
ORIGINAL RESEARCH
published: 22 July 2016

doi: 10.3389/fnins.2016.00304

Frontiers in Neuroscience | www.frontiersin.org 1 July 2016 | Volume 10 | Article 304

Edited by:

Riccarda Granata,

University of Turin, Italy

Reviewed by:

Maria Vrontakis,

University of Manitoba, Canada

Richard Paul Ebstein,

Emiritus Psychology The Hebrew

University of Jerusalem, Singapore

*Correspondence:

Haruhiro Higashida

haruhiro@med.kanazawa-u.ac.jp

†
Present Address:

Jing Zhong,

Physiological Department, Guangxi

University of Chinese Medicine,

Nanning, China;

Mingkun Liang,

China Neurology Department, Ruikang

Hospital Affiliated to Guangxi

University of Chinese Medicine,

Nanning, China

‡
These authors have contributed

equally to this work.

Specialty section:

This article was submitted to

Neuroendocrine Science,

a section of the journal

Frontiers in Neuroscience

Received: 12 April 2016

Accepted: 16 June 2016

Published: 22 July 2016

Citation:

Zhong J, Amina S, Liang M, Akther S,

Yuhi T, Nishimura T, Tsuji C, Tsuji T,

Liu H-X, Hashii M, Furuhara K,

Yokoyama S, Yamamoto Y,

Okamoto H, Zhao YJ, Lee HC,

Tominaga M, Lopatina O and

Higashida H (2016) Cyclic

ADP-Ribose and Heat Regulate

Oxytocin Release via CD38 and

TRPM2 in the Hypothalamus during

Social or Psychological Stress in Mice.

Front. Neurosci. 10:304.

doi: 10.3389/fnins.2016.00304

Cyclic ADP-Ribose and Heat
Regulate Oxytocin Release via CD38
and TRPM2 in the Hypothalamus
during Social or Psychological Stress
in Mice
Jing Zhong 1†‡, Sarwat Amina 1‡, Mingkun Liang 1 †, Shirin Akther 1, Teruko Yuhi 1,

Tomoko Nishimura 1, Chiharu Tsuji 1, Takahiro Tsuji 1, Hong-Xiang Liu 1, Minako Hashii 1,

Kazumi Furuhara 1, Shigeru Yokoyama 1, Yasuhiko Yamamoto 2, Hiroshi Okamoto 2, 3,

Yong Juan Zhao 4, Hon Cheung Lee 4, Makoto Tominaga 5, Olga Lopatina 1, 6 and

Haruhiro Higashida 1, 6*

1Department of Basic Research on Social Recognition and Memory, Research Centre for Child Mental Development,

Kanazawa University, Kanazawa, Japan, 2Department of Biochemistry and Molecular Vascular Biology, Kanazawa University

Graduate School of Medical Sciences, Kanazawa, Japan, 3Department of Biochemistry, Tohoku University Graduate School

of Medicine, Sendai, Japan, 4 School of Chemical Biology and Biotechnology, Peking University Graduate School, Shenzhen,

China, 5Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences),

National Institutes of Natural Sciences, Okazaki, Japan, 6 Research Institute of Molecular Medicine and Pathobiochemistry,

Krasnoyarsk State Medical University, Krasnoyarsk, Russia

Hypothalamic oxytocin (OT) is released into the brain by cyclic ADP-ribose (cADPR)

with or without depolarizing stimulation. Previously, we showed that the intracellular

free calcium concentration ([Ca2+]i) that seems to trigger OT release can be elevated

by β-NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these β-NAD+

metabolites activate warm-sensitive TRPM2 cation channels, when the incubation

temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However,

it has not been determined whether OT release is facilitated by heat in vitro or

hyperthermia in vivo in combination with cADPR. Furthermore, it has not been

examined whether CD38 and TRPM2 exert their functions on OT release during

stress or stress-induced hyperthermia in relation to the anxiolytic roles and social

behaviors of OT under stress conditions. Here, we report that OT release from

the isolated hypothalami of male mice in culture was enhanced by extracellular

application of cADPR or increasing the incubation temperature from 35◦C to 38.5◦C,

and simultaneous stimulation showed a greater effect. This release was inhibited by

a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor.

The facilitated release by heat and cADPR was suppressed in the hypothalamus

isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the

course of these experiments, we noted that OT release differed markedly between

individual mice under stress with group housing. That is, when male mice received

cage-switch stress and eliminated due to their social subclass, significantly higher

levels of OT release were found in subordinates compared with ordinates. In mice

exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF) OT level

increased transiently at 5 min after exposure, and the rectal temperature also increased
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from 36.6◦C to 37.8◦C. OT levels in the CSF of mice with lipopolysaccharide-induced

fever (+0.8◦C) were higher than those of control mice. The TRPM2 mRNA levels and

immunoreactivities increased in the subordinate group with cage-switch stress. These

results showed that cADPR/CD38 and heat/TRPM2 are co-regulators of OT secretion

and suggested that CD38 and TRPM2 are potential therapeutic targets for OT release in

psychiatric diseases caused by social stress.

Keywords: oxytocin, secretion, hyperthermia, NAD, cyclic ADP-ribose, stress, autism

INTRODUCTION

Oxytocin (OT) is preferentially released in response to emotional,
physical, and pharmacological stresses (Ebner et al., 2005;
Brunton and Russell, 2008; Neumann and Landgraf, 2012;
Hashimoto et al., 2014; Kirsch, 2015; Leng et al., 2015; Neumann
and Slattery, 2016; Shamay-Tsoory and Abu-Akel, 2016). OT
can exert profound anxiolytic and antistress effects in the
brain and modulates plasma adrenocorticotropic hormone and
corticosterone levels (Quirin et al., 2011; Feldman et al., 2016;
Neumann and Slattery, 2016). Therefore, in the central nervous
system, OT is considered to act as an anxiolytic factor against
stress (Onaka et al., 2012). However, the molecular mechanisms
underlying how brain OT is released during stress and the time
sequence of OT release after stressful stimulation are unclear.

There have been a number of previous reports of the
temperature sensitivity of OT release. It has been shown that
endotoxin and interleukin-1 beta induce fever and increase
plasma OT levels in rabbits (Hansen and Christensen, 1992),
and that OT is released when the body temperature is increased
by prostaglandin in rats (Landgraf et al., 1990). OT is released
in a nitric oxide-dependent manner during endotoxemic shock
(Stabile et al., 2010) or lipopolysaccharide (LPS) treatment
(Borges and da Rocha, 2006) in rats. Thus, the involvement of
OT in inflammatory reactions and fever is well documented
(Landgraf et al., 1990; Hansen and Christensen, 1992; Butterweck
et al., 2003; Borges and da Rocha, 2006), but the molecular
mechanisms underlying how brain OT is released during
hyperthermia are not clear.

CD38, a type II transmembrane glycoprotein with ADP-
ribosyl cyclase activity (Jin et al., 2007; Zhao et al., 2012; Kim,
2014; Okamoto et al., 2014), is expressed at high levels in
both the mouse and human hypothalamus (Jin et al., 2007;
Munesue et al., 2010). The hypothalamic ADP-ribosyl cyclase
component of CD38 is activated by OT receptor stimulation,
which facilitates the catalytic activity of the cyclic ADP-ribose
(cADPR) from β-NAD+ (Lopatina et al., 2010). cADPR induces
Ca2+ release through ryanodine Ca2+ release channels from
cADPR-sensitive intracellular Ca2+ pools, thereby increasing
the intracellular free Ca2+ concentration ([Ca2+]i). Such CD38-
dependent and cADPR-sensitive [Ca2+]i increases likely facilitate
OT secretion into the brain mainly from dendrites or axons even
in the absence of depolarization in oxytocinergic neurons (Jin
et al., 2007; Higashida, 2016). This release seems to be sensitive
to β-NAD+ and ADPR, but less sensitive to nicotinic acid
adenine diphosphate (NAADP) (Jin et al., 2007), suggesting the

involvement of β-NAD+ metabolites but not NADHmetabolites
in the CD38-dependent manner.

In contrast, it is well known that β-NAD+ metabolites target
several ion channels in warmth-sensitive neurons in the preoptic
area or anterior hypothalamus, and play an important role in
thermoregulation (Nakayama, 1985; Tominaga and Caterina,
2004; Morrison and Nakamura, 2011). One such channel is the
transient receptor potential melastatin 2 (TRPM2, previously
known as TRPC7 or LTRPC2) (Tominaga and Caterina, 2004;
Uchida and Tominaga, 2011; Baez et al., 2014; Faouzi and Penner,
2014; Kashio and Tominaga, 2015). TRPM2 is a member of
the warmth-sensing family, and the activation of TRPM2 non-
specific cation channels results in Ca2+ influx in response to
warm temperatures from 34◦C to 40◦C, which are within the
body temperature range of mammals (Perraud et al., 2001;
Uchida and Tominaga, 2011). TRPM2 channels can be activated
by β-NAD+, ADP-ribose (ADPR), and cADPR (Perraud et al.,
2001; Uchida and Tominaga, 2011; Baez et al., 2014). Therefore,
we hypothesized that OT release is potentially facilitated by
activation of TRPM2 channels. This is feasible, because a type
of heat sensitivity similar to that found in TRPM2 or [Ca2+]i
sensitivity in cADPR was reported previously during insulin
secretion from pancreatic β cells (Takasawa et al., 1993; Togashi
et al., 2006; Uchida et al., 2011).

To assess this possibility, we measured [Ca2+]i in acutely
cultured hypothalamic cells, and showed that the increases
in [Ca2+]i in hypothalamic cells are cADPR- and ADPR-
dependent and warmth-sensitive in a manner that is susceptible
to 2-aminoethoxydiphenyl borate (2APB), a nonspecific TRPM2
Ca2+ influx channel inhibitor (Liu et al., 2012). These findings
suggested that the TRPM2 cation channel and CD38 are
simultaneously involved in heat-potentiated and β-NAD+

metabolite-sensitive [Ca2+]i increases in oxytocinergic neurons
(Amina et al., 2010; Liu et al., 2012). Next, we measured OT
release, as no previous studies examined whether OT secretion
is dependent on TRPM2 channels.

In the present study, we examined whether CD38 and TRPM2
are involved in triggering OT release from the acutely cultured
mouse hypothalamus by heat stimulation and external cADPR
application with or without a TRPM2 channel or ryanodine
receptor inhibitor in wild-type and CD38 knockout mice. We
also examined the time course of changes in OT concentrations
in the incubation medium at 3-min intervals in one cultured
hypothalamus from each group-housed wild-type male mouse
of the ICR strain. The time courses of OT release with the
two stimuli were also examined in the hypothalami from
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CD38- and TRPM2-knockdown mice transfected with specific
siRNAs.

Initially, we expected that there would be significant
increases with these cofactors equally in all mice. Unexpectedly,
we detected responsive and non-responsive hypothalami to
incubation with 100 µM cADPR and a shift in incubation
temperature from 35◦C to 38.5◦C. In the majority of mice
examined (69.6%, N = 46), the OT level did not increase
markedly. During these experiments, we noted that OT secretion
varied markedly among individuals in group-housed mice with
or without injuries, suggesting that maintaining male mice in
the group house causes strong stress and forms social hierarchy
from ordinate to subordinate mice (Long et al., 1990; Rasmussen
et al., 2011). To obtainmore direct evidence regarding differential
OT release in the same two classes of stress-treated mice, we
performed brain microperfusion experiments and measured OT
concentrations in microperfusates (extracellular fluids) from the
hypothalamus.

To clarify the relationship between OT release and heat
under stress conditions in vivo, we used two different stress
conditions that are known to elevate body temperature: the
open field test (anxiety stress due to new environment; LeMay
et al., 1990; Lopatina et al., 2014); and the lipopolysaccharide
(LPS)-induced fever model (Yirmiya et al., 2001). We measured
rectal temperature and OT concentrations in the cerebrospinal
fluid (CSF) in both models. Finally, to explain facilitated OT
release in subordinate mice with social stress at the molecular
level, we examined CD38 and TRPM2 expression levels in the
hypothalamus bymeasuringmRNA levels and CD38 and TRPM2
immunoreactivities.

Although these experiments began almost 8 years ago, the
physiological relevance and importance of OT release facilitated
by hyperthermia and stress has not been clarified. However,
Norton (2014) reported that a single dose of suramin, a
century-old drug for African sleeping sickness, eliminated autism
symptoms in adult mice with an experimental form of the
disorder (Naviaux et al., 2015), and in 2007 it was reported that
83% of children with autism spectrum disorders (ASDs) showed
temporary improvement during high fever (Curran et al., 2007),
prompting us to complete our experiments. Here, we discuss
our findings regarding hyperthermia-induced OT release in the
context of clinical case reports of behavioral improvement in
children with ASDs associated with fever (Curran et al., 2007;
Good, 2011, 2013; Megremi, 2013; Naviaux et al., 2015).

MATERIALS AND METHODS

cADPR used was purified as described by Lee et al.
(1997). ADPR, 8-bromo-cADPR, β-NAD+, ryanodine, LPS,
2-aminoethoxydiphenyl borate (2-APB), and OT were purchased
from Sigma Chemical Co. (St. Louis, MO, USA). Taq polymerase
was obtained from Takara Biomedicals (Otsu, Japan).

Mice
Slc:ICR (CD-10) outbred male mice (10–12 weeks old, 30–35 g
body weight) were obtained from Japan SLC Inc. (Hamamatsu,
Japan) via a local distributor (Sankyo Laboratory Service

Corporation, Toyama, Japan). In over half of the experiments, the
offspring of ICRmice were bred in our laboratory colony, weaned
at 25–30 days of age, and housed in same-sex groups of 3–5
animals. In general, 4–5males were kept in one cage in the animal
center under standard conditions (24◦C; 12/12-h light/dark cycle,
with lights on at 8:45 a.m.) with food and water ad libitum. CD38
KO mice were maintained as described previously (Kato et al.,
1999; Jin et al., 2007).

To obtain mice with local CD38 and TRPM2 knockdown, the
mice were anesthetized with pentobarbitone sodium (65 mg/kg
intraperitoneally, diluted 1:10 in sterile saline) and covered with
a cotton cloth to maintain normal body temperature in the
surgery room at 25◦C. The mice were placed securely in a
stereotaxic apparatus (Narishige Instrument Inc., Tokyo, Japan)
where the skull level was between bregma and lambda. The
stereotaxic coordinates were determined from the standard atlas
of the mouse brain reported by Franklin and Paxinos (2008),
and they were set for the third ventricle: LR 0mm, AP 0.7mm,
DV 4.2mm from bregma. Next, 1.0 × 106 infectious units of
virus (IFU) containing CD38 shRNA (m) lentiviral particles (sc-
37246-v, Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) or
TRPM2 shRNA (m) lentiviral particles (SC-42675-v, Santa Cruz
Biotechnology Inc.) were dissolved in 200µl Dulbecco’s modified
Eagle’s mediumwith 25mMHEPES, pH 7.3. The shRNA solution
(5 µl) was microinjected into the third ventricle at a perfusion
rate of 0.2 µl/min for 25 min with an automated injector and the
needle was left for an additional 10min before it was withdrawn.
The mice were used 2 weeks after recovery and effective infection
with lentiviruses.

All of the animal experiments were conducted in accordance
with the Fundamental Guidelines for Proper Conduct of
Animal Experiment and Related Activities in Academic Research
Institutions under the jurisdiction of the Ministry of Education,
Culture, Sports, Science and Technology of Japan, and they
were approved by the Committee on Animal Experimentation of
Kanazawa University.

Social Dominance Tube Test and Stress
Paradigm
The tube test apparatus comprised a 30-cm, smooth, transparent
acrylic tube with an internal diameter of 3.5cm. Two mice
were positioned at opposite ends of the tube and released
simultaneously. Losers were the animals that retreated from the
tube, where a full retreat was determined by the absence of
any paws within the tube. Next, the two mice were paired and
housed together. The social range determined on the first day
was maintained or strengthened by psychological stress with
a paradigm known as cage-switch stress (Long et al., 1990;
Rasmussen et al., 2011). This stress was given by placing mice
in an empty clean cage every day at around 9:30 a.m. The
rank was unchanged after 4 days. Exposure to the olfactory and
visual stimuli associated with this new environment caused a
temperature elevation of ∼1◦C (from 36.1 ± 0.2◦C on the first
day to 37.1 ± 0.4◦C after 4 days, N = 5, P < 0.01, two-tailed
Student’s t-test) in subordinate mice but there was no increase in
ordinate mice (from 36.4± 0.2◦C to 36.3± 0.4◦C, N = 5).
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OT Release from the Hypothalamus
CD38+/+, CD38−/−, or CD38, and TRPM2 knockdown mice
were anesthetized with pentobarbitone sodium at a dose of 50
mg/kg. One whole hypothalamus was obtained and placed in
a 24 multi-well dish plate with 0.4 ml normal Locke’s solution
containing (in mM): NaCl, 140; KCl, 5; MgCl2, 1.2; CaCl2, 2.2;
glucose, 10; HEPES, 10; bovine serum albumin (BSA), 0.01%
adjusted to pH 7.25 with Tris-HCl in a water bath at 35◦C. The
incubation medium was replaced 10 times every 3 min. After the
11th replacement, the aliquots were retained following a 3-min
incubation with the hypothalamus. cADPR was applied to the
medium from the 12th replacement. From the 14th replacement,
the temperature was shifted to 38.5◦C. In addition, 8-bromo-
cADPR or 2-APB was applied from the 10th replacement and
aliquots were retained from the 8th replacement. Alternatively,
the temperature shift was applied from the 11th replacement and
cADPR was applied to the medium from the 14th replacement.
After 12 extensive washes, OT levels in the incubation medium
were almost constant from the 12th to 18th wash; at the 18th
replacement, the level was 1.04 ± 0.11-fold that seen at the 12th
replacement (N = 5).

Enzyme Immunoassay for OT
The OT immunoreactivity levels were quantified using an OT
EIA kit (Assay Design, Ann Arbor, MI and Enzo Life Sciences,
NY, USA) without pretreatment, as described previously (Jin
et al., 2007). The CSF samples (5 µl) were thawed and diluted
1:20 in assay buffer. The plasma samples (100 µl) were thawed
on ice and assayed without dilution by the Assay Design’s kit and
with 1:20 dilution by the Enzo’s kit. The OT assay had a sensitivity
of 5 pg/ml and the inter- and intra-assay coefficients of variation
were <15%.

Microperfusion
To implant themicroperfusion probe, themice were anesthetized
via a subcutaneous injection of ketamine. The head was fixed
in a stereotactic frame (Narishige, Tokyo, Japan) and the mouse
was prepared for surgery by shaving its head and disinfecting the
skin with 70% ethanol. A spherical dental drill was used to drill
a 1-mm hole in the skull while leaving the dura intact. The dura
was then punctured with fine forceps to create a defined opening
in the meninges. Using the stereotactic frame, a healing dummy
was inserted slowly into the three brain positions. The probe was
fixed to the skull using two anchor screws and biocompatible
dental cement. All of the surgical procedures were completed
within 30min. A healing dummywas used to provide mechanical
stability during implantation and throughout the healing period
of 2 weeks. The microperfusion probe (a 4-mm length of coaxial
tube, 2.5 mm in diameter) comprised a 20-G fluorinated ethylene
propylene guide cannula and it was replaced before sampling
with in- and out-flow tubing on the day of the experiments.
This tubing was connected to two glass syringes (Hamilton, USA)
placed in syringe pumps (Eicom, Osaka, Japan). Microperfusate
was pumped into the probe at a flow rate of 2 µl/min and the
samples were withdrawn at the same flow rate. Sampling was
conducted for 2 h. Both microprobes were perfused without
sampling for 60 min before the first 30-min microperfusates

from the PVN were collected. The microperfusate was mixed
under sterile conditions and it comprised 154 mM NaCl, 2.2
mM CaCl2, 5.6 mM KCl, 2.3 mM NaHCO3, and 0.15% BSA
(pH 7.4). Immediately after the application of cADPR, four
additional microperfusates were taken at 30-min intervals. After
the termination of the experiments, the brains were removed and
snap-frozen to obtain 40-µm cryo-cut stained brain slices, which
were used later for histological verification of the perfusion site.

Open Field Test
The open field test measures locomotion and anxious behaviors,
as described previously (Lopatina et al., 2014). The open field
apparatus comprised a square box (600 × 600 × 200 mm) lined
with polypropylene sheets inside the wooden box. The center
arena (300 × 300 mm) was outlined. Each animal was placed
in the box for 10 min. The overall activity was measured in the
box, and the amount of time and the distance traveled in the
center arena were noted. The distance traveled in the field was
recorded using a digital video system and ANY-maze software
(Liu et al., 2013). This paradigm is based on the idea that mice
will naturally prefer to be located near a protective wall rather
than being exposed to danger in the open space. After each trial,
the test chambers were cleanedwith a damp towel and 1% sodium
hypochlorite followed by 70% ethanol (Zhong et al., 2014).

CSF and Blood Sampling
CSF was collected according to the protocol described
for sampling CSF from mice without detectable plasma
contamination (Fleming et al., 1983: Liu and Duff, 2008).
Briefly, mice were intraperitoneally anesthetized with sodium
pentobarbital (50 mg/kg). The skin was shaved on the neck and a
sagittal incision was made in the skin inferior to the occiput. The
subcutaneous tissue and muscles were separated. The dura mater
of the cisterna magna appeared as a glistening and clear reverse
triangle through which the medulla oblongata, a major blood
vessel (arteria dorsalis spinalis), and the CSF space was visible.
A capillary tube was inserted into the cisterna magna through
the dura mater, and samples were collected with a 1-ml syringe
with a 26-G needle. The CSF was frozen immediately on dry ice
and then transferred to a−80◦C freezer. After CSF sampling, the
heart was exposed, and a blood sample was drawn with a 1-ml
syringe. The plasma was centrifuged immediately at 1500× g for
10 min and then stored at−80◦C.

Measurement of Body Temperature
The rectal temperature was measure by inserting a thermistor
probe up to a length of 2 cm in the mouse rectum.
Digital recordings of the temperature were obtained with an
accuracy of 0.1◦C using a digital thermometer (model NS-TC10,
Neuroscience Inc., Tokyo, Japan). The probe was dipped into
silicon oil before insertion and held in the rectum until a stable
rectal temperature was measured for 5 s. The mouse was handled
near the base of the tail.

Real-Time PCR
Total RNA was extracted from ICR mouse brain tissues using
an RNeasy Lipid Tissue Mini Kit (74804, Qiagen Science,
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MA, USA), according to the manufacturer’s instructions, and
reverse transcribed into cDNA using a SuperScriptTM First-
Strand Synthesis System for RT-PCR (11904-018, Invitrogen,
Carlsbad, CA, USA). The cDNA was used as the template for
real-time PCR analysis, where the reactions were performed with
a ViiATM7 Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA). Each sample was assayed in triplicate in a 20
µl amplification reaction mixture containing 10 µl FAST qPCR
MasterMix Plus (315-81021, Eurogentec, Seraing, Belgium), 1
µl TaqMan Gene Expression Assay (CD38, Mm01220906_m1;
TRPM2, Mm00663098_m1, Applied Biosystems), 2 µl cDNA
template, and 7 µl nuclease-free water on a MicroAmp Fast
96-well reaction plate. The values obtained for the genes
were normalized against GAPDH mRNA (Mm99999915_g1,
Applied Biosystems) expression. Quantitative real-time PCR was
performed using a ViiATM7 Real-Time PCR System based on the
relative standard curve method, where the relative changes in
gene expression by the target were normalized against GAPDH.
The quantitative PCR efficiencies were determined by a series of
1:5 dilutions for each experiment.

CD38, TRPM2, and OT Immunostaining
Immunohistochemistry for CD38, TRPM2, and OT were
performed as described previously (Jin et al., 2007). Briefly,
anesthetized mice were perfused intracardially with cold PBS
followed by cold 4% paraformaldehyde (PFA) in PBS. The brains
were removed and post-fixed overnight in a 4% PFA solution at
4◦C. The brain regions were cut into 2–4 large blocks. The blocks
were then sliced on a microtome into 20-µm-thick sections. The
sections were pre-incubated in blocking solution (3% BSA and
0.3% Triton X-100 in PBS) for 1 h, and then incubated with
a rabbit polyclonal antibody to mouse CD38 (sc-7049, Santa
Cruz Biotechnology Inc.), a rabbit polyclonal antibody to rat
TRPM2 (C-terminus) (LS-C141843, LifeSpan BioScience, Seattle,
WA, USA), and a mouse monoclonal antibody to mouse OT
(PS38, ATC CRL 1950) in the blocking solution for 12 h at
4◦C. After three washes with washing buffer, the sections were
incubated with goat anti-rabbit IgG antibody coupled with Alexa
Fluor 488 (Invitrogen) in the blocking solution for 1 h at room
temperature. Images were obtained using an Olympus IX71
inverted microscope equipped with a cooled CCD camera (Cool
SNAP HQ2; Roper Scientific, Tucson, AZ, USA). The number
of immuno-positive nuclei in each brain section were recorded
and analyzed using Metamorph software (Molecular Devices,
Downingtown, PA, USA).

Statistical Analyses
All of the results were expressed as the mean ± SEM. Two-
tailed Student’s t-tests and one- or two-way ANOVA followed
by Bonferroni post hoc tests were used to analyze data with
unequal variances between groups. In all of the analyses, P < 0.05
indicated significant differences.

RESULTS

It has been shown that cADPR extracellularly applied exerts
as an intracellular second messenger and facilitates OT release

without depolarizing stimulation (Jin et al., 2007). However, it
has not benn demonstrated yet that heat or a combination of
heat and cADPR display facilitated OT release from the isolated
hypothalamus. Therefore, to assess whether OT can be released
from the hypothalamus by two factors, i.e., cADPR and heat in
vitro, we used the previous paradigm of culture system of the
hypothalamus (Jin et al., 2007; Liu et al., 2013). We measured
the OT concentrations in the incubation medium of cultured
hypothalamic tissue, which was acutely dissected from adult
male mice of wild-type (CD38+/+) or CD38 knockout (KO,
CD38−/−) mice that belonged to the ICR (CD-10) outbred strain.

OT Release Is Stimulated by Cyclic
ADP-Ribose and Heat In vitro
Figure 1A illustrates the time course of the OT concentrations in
the incubation medium at 3 min intervals in one hypothalamus
from the group-housed wild-type mice. Incubation with 100
µM cADPR alone induced no or minor increases in the OT
concentration in the culture medium, but the OT concentration
increased significantly with additional heat stimulation. When
the incubation temperature was increased from 35 to 38.5◦C,
the OT concentration increased by 2.6 ± 0.27-fold and 4.1 ±

0.46-fold (N = 14) compared with the pre-stimulation level after
3 and 9 min of the temperature shift, respectively [one-way
ANOVA, F(5, 20) = 10.51, P < 0.0001]. As control, resting levels
in the incubation medium due to OT release without stimulation
was almost unchanged during further seven replacements of
incubation medium (see Section Materials and Methods).

To analyze the effect of heat alone, the stimulation sequence
was altered, i.e., the temperature shift was implemented first
followed by the application of cADPR (Figure 1B). In this case,
the OT concentration increased by 2.7 ± 0.54-fold relative to
the pre-stimulation level (N = 21) in response to increasing
the incubation temperature from 35 to 38.5◦C in the absence
of cADPR [one-way ANOVA, F(6, 28) = 3.90, P < 0.05].
Interestingly, the increase was transient and it was observed
during only a fraction of the 3 min period. By contrast, the
average increase during 9–15 min in the presence of cADPR
together with heat was 3.7 ± 2.7-fold compared with the pre-
stimulation level [N = 16, one-way ANOVA, F(4, 200) = 30, P <

0.01]. These transient and accumulated responses with heat and
cADPR suggest that heat and cADPR have independent effects
on OT release.

The fold increase in the OT concentration induced by cADPR
and heat was inhibited significantly with a non-specific TRPM2
inhibitor and a ryanodine receptor antagonist, respectively: In
the presence of either 10 µM 2-APB (1.4 ± 0.29-fold relative
to the pre-stimulation level, N = 7) or 100 µM 8-bromo-
cyclic ADP-ribose (8-Br-cADPR; 1.4 ± 0.29-fold relative to the
pre-stimulation level, N = 7, Figure 1A), respectively [two-way
ANOVA, F(12, 78) = 6.40, P < 0.0001]. Bonferroni’s post hoc
test demonstrated that there was a significant difference between
the classes treated with cADPR+heat vs. 2-APB (P < 0.001)
and cADPR+heat vs. 8-Br-cADPR (P < 0.01) at 12 and
15 min. The total increase in OT with different incubation
conditions was compared by calculating the total area under
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FIGURE 1 | Oxytocin (OT) release from the isolated hypothalamus.

Whole hypothalamus of group-housed (social stress) mice belonging to both

the CD38+/+ or CD38−/− strains were organo-cultured as described in the

Section Materials and Methods. The OT concentrations released from one

whole hypothalamus into the medium in one well were measured every 3 min.

Stimulation with 100 µM cADPR (yellow bar) and a temperature shift of 3.5◦C

from 35 to 38.5◦C (thick line) are indicated. Data are shown as fold changes in

the OT levels relative to 6 min before the start of stimulation as 1.0. (A)

Application of cADPR followed by heat stimulation in CD38+/+ mice. Filled

bars represent data without any inhibitors. One-way ANOVA, F (6, 21) = 26.70,

P < 0.0001: Bonferroni’s post hoc tests, *,**P < 0.05 and 0.01 from the basal

level, respectively. In some experiments, 100 µM 8-Br-cADPR (blue) or 10 µM

2APB (gray) were present in the incubation medium from 20 min before and

during the stimulation. Two-way ANOVA, F (12, 78) = 6.40, P < 0.0001.

Bonferroni’s post hoc tests detected significant differences between the

cADPR and heat vs. 2-APB (#P < 0.01) and 8-Br-cADPR (#P < 0.01) treated

groups at 12 and 15 min. (B) Application of heat followed by cADPR. Filled

and green bars represent data from CD38+/+ and CD38−/− mice,

respectively. N = 16, one-way ANOVA, F (4, 200) = 30, P < 0.01 in CD38+/+

mice: Bonferroni post hoc tests, *,**P < 0.05 and 0.01 from the basal level,

respectively. Two-way ANOVA, F (6, 56) = 3.18, P < 0.01. The difference

between the two genotypes was significant F (1, 56) = 40.07, P < 0.0001. The

data obtained with the CD38−/− mice significantly differed (#P < 0.01). The

initial value (1.0) at the 12th replacement refers to the concentrations in the

incubation medium of 17.8 ± 2.6 pg/ml (N = 30).

the line (TAUL): TAULcADPR = 34.22; TAUL8-Br-cADPR = 20.43;
TAUL2−APB = 21.66 arbitrary units, respectively.

In addition, the cADPR- and heat-induced OT concentration
increase was not observed in CD38−/− mice (1.1± 0.35, N = 8),
as shown in Figure 1B [two-way ANOVA, F(6, 56) = 3.18, P <

0.01]. The difference between the two genotypes was significant
[F(1, 56) = 40.07, P < 0.0001]. Overall, these results suggest that
the cADPR- and heat-induced release of OT depends on CD38
and its cADPR-producing enzyme activity as well as TRPM2

cation channels allowing Ca2+ influx in the hypothalamus of
mice that experienced social stress during group-housing.

Hypothalamic OT Release from Mice with
CD38 or TRPM2 Knockdown In vitro
The involvement of CD38 and TRPM2 in OT release was
examined pharmacologically in the above experiments. All
of the experiments described above were performed using
hypothalamus explants from group-housed mice with either the
CD38+/+ or CD38−/− genotype. Thus, the genetic evidence for
the involvement of CD38/cADPR is clear, but that for TRPM2 is
not. Thus, it would be interesting to perform heat- and cADPR-
dependent OT release experiments in TRPM2 KO mice (Uchida
et al., 2011) to obtain a clearer understanding of the involvement
of TRPM2 in OT release.

However, when we measured the expression levels in the
hypothalamus of wild-type C57BL/6 mice, we found that the
TRPM2 channel mRNA level was relatively low (Liu et al., 2012).
Therefore, we did not perform experiments in TRPM2 KO mice.
Instead, we applied the interfering RNA knockdown paradigm to
OT release from the hypothalamus.

Lentiviruses with short hairpin RNAs (shRNAs) for CD38
and TRPM2 were injected into the third ventricle of CD38+/+

mice. After 2 weeks of recovery, the CD38 and TRPM2 mRNA
levels decreased to 43 ± 3% (N = 4) of the scrambled RNA. As
expected, the fold increases in the OT concentrations induced by
heat stimulation were significantly lower in the media containing
the hypothalamus isolated from mice treated with shRNAs for
either CD38 (1.6 ± 0.25, N = 4) or TRPM2 (1.3 ± 0.43,
N = 5) compared with those treated with the scrambled shRNA
(3.2 ± 1.2, N = 3). The fold increases after simultaneous
stimulation by heat and cADPR were also significantly lower in
mice treated with shRNAs for either CD38 (1.5± 0.25, N = 6) or
TRPM2 (1.3 ± 0.43, N = 5) compared with those treated with
the scrambled shRNA (3.7 ± 1.2, N = 5) [one-way ANOVA,
F(2, 11) = 4.257, P < 0.05]. Thus, these KO and knockdown
experiments demonstrated that both CD38 and TRPM2 are
involved in the cADPR- and heat-induced facilitation of OT
release in vitro, although they were not inhibited differentially.

In vitro OT Release in Mice Exposed to
Social Stress
In the above in vitro experiments measuring OT release, we
observed positive responses but extremely large degrees of
variation from one experiment to another. After inspecting
the procedure carefully, we noted that no or lower responses
were obtained using group-housed wild-type males from the
same litters maintained in our animal facility. In addition, the
variations in the OT release response were often intensified in
group-housed males mixed with different litters from an external
supplier.

In the latter housing conditions, fighting was common,
and mice were either winners without wounds or losers with
wounds. To confirm that the variations in OT release were due
to the differences in social status caused by group housing,
we applied psychological stress (e.g., exposure to a novel
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environment; Rasmussen et al., 2011). We determined the
hierarchical relationships among mice using a tube test where
one mouse forced its opponent to reverse from a narrow tube,
thereby allowing us to measure the dominance relations among
mice (Lindzey et al., 1961).

Twelve mice from mixed litters were tested in a pairwise
manner 14–20 times, where they were assessed on the basis of
wining the tests against other mice, and the mice were then
ranked into dominant, intermediate, and subordinate groups.
The strongest mouse (#1st) was paired with the strongest mouse
in the subordinate group (#9th), and similarly the #2nd, 3rd,
and 4th mice were paired with the #10th, 11th, and 12th mice
in four cages. Cage-mates that lived together received stress
by moving them to clean cages every morning for 4 days
(cage-switch stress). The amount of OT released was measured
in the hypothalamus isolated from one-third of the winning
mice (ordinate group) and one-third of the submissive mice
(subordinate group).

As shown in Figure 2, the subordinate group [N = 25, one-
way ANOVA, F(6, 168) = 2.30, P < 0.05] released much more
OT in response to heat alone or heat and cADPR than the
ordinate group [N = 13, one-way ANOVA, F(6, 84) = 2.32, P <

0.05]. The fold increases in the OT concentration in response
to heat and cADPR were 1.73 ± 0.64 and 2.08 ± 0.37 (P <

0.01) relative to the pre-stimulation level in the subordinate and
ordinatemice, respectively. Two-way ANOVAdemonstrated that
the interaction between treatment and time was not significant
[F(6, 56) = 0.62, P = 0.7162], but there were significant treatment
[F(1, 56) = 5.02, P < 0.05] and time [F(6, 56) = 2.54, P < 0.05]
effects. There was no significant difference between the two
groups according to Bonferroni’s post hoc test. We calculated that
TAULordinate = 8.45 and TAULsubordinate = 13.13 arbitrary units,
respectively.

In vivo OT Release by Brain Perfusion with
cADPR in Ordinate or Subordinate Mice
It is necessary to demonstrate OT release from the hypothalamus
in vivo and to show distinct high or low levels of release in
subordinate and ordinate mice, respectively. For the first step, we
used the push-pull type of brain microperfusion method under
free-moving conditions of pairs of mice that had been exposed
to repeated social stress by cage switching, as shown in Figure 2.
The amount of OT released over 60 min in the subordinate mice
(4.1 ± 0.6-fold, N = 5) was significantly greater than that in
the ordinate mice (2.2 ± 0.5-fold, N = 6) relative to the pre-
stimulation level, and compared to the levels in the ordinate or
subordinate mice perfused with saline as controls (0.81 ± 0.32-
fold vs. 1.22± 0.17-fold of the pre-stimulation level, respectively;
Figure 3).

The analysis of the group results by two-way ANOVA
detected a significant effect of the treatment and time interaction
[F(9, 288) = 5.33, P < 0.0001]. There were also significant
treatment [F(3, 288) = 22.53, P < 0.0001] and time [F(3, 288) =
10.05, P < 0.0001] effects. These results suggest that cADPR is
efficient for releasing OT in vivo at normal body temperature
(which is already sufficiently high) and/or with neuronal

FIGURE 2 | Oxytocin (OT) release by hypothalamus isolated from

ordinate and subordinate mice. The social status was determined for

CD38+/+ mice using the tube test on the 1st day of the experiments, and

pairs of one ordinate and one subordinate were housed for 4 days (social

stress) with transfer into new cages (cage-switch psychological stress) every

day. At 3 h after the last stress, the whole hypothalamus was isolated from

ordinate (A) and subordinate (B) mice. The OT concentration in the incubation

medium was measured under stimulation, as shown in Figure 1B (heat

followed by cADPR, as indicated). The data are shown as fold changes relative

to the OT levels at 6 min before the start of stimulation as 1.0. N = 25,

one-way ANOVA, F (6, 168) = 2.30, P < 0.05 in ordinate mice. N = 13,

one-way ANOVA, F (6, 84) = 2.32, P < 0.05 in subordinate mice. Bonferroni’s

post hoc tests detected significant differences from the pre-stimulation level at

*,**P < 0.05 and 0.01, respectively. The initial value (1.0) at the 12th

replacement refers to the concentrations in the incubation medium of 22.3 ±

2.5 and 16.2 ± 7.0 pg/ml for ordinate and subordinate mice, respectively.

depolarizing activities, but without priming by increasing the
body temperature.

In vivo OT Release and Hyperthermia in
Mice during Exposure to an Open Field
The most important medical questions in relation to social
impairment in psychiatric disorders is whether OT release
is associated with hyperthermia in response to social stress,
because psychological stress influences behavior and autonomic
functions, including hyperthermia (Bouwknecht et al., 2007;
Vinkers et al., 2008; Lkhagvasuren et al., 2011). We examined
whether social anxiety stress in a new environment could induce
OT release due to hyperthermia by exposing mice to the open
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FIGURE 3 | Elevation of oxytocin (OT) concentrations by cyclic

ADP-ribose in brain microperfusates. After determining the social status

using the tube test, ordinate and subordinate pairs were housed (social stress)

and exposed to new cages (cage-switch psychological stress) every morning

for 4 days. The extracellular fluid of the PVN in both types of mice was

collected every 30 min for 30 min using the push-pull type microperfusion

system. Data are shown as fold changes in the OT levels for 30 min before the

start of stimulation as 1.0. Time courses are shown for subordinate mice with

100 µM cADPR (red squares) or saline (squares with cross, control) and for

ordinate mice with cADPR (blue diamonds) and saline (blue triangles, control).

One-way ANOVA followed by Bonferroni’s post hoc test: N = 5, F (3, 16) =

4.40, P < 0.05 for subordinate mice with cADPR; N = 6, F (3, 20) = 1.13, P =

0.3594 for ordinate mice. *P < 0.05 from the basal level. #P < 0.01

compared with the values for mice with saline. The analysis of the group

results by two-way ANOVA detected significant effects of the treatment and

time interaction [F (9, 288) = 5.33, P < 0.0001]. There were also significant

treatment [F (3, 288) = 22.53, P < 0.0001] and time [F (3, 288) = 10.05, P <

0.0001] effects. The value (1.0) at the start of sampling (–30 min) refers to the

concentration in the perfusate of 136.7 ± 11.5 pg/ml for all 16 mice.

field where hyperthermia is induced (LeMay et al., 1990). To
avoid effects due to group housing stress, in these experiments,
we used singly-housed mice that were exposed to the open field.
The rectal temperature increased significantly to 37.8◦C± 0.1◦C
from the control level of 36.4◦C ± 0.2◦C during the first 5 min,
and the temperature increase was maintained for up to 15 min
[Figure 4A; n = 9–18; one-way ANOVA F(3, 28) = 8.373, P <

0.001].
The OT concentration in the cerebrospinal fluid (CSF) was

also increased at 5 min after exposure in the open field, where
the average concentration was 605± 114 pg/ml compared with a
pre-exposure control level of 251 ± 13 pg/ml [one-way ANOVA
followed by Bonferroni’s post hoc test, N = 9–18, F(4, 62) =

4.60, P < 0.005]. Surprisingly, at 10 and 15 min after exposure,
the CSF concentration had already returned to the control level
(Figure 4B).

In identical open field stimulation conditions using CD38−/−

mice (Figures 4C,D, N = 5–21), the increase in the rectal
temperature began during the first 5 min [37.8 ± 0.2◦C from
36.6 ± 0.1◦C, P < 0.01; one-way ANOVA, F(3, 28) = 7.733, P <

0.0001], but no significant increase in the OT level in the CSF
was observed in the identical open field stimulation [one-way
ANOVA, F(4, 50) = 1.74, P = 0.1567]. These results demonstrate
that OT release responded transiently during the initial phase

of psychological stress (within 5 min) with an increase in body
temperature in the CD38+/+ mice, but the increase was not
sustained.

OT Concentration in the CSF during
Hyperthermia in Mice Treated with
Lipopolysaccharide (LPS)
To obtain further evidence for OT release during hyperthermia,
body temperature was manipulated via febrile responses in the
LPS-induced fever model. Mice and rats exhibit a biphasic body
temperature response to LPS: initial hypothermia followed by
hyperthermia (Yirmiya et al., 2001). Thus, the rectal temperature
in CD38+/+ mice that received intraperitoneal injection of 3
mg/kg LPS decreased during the initial 5–6 h, but it was then
maintained at a high level for 15–36 h. At 24 h after injection
of LPS, the rectal temperature was 36.2 ± 0.4◦C compared
with 35.4 ± 0.5◦C (N = 8) before treatment with an average
increase of 0.85 ± 0.14◦C (two-tailed Student’s t-test, P <

0.05), whereas the difference between 0 and 24 h was –0.04 ±

0.20◦C (N = 6) in phosphate-buffered saline (PBS)-treated mice
(Figure 5B).

Based on the temperature information, we measured OT
concentrations in the CSF that may reflect the effects of
hyperthermia on OT release in vivo. The OT concentration in
the CSF was 60.1 ± 11.6 pg/mg in LPS-treated males, which
was double that (30.5 ± 6.6 pg/ml) in PBS-treated control mice
(two-tailed Student’s t-test, N = 8, P < 0.05).

By contrast, we observed no differences in the CSF OT
concentrations of CD38−/− mice treated with LPS (26.4 ±

9.1 pg/ml) or PBS (18.1 ± 2.5 pg/ml). The rectal temperature
increased significantly by 0.62± 0.16◦C because of LPS treatment
in CD38−/− mice (Figure 5A, P < 0.05). Two-way ANOVA
detected no significant effect of the treatment and genotype
interaction [F(1, 16) = 1.84, P = 0.1934], but there were
significant treatment [F(1, 16) = 8.37, P = 0.0106] and genotype
[F(1, 16) = 5.30, P = 0.0351] effects. Bonferroni’s post hoc test
detected a significant difference between LPS and PBS treatment
in CD38+/+ mice (P < 0.0001).

Mechanisms of Facilitative OT Release at
mRNA and Protein Levels of CD38 and
TRPM2
The results of the above experiments suggested the contributions
of cADPR and hyperthermia for facilitative OT release.
Considering the molecular mechanism, it is possible either the
kinetic activation or abundance of CD38 and TRPM2 molecules.
As it is very difficult to analyze the former possibility, we first
analyzed the latter possibility at the mRNA level of CD38 and
TRPM2 and the TRPM2 protein (immunoreactivity) level. In
the present experiments, the mRNA expression was normalized
against that of glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) mRNA (Figure 6). The CD38 mRNA levels decreased
significantly in the hypothalamus of pair-housed mice with cage-
switch stress every morning for 4 days compared with no-stress
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FIGURE 4 | Body temperature and oxytocin (OT) concentrations in the cerebrospinal fluid (CSF) after exposure to a novel environment stress. Rectal

temperatures of CD38+/+ (A) and CD38−/− (B) mice before and after 5, 10, and 15 min of exposure in the open field (anxiety stress). N = 9–18, One-way ANOVA

F (3, 28) = 8.373, P < 0.001 in CD38+/+ mice; N = 9–18, F (4, 62) = 4.60, P < 0.005 in CD38−/− mice. OT concentrations in the CSF collected from CD38+/+ (C)

or CD38−/− (D) mice exposed to the open field measured over the same time course. One-way ANOVA followed by Bonferroni’s post hoc tests: N = 9–18, F (4, 62) =

4.60, P < 0.01, *,**P < 0.05 or 0.02, respectively, in CD38+/+ mice; N = 5–21, F (4, 50) = 1.74, P = 0.1567 in CD38−/− mice.

FIGURE 5 | Effect of lipopolysaccharide (LPS) on the cerebrospinal fluid (CSF) oxytocin (OT) concentration and body temperature. (A) CSF

concentrations of OT in mice at 24 h after treatment by intraperitoneal injection with LPS (3 ng/kg) or saline (PBS) in CD38+/+ or CD38−/− mice. (B) The rectal

temperature is expressed as the difference relative to the initial levels (time at 0) in the CD38+/+ or CD38−/− mice. Two-way ANOVA detected significant treatment

[F (1, 16) = 8.37, P = 0.0106] and genotype [F (1, 16) = 5.30, P = 0.0351] effects, and Bonferroni’s post hoc tests detected a significant difference between LPS and

PBS treatment in CD38+/+ mice (P < 0.0001). There was no significant difference between the treatment and genotype interaction [F (1, 16) = 1.84, P = 0.1934] in

CD38−/− mice. Two-tailed Student’s t-test, N = 5–10 in each group, *P < 0.05. N.S., not significant. PBS, phosphate-buffered saline.
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FIGURE 6 | Social stress-induced alterations in the mRNA expression levels of CD38 and TRPM2. Total RNA was extracted from the hypothalamus in

ordinate and subordinate mice that underwent social and psychological stress by pair-housing and cage-switch for 4 days. As a control, group-housed mice (five mice

per cage) were maintained for 4 days without cage-switch stress (open bars). The relative CD38 (A) and TRPM2 (B) mRNA expression levels (expressed as fold

changes relative to the control) in the ordinate (blue) and subordinate (red) groups was determined by relative quantitative RT-PCR with GAPDH as the reference

control gene. Two-tailed Student’s t-test, N = 6–7 in each group, **P < 0.01.

mice (two-tailed Student’s t-test, P < 0.05, N = 4), but there was
no difference between the subordinate and ordinate groups.

The TRPM2 mRNA levels increased significantly in the
hypothalamus of the subordinate group compared with the
ordinate group-housed mice that received the same stress (two-
tailed Student’s t-test, P < 0.001, N = 4). The TRPM2 mRNA
levels in ordinate mice were the same as those of group-housed
mice with no stress.

Previously, it was reported that CD38 is highly expressed
in the hypothalamus (Jin et al., 2007; Munesue et al., 2010),
but it was not shown whether TRPM2 is expressed in
the hypothalamus, particularly by oxytocinergic neurons, or
how much TRPM2 is co-expressed with CD38. As shown
in Figure 7A, TRPM2 immunoreactivity was abundant in
the hypothalamus in both oxytocinergic neurons and non-
oxytocinergic cells. Co-localization of CD38 and TRPM2 was
found in 12.1 ± 3.9% cells (400–500 cells counted in four
areas), while TRPM2 and CD38 immunostaining-positive cells
comprised 21.1± 6.2% and 32.1± 4.3% of cells, respectively.

The intensity of immunoreactivity when co-staining for
CD38 and TRPM2 appeared to be higher in subordinate mice
(Figure 7C) compared with that in ordinate mice (Figure 7B)
probably because of the increased intensity of TRPM2.

DISCUSSION

The release of OT can be regulated by cADPR and heat,
which are CD38- and TRPM2-dependent at the protein level.
cADPR appears to function by facilitating Ca2+ mobilization
from intracellular ryanodine-sensitive Ca2+ pools and TRPM2
channel gating, because the effect of ADPR on [Ca2+]i with
heat (at 37◦C or 40◦C from 35◦C in culture medium) was

transient and much weaker than the effect of cADPR in
NG108-15 neuronal hybrid cells (Amina et al., 2010) and
isolated hypothalamic neurons (Liu et al., 2012). To our
knowledge, this is the first study of the molecular mechanism
underlying OT release from the hypothalamus into the brain
showing that both CD38-cADPR and TRPM2-Ca2+-influx
signals are involved in cellular Ca2+ signaling, although the
results regarding Ca2+ have already been published previously
(Amina et al., 2010; Liu et al., 2012).

Alternatively, the release of OT can be regulated by cADPR
and heat, which are CD38- and TRPM2-dependent at the protein
molecule level. cADPR appears to function by facilitating Ca2+

mobilization from intracellular ryanodine-sensitive Ca2+ pools
and TRPM2 channel gating because the effect of ADPR on
[Ca2+]i with heat (at 37 or 40◦C from 35◦C in the culture
medium) was transient and much weaker than the effect of
cADPR in NG108-15 neuronal hybrid cells (Amina et al., 2010)
and isolated hypothalamic neurons (Liu et al., 2012). To the
best of our knowledge, this is the first study of the molecular
mechanism of OT release from the hypothalamus into the brain
to show that both CD38-cADPR and TRPM2-Ca2+-influx signals
are involved with cellular Ca2+ signaling while the results for the
Ca part has been already published in two papers (Amina et al.,
2010; Liu et al., 2012).

CSF OT Concentrations and Stress
The OT concentrations in the CSF increased within 5 min
of the start of the psychological stress (anxiety about a new
environment) in the open field test. Interestingly, the rectal
temperature also increased simultaneously at 5 min from
the start of stress exposure, so the increase in the CSF OT
concentration appears to have been generated by OT release
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FIGURE 7 | Co-localization of oxytocin (OT), CD38, or TRPM2 in the paraventricular nucleus (PVN), and a scheme illustrating the relationships among

stress, hyperthermia, OT release, and behavior. (A) The immunoreactivity of the green images represents OT in neuron soma, dendrites, and neuronal fibers. The

immunoreactivity of the red images represents TRPM2 and the blue images indicate DAPI (nucleus) in the hypothalamus of group-housed mice. Yellow images in the

PVN of the ordinate (B) and subordinate (C) mice represent the merged immunoreactivity of CD38 (red) and TRPM2 (green). Note that co-localization was intensified

in subordinate mice that underwent social and psychological stress with pair-housing and cage-switch. (D) This scheme shows the possible molecular mechanisms

that underlie stress-induced OT release in the mouse and the proposed pathways involved with improvements in autistic behavior among ASD patients with febrile

incidence.

from the hypothalamus into the brain, which is triggered by
hyperthermia and cADPR. However, the time courses of the
OT concentration and rectal temperature were quite different,
where one was transient and the other was sustained. The
transient properties of the increase in the CSF OT concentration
appeared to reflect the transient nature of the increases in
the OT concentration in the incubation medium induced by
the temperature shift alone. Our careful consideration of the
previous study by Liu et al. (2012) demonstrated that heat
stimulation in the presence of ADPR induced an initial transient
increase in [Ca2+]i, which was as potent as that of cADPR. Thus,
the transient release of OT at 5min in the open field was probably
due to the interaction between TRPM2 channels with cADPR
and/or ADPR.

Previously, it was reported that changes in emotional behavior
(locomotion) in the open field became obvious within a 5
min observation period before the locomotor activity declined
to a lower level (Butterweck et al., 2003; Jin et al., 2007).
These findings suggest that open field stress effectively controls
emotionality within 5 min and that animals adapt gradually to

the new environmental stress. According to our observations, the
increase in the release of OT occurred at 5 min after exposure
to the open field. Thus, it is reasonable to assume that the
anxiolytic effect is triggered or at least associated with this OT
release.

Signal Pathways Leading to OT Release
We used CD38−/− mice or cADPR and TRPM2 channel
inhibitors in CD38+/+ mice, but each inhibitor or defect did
not discriminate the functional roles of cADPR or TRPM2 in
the response. Of course, the concentrations of inhibitors should
be considered, but it is possible that these signals may have
sequential roles rather than being mediated via two independent
pathways (Figure 7D).

Social Impairment and Autism
To date, there have been several interesting studies of fever in
ASD patients. Some autistic children exhibit improvements
in their characteristic autistic behaviors during febrile
incidents and the regression of fever may be associated
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with the onset of ASD (Curran et al., 2007; Megremi, 2013;
Naviaux et al., 2015). Several possible explanation for this
ameliorative effect have been proposed: (1) the release of
glutamine from skeletal muscles (Good, 2013); (2) improved
brain blood flow (Good, 2011); and (3) febrigenesis and
the behavioral state changes associated with fever in autism
depend on the selective normalization of key components
in a functionally impaired locus coeruleus-noradrenergic
system (Mehler and Purpura, 2009), as shown in Figure 7D.
However, the OT concentrations have never been considered
as the underlying mechanism. In this study, we propose
that during a febrific reaction, fever enhances the release of
OT to reduce abnormal autistic behavior because direct OT
administration improved aberrant behavior in rodents and
humans (Jin et al., 2007; Munesue et al., 2010, 2016; Tachibana
et al., 2013; Watanabe et al., 2015; Yatawara et al., 2015;
Figure 7B).

It has been established that OT plays important roles in
social recognition and memory (Insel, 2007; Donaldson and
Young, 2008; Carter et al., 2009; Higashida et al., 2011, 2012;
Yamasue et al., 2012; Dulac et al., 2014; Rilling and Young, 2014;
Numan and Young, 2016; Yamasue, 2016). The KO of OT-related
genes such as OT itself (Ferguson et al., 2000), OT receptors
(Takayanagi et al., 2005), and the secretory regulator CD38 genes
(Jin et al., 2007; Higashida, 2016) lead to social impairment
in mice (Modi and Young, 2012; Grinevich et al., 2015) and
humans (Meyer-Lindenberg et al., 2011). Recently, accumulating
evidence has suggested that single nucleotide polymorphisms in
OT, OT receptors, and CD38 genes are associated with autism or
high-functioning autism, or they are at least a risk factor (Ebstein
et al., 2010; Feldman et al., 2012, 2016; Young and Barrett,
2015). Our results suggest that TRPM2 or single nucleotide
polymorphisms, in TRPM2 may be a new target protein and this
gene should be screened to assess its association with autism.

CONCLUSION

Hyperthermia is likely induced by social stress, as described
previously (Singer et al., 1986; Kluger et al., 1987; LeMay
et al., 1990; Oka et al., 2003; Adriaan Bouwknecht et al., 2007;
Bouwknecht et al., 2007). The social stress procedure has a much
more stressful effect on subordinates (social hierarchy; Wang
et al., 2014). The results of the present study indicated that larger
amounts of OT are released when more stress is experienced,
and suggest that, in the subordinate group, the release of more
OT seems to allow recovery from stress and toleration of greater
stress that will achieve a balance. Finally, TRPM2 may be a new
target for modulating social stress and in psychiatric disorders
with social impairment.
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