com-
bined detriment of which precipitates methionine defi-
ciency and the ensuing systemic one-carbon
metabolism dysfunction that propagates the syndrome’s
unique pathophysiology. Such a discovery would illumi-
nate the pathogenesis of kwashiorkor, while also guid-
ing the development of better strategies for its
alleviation.

These observations offer guidance for future
research. For instance, methionine requirements for
weaned children are not well characterized. One-carbon
nutrient cross-talk influences demand for methionine
in mammals.104,169,170 The primary human example of
this phenomenon is the methionine sparing effect of
cysteine.171 This is basis for Roediger’s hypothesis that
kwashiorkor results from inadequate intake of both sul-
fur amino acids, methionine and cysteine.172 Methyl
groups may also influence methionine requirements.173

For example, in animals it has been established that
methionine is spared by the methyl donor chol-
ine.174�177 This effect is accentuated during methionine
restriction.169 We observed that methionine was well
correlated with choline across participant groups (Sup-
plemental Figs. 9�16), all of whom reported consum-
ing maize based diets, which provide little
methionine.151,152 This observation is consistent with
the concept that choline may spare methionine in chil-
dren. This hypothesis is founded on choline’s support
of remethylation in humans,178 which is expected to be
more relevant in children who consume methionine
restricted diets. Specifically, choline’s support of reme-
thylation is expected to expand the quantity of methio-
nine that is available for protein incorporation and
transsulfuration by shrinking the quantity needed to
sustain transmethylation (Figure 1). In addition to
directly supporting homocysteine remethylation,
methyl donors also interact with the four B vitamins
that sustain one-carbon metabolism: pyridoxine, folate,
cobalamin, and riboflavin. Established human examples
of cross-talk between these B vitamins and methyl
donors include the sparing of cobalamin by choline,179

sparing of betaine by folate,180 and seasonal switching
between folate and betaine dependent remethylation
pathways.79 The variable status of cobalamin, which is
sometimes reduced in kwashiorkor, has been well
described.181�184 However, a more comprehensive
understanding of the interactions between B-vitamins,
methyl donors, and methionine is needed. The likeli-
hood that one-carbon nutrient cross-talk influences
methionine requirements for undernourished children
raises practical questions. For example: do methyl donors
spare methionine in children who consume little methio-
nine? If so, fortifying meager diets with methyl donors
may reduce risk for kwashiorkor. This possibility is sug-
gested by the fact that supplementation with choline, a
potent source of methyl groups, prevents two of
kwashiorkor’s distinguishing features in animal models
of undernutrition, liver steatosis and edema.22,185�188

One-carbon metabolism disturbances may also partici-
pate in the pathogenesis of kwashiorkor’s characteristic
skin changes. The hypothesis that methionine defi-
ciency contributes to the pathogenesis of skin disturban-
ces in kwashiorkor by limiting the synthesis of
epidermal sulfated glycosaminoglycans172 has been
reviewed elsewhere.189 A topic with clinical immediacy
is the need to develop a better understanding of the
observed association between one-carbon dysfunction
and mortality. Immune dysfunction in malnutrition is
associated with increased risk for invasive bacterial
infections190�192 and death.193,194 Five of the six con-
firmed deaths in this study occurred in children with
marasmic-kwashiorkor. This observation corresponds
with the findings of larger studies, which consistently
demonstrate higher mortality in marasmic-
kwashiorkor.61,63 One-carbon metabolism supports
multiple elements of the immune system, including T
cell proliferation, antibody production, and gut barrier
integrity.48,92,195�197 Our observation that more severe
one-carbon disturbances in marasmic-kwashiorkor
were associated with a trend of higher mortality is con-
sistent with the hypothesis that one-carbon metabolism
dysfunction increases risk for immune dysfunction in
malnutrition.

In summary, the findings of this study are relevant
for considering the pathogenesis of kwashiorkor, a
poorly understood and often lethal syndrome of child-
hood malnutrition. We observed that kwashiorkor is dis-
tinguished from marasmus by numerous one-carbon
metabolite differences. The character of these differen-
ces suggests that kwashiorkor is a nutritional syndrome
of one-carbon metabolism dysfunction. One-carbon
metabolism appears to offer a molecular grammar for
harmonizing kwashiorkor’s risk factors and disturban-
ces into a unified disease model. The mechanistic
www.thelancet.com Vol 75 Month January, 2022
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complexities implied by this concept are balanced by a
simple fact. Kwashiorkor only happens to children who
eat meager diets. Cecily Williams was not wrong:
kwashiorkor is fundamentally a problem of inadequate
nutrition.198 Inadequate intake of certain one-carbon
nutrients may increase risk for kwashiorkor. The find-
ings of this study implicate methionine deficiency in
particular. Clinical trials are needed to test the hypothe-
sis that kwashiorkor can be prevented by fortifying
monotonous cereal-based diets with methionine, in
combination with nutrients that support efficient methi-
onine use, such as choline. Practical implications
abound for the millions of children who are at risk for
kwashiorkor and its often-lethal consequences.
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