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ABSTRACT
Pregnancy-associated plasma protein-A (PAPPA), also known as pappalysin, is a member of the insulin-like
growth factor (IGF) family. PAPPA acts as a protease, cleaving IGF inhibitors, i.e., IGF binding proteins
(IGFBPs), thereby setting free IGFs. The insulin/IGF-axis is involved in cancer in general and in Ewing
sarcoma (ES) in particular. ES is a highly malignant bone tumor characterized by early metastatic spread.
PAPPA is associated with various cancers. It is overexpressed and required for proliferation in ES. PAPPA
also stimulates normal bone growth. We isolated HLA-A�02:01C/peptide-restricted T cells from A�02:01¡

healthy donors directed against PAPPA, generated by priming with A�02:01C PAPPA peptide loaded
dendritic cells. After TCR identification, retrovirally TCR transduced CD8C T cells were assessed for their in
vitro specificity and in vivo efficacy in human ES bearing Rag2¡/¡gc¡/¡ mice. Engraftment in mice and
tumor infiltration of TCR transgenic T cells in the mice was evaluated. The TCR transgenic T cell clone
PAPPA-2G6 demonstrated specific reactivity toward HLA-A�02:01C/PAPPAC ES cell lines. We furthermore
detected circulating TCR transgenic T cells in the blood in Rag2¡/¡gc¡/¡ mice and in vivo engraftment in
bone marrow. Tumor growth in mice with xenografted ES was significantly reduced after treatment with
PAPPA-2G6 TCR transgenic T cells in contrast to controls. Tumors of treated mice revealed tumor-
infiltrating PAPPA-2G6 TCR transgenic T cells. In summary, we demonstrate that PAPPA is a first-rate target
for TCR-based immunotherapy of ES.
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Introduction

Insulin and insulin-like growth factor (IGF) pathways are involved
in cancer of both children and adults. In adults, insulin signaling
represents a key mechanisms linking obesity and cancer,1 whereas
in childhood the IGF axis is involved in the nexus between birth
weight and cancer.2 Moreover, pregnancy-associated glycosamino-
glycan-mediatedmechanisms of invasion and growth have recently
gained attention as potent therapeutic targets in cancer.3 Preg-
nancy-associated plasma protein-A (PAPPA) also known as pap-
palysin was first described as a circulating protein during
pregnancy and has been associated with breast, ovarian, renal, gas-
tric and lung cancer, as well as pleural mesothelioma.4-10 More
than a decade ago, we had identified PAPPA as being overex-
pressed in primary Ewing sarcoma (ES) and metastases11—to our
knowledge the first description of PAPPA in association with a
mesenchymal neoplasm. PAPPA functions as a highly specificmet-
alloproteinase cleaving IGF binding proteins (IGFBPs)¡2,¡4 and

¡5, thereby activating IGFs.12,13 It is tightly bound to membrane
anchored glycosaminoglycans present on the cell surface. Cleavage
of IGFBPs occurs in close proximity to the IGF1 receptor (IGF1R),
increasing the IGF concentration at its binding site.14,15 IGF is one
of the most prominent growth factors deposited in the bonematrix
and bound to IGFBP4 it represents a key player in bone model-
ing.16-18 PAPPA knockout mice are reduced in size by 40% as
IGFBP4 effectively inhibits IGF-dependent mitogenesis in the
fetus.19 Apart from its role in bone metabolism, IGF is important
for growth, differentiation and development in many if not all tis-
sues. IGF1R is deregulated in many cancers types making it a
promising therapeutic target.2,20 In ES, the IGF-1 pathway has
been identified as an important growth factor and IGF1Rmonoclo-
nal antibody therapy is clinically evaluated.21-26 In ES, deregulation
of IGF1R expression is caused by the ES-specific EWS-FLI1 fusion
oncogene. Upon IGF binding the PI3K/AKT/mTOR and
MEK/ERK/MAPK pathways are mediating cell growth and
tumorigenesis.27-30
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ES are highly malignant tumors. They are characterized by
earlymetastases. ES were originally described by Ewing in 1921 as
endothelioma of the bone. In 1985, we described a neuroectoder-
mal histogenesis for ES and confirmed both the endothelial and
the neuroectodermal signature by microarray analysis in 2004.11

ES are molecularly defined by chromosomal translocations lead-
ing to EWS-ETS gene fusions. The translocation-derived chime-
ric transcription factors yield transactivation, transformation,
and the malignant phenotype.11,31,32 At diagnosis about 20% to
30% of patients have overt metastases in lung, bone, and/or bone
marrow.33 Patients who have been diagnosed with bone marrow
metastases have a fatal outcome irrespective of therapy.34

T cell receptor (TCR) affinity enhanced T cells have shown
some efficacy in sarcomas.35 However, TCR affinity enhance-
ment may increase TCR cross reactivity with the risk of severe
and even lethal T cell attach on critical organ function.36-38

TCR allo-restriction circumvents the risks of TCR affinity
enhancement in T-cell-based cancer immunotherapy.39 In
addition, there is evidence for a graft vs. tumor effect in ES,
providing an additional rationale for the utilization of allo-
restricted T cells.40.41,42 However, allogeneic donor lymphocyte
infusion (DLI) lacks specificity.43,44

Here, we report on the generation of TCR transgenic T cells
directed against the tumor-associated antigen (TAA) PAPPA
overexpressed in ES.

Material and methods

Cell lines

SK-N-MC and TC-71 (both ES cell lines) were obtained from
the German Collection of Microorganisms and Cell Cultures
(DSMZ; Braunschweig, Germany). A673 (ES cells) were
obtained from ATCC (LGC Standards GmbH, Wesel, Ger-
many). The EW7 ES cell line was obtained from Olivier
Delattre, Institut Curie, Paris. The TAP-deficient
HLA�A02:01C T2 cell line (somatic cell hybrid) was obtained
from P. Cresswell (Yale University School of Medicine, New
Haven, CT, USA). The HLA-A�02:01¡ erythroid leukemia cell
line K562 was a gift from A. Knuth and E. J€ager (Krankenhaus
Nordwest, Frankfurt, Germany). All cell lines were routinely
tested for purity and mycoplasma contamination. Tumor cell
lines were cultured in RPMI 1640 supplemented with 10% fetal
calf serum (FCS, Biochrom, Berlin, Germany), 100 U/mL peni-
cillin, 100 mg/mL streptomycin, and 2 mM L-glutamine (all
from Life Technologies). RPMI 1640 medium for LCL and T2
cells was supplemented with 1 mM sodium pyruvate and non-
essential amino acids, additionally.

Isolation of PBMCs

Peripheral blood mononuclear cells (PBMCs) were isolated from
human peripheral blood samples of healthy donors (obtained
with IRB approval and informed consent from the DRK-Blut-
spendedienst Baden-W€urttemberg-Hessen in Ulm, Germany) by
centrifugation over Ficoll-Paque (GE Healthcare, Freiburg, Ger-
many) according to the supplier’s recommendations.

Generation of dendritic cells (DCs)

CD14C cells were isolated from PBMCs with anti-human CD14
magnetic particles (BD Biosciences, Heidelberg, Germany)
according to the manufacturer’s instructions. Purity of cells
was confirmed by flow cytometry on a FACS Calibur (BD Bio-
science). Culture and maturation of CD14C cells was done as
described previously.45

Isolation of CD8C T cells

CD8C T cells were isolated from human HLA-A�02:01¡ PBMCs
by negative isolation using a cocktail of biotin-conjugated non-
CD8Cmonoclonal antibodies and anti-biotinmicro beads followed
by column depletion according to manufacturer’s instructions
(Miltenyi Biotec, Bergisch Gladbach, Germany). Purity of isolated
CD8C T cells was confirmed by flow cytometry.

In vitro priming of HLA-A�02:01/PAPPA1434 allo-restricted T
cells

Mature DCs were re-suspended in T cell medium (AIM-V sup-
plemented with 5% human AB serum, 2 mM L-glutamine, and
50 mL/mL gentamycin) and pulsed with selected peptides at a
concentration of 30–50 mM in the presence of 20 mg/mL
b1MG (Sigma, Taufkirchen, Germany) for 4 h at 37�C and 5%
CO2. Pulsed cells were than washed and used for T cell priming
as described previously.45

Multimer-staining and cell sorting

Two weeks after in vitro priming activated T cells were pooled
and stained with specific peptide/HLA-A�02:01-multimer-PE
(PAPPA1434, IILPMNVTV) and CD8C-FITC (BD Bioscience)
for cell sorting. An unspecific peptide/HLA-A�02:01-multimer-
PE directed against LIPI (Lipase member I, LLNEEDMNV)
served as a negative control.46 Cell sorting was done on a FACS
Aria (BD Bioscience).

Limiting dilution

After FACS sorting, multimer-PE-specific T cells were
expanded using limiting dilution. Expansion was conducted in
round-bottom 96-well plates in 200 mL T cell medium supple-
mented with anti-CD3 (30 ng/mL), rhIL-2 (100 U/mL), rhIL-
15 (2 ng/mL); irradiated LCL (1£105 per well) and irradiated
PBMCs pooled from three different donors (5 £ 104 per well)
were used as feeder as previously described.45 Cytokines and
100 mL medium/well were replaced after 1 week. Expanded T
cells were further characterized in ELISpot assays.

Vb analysis of T cell receptor repertoire

To determine T cell clonality and Vb expression, the IOTest�

Beta Mark Kit (Beckman Coulter, Brea, CA, USA) was used
according to the manufacturer’s protocol. This kit is designed
for flow cytometric determination of the T cell repertoire
(TCR) and covers about 70% of the normal human TCR Vb
repertoire.
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ELISpot assay

96-well mixed cellulose ester plates (MultiScreen-HA Filter
Plate, 0.45 mm Millipore, Eschborn, Germany) and capture-
antibody solutions (all Mabtech, Hamburg, Germany) were
used for IFNg and granzyme B ELISpot assays as described pre-
viously.45 Spots in plates were counted on an AID-ELIRIFL04
ELISpot reader (Autoimmun Diagnostika, Strassberg, Ger-
many). All experiments were performed in triplets with excep-
tion of the initial screening ELISpot.

xCELLigence proliferation assay

Cell proliferation was measured with an impedance-based
instrument system (xCELLigence, Roche/ACEA Biosciences)
enabling label-free real-time analysis. Briefly, 1 £ 104 to 2.5 £
104 targets cells were seeded in 200 mL medium. During the
exponential growth phase 100 mL was replaced by a 100 mL T
cell suspension. Cellular impedance was measured periodically
every 15 min after T cell addition.

Identification of TCR sequence

Primers for the identification of the TCR were used according to
Schuster et al.47 RNA from T cell clones was isolated via TRI
Reagent Solution (Invitrogen). For cDNA synthesis, the High
Capacity cDNA Reverse Transcription Kit (Applied Biosystems)
was used according to manufactures protocol. TCR PCR was car-
ried out using the AccuPrimeTM Taq DNA Polymerase System
(Invitrogen) and an Eppendorf Master Cycler. PCR reaction was
done in twin.tec real-time PCR plate 96 (Eppendorf). Primers,
PCR composition, and cycler settings were used as described previ-
ously.48 PCR samples were loaded onto 1.5% agarose gels and run
at 110 V for 50 min. 1 KB Plus DNA Ladder (Life Technologies)
was used for size determination. PCR products at the expected sizes
(370–500 bp for alpha chain and 190–290 bp for beta chain) were
isolated with the StrataPrep Gel Extraction Kit (Agilent) and sent
for sequencing (Sequiserve, Vaterstetten). Sequencing identified
parts of the alpha and beta chains. New primers were implemented
according to the predicted TCR sequence by IMGT/V-QUEST
covering the whole sequence of the according alpha and beta chain
(specific primers for PAPPA-2G6 TCR in 50–30 direction:
TRAV5�01: ATG AGG CAA GTG GCG AGA GTG AT; TRBV4-
2�01 ATGGGC TGCAGGCTGCTC T). Sequence modifications
were done to improve expression via codon optimization andmini-
mal murinization for the PAPPA-2G6 TCR.49 Both chains were
linked via a P2A sequence. This construct was than synthesized
and cloned into the MP71 vector (done by Gene Art, Life Technol-
ogies, Regensburg).

Transduction and isolation of CD8C T cells

293T GalV virus producing cells were seeded at a concentration
of 0.2£106 /well in 3 mL DMEM onto 6-well plates 24 h prior
to transfection. Transfection of HLA-A�02:01¡ PBMCs was per-
formed using TransIT-293T according to manufacturer’s man-
ual. A�02:01¡ cells were used for the generation of TCR
transgenic T cells given cross reactivity of HLA-A�02:01C cells
with one more peptide. 200 mL of serum-free medium was

placed into a 1.5 mL FACS tube. 9 mL of TransIT were added,
vortexed, and incubated at RT for 20 min. 1 mg of TCR plasmid
was added and mixed carefully. After 30 min incubation, the
solution was added drop-wise onto the cells and incubated for
48 h at 37�C. Virus containing supernatant was collected, centri-
fuged at 1,000 g for 5 min and sterile filtered (0.45 mm). Virus
was used fresh or stored at ¡80�C. PBMCs for viral transduction
were isolated from Buffy coats and stimulated with 50 ng/mL
OKT-3 and 100 U/mL rhIL-2 48 h prior to spin infection. The
day before transduction non-treated 24-well plates were coated
with 400 mL Retronectin� in PBS at a concentration of 12.5 mg/
mL and stored at 4�C. Directly before transduction the superna-
tant was removed. Wells were blocked with 2% BSA in PBS for
30 min at 37�C and washed twice with 2.5% HEPES in HBSS.
Stimulated PBMCs were collected and set to a concentration of
1£106 /mL in TCM. 1 mL of each Virus and PBMCs were
added into coated 24-well plates plus additional Protamine-sul-
fate (cend D 4 mg/mL), HEPES (cend D 0,5%), and IL-2 (cend D
100 U/mL). Plates were centrifuged for 90 min at 820 g in 32�C
preheated centrifuge and stored at 37�C, 5% CO2 overnight. The
next day cells were harvested and split 1:1. Cells were again
placed on coated 24-well plates with fresh virus plus additives
and centrifuged at 820 g/90 min/32�C. Medium was replaced
after 48 h and transduction efficiency was checked after 72 h via
FACS multimer staining. TCR transgenic T cells were isolated
via magnetic anti-PE microbeads according to manufacturers
manual (Miltenyi). Isolated cells were then cultured using irradi-
ated mixed PBMCs and LCLs as feeder cells.

In vivo validation of TCR transgenic T cell efficacy

Immune deficient Rag2¡/¡gc¡/¡ mice on a BALB/c background
were obtained from the Central Institute for Experimental Ani-
mals (Kawasaki, Japan) and maintained in our animal facility
under pathogen-free conditions in accordance with the institu-
tional guidelines and approval by local authorities. Experiments
were performed in 6–16-week-old mice. To analyze local tumor
growth in vivo, 2 £ 106 A673 cells were re-suspended in a final
volume of 0.2 mL PBS/0.2% FCS. 2 £ 106 A673 tumor cells
were inoculated subcutaneously at the lower back of immune
deficient Rag2¡/¡gc¡/¡ mice. After 3 d, mice received a full
body irradiation with 3.5 Gy to enable engraftment of human T
cells. 5 £ 106 TCR transgenic T cells together with 5£106 CD8C

depleted PBMCs were injected i.p. the following day. Control
groups were untreated, or received either CD8C depleted
PBMCs, or CD8C depleted PBMCs plus 5 £ 106 unspecific T
cells. 1.5 £ 107 IL-15 secreting NSO cells (previously irradiated
with 80 Gy) were injected i.p. twice per week. Mice were sacri-
ficed after 17 d of tumor growth or at a maximum tumor size of
> 10 mm for reason of animal protection. Tumor weight was
determined. Also blood, bone marrow, and tumor samples were
collected. Mice organs were stained for human T cells using
CD8C-APC, CD4C-FITC (both BD), and multimer-PE antibod-
ies and measured using a BD FACSCaliburTM.

Immunohistochemistry

Histological analyses were performed on formalin fixed, paraf-
fin-embedded samples. All tissue slides were collected at the
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Department of Pathology of the Ludwig-Maximilians Uni-
versit€at M€unchen. The following primary antibodies were used:
CD8C (1:100, SP16, DCS) and PAPPA (1:50, HPA001667,
Sigma Aldrich)

Statistical analysis

Descriptive statistics were used to determine mean and stan-
dard deviation of the mean (SD). Differences were analyzed by
unpaired two-tailed Student’s t-test using either Excel (Micro-
soft) or Prism 5 (GraphPad Software); p values < 0.05 were
considered statistically significant (�p < 0.05; ��p < 0.005;
���p < 0.0005).

Results

Identification of PAPPA-derived peptides for allogeneic T
cell priming

PAPPA is highly overexpressed in ES in contrast to normal tis-
sue in RNA microarrays and in relation to other tumor entities
(Figs. S1A and B). Suitable peptides for in vitro priming were
selected after SYFPEITHY in silico prediction. The six peptides
with the highest predicted binding affinities were loaded onto
tap deficient T2 cells and measured for MHC I stabilization
(Fig. S1C). In titrations, the PAPPA1434 peptide was identified
as the most potent peptide and therefore chosen for further T
cell in vitro priming (Fig. 1A).

Figure 1. Wild-type T cell clone PAPPA-2G6 specifically recognizes and kills HLA-A�02:01C/PAPPAC ES cell lines. (A) PAPPA1434 and PAPPA601 bind to HLA-A2 and stabilize
MHC I molecules in Tap deficient T2 cells. (B) PAPPA-2G6 T cells show peptide specificity against peptide loaded T2 cells. (C) Reactivity is dose dependent in IFNg ELISpot
T2 titration assays. IFNg release diminishes at a threshold of < 1 nM. (D) HLA-A�02:01C/PAPPAC ES cell lines are recognized specifically compared to the controls SK-N-
MC and K562 in IFNg ELISpot assays. (E) Killing/detachment of A673 ES cell line is shown in real time in xCELLigence assay. The control cell line SK-N-MC is not affected in
its growth by the presence of the TCR transgenic T cells. Data are presented as mean and SEM. A673, EW7 and TC-71: HLA-A�02:01C ES; SK-N-MC: HLA-A�02:01¡ ES;
K562: MHC¡ NK cell control. Error bars represent standard deviation of triplicate experiments. Asterisks indicate significance levels. p values< 0.05 were considered statis-
tically significant (�p < 0.05; ��p < 0.005; ���p < 0.0005).
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ES specificity of PAPPA-2G6 T cells

The isolated T cell clone PAPPA-2G6 specifically recognizes
PAPPA1434 peptide (T2C) when loaded on T2 cells in contrast
to influenza (T2¡) negative control (Fig. 1B). Reactivity was
concentration dependent as shown in the T2 titration assay
(Fig. 1C). Furthermore, specific reactivity toward A673, TC-71,
and EW7 (all HLA-A�02:01C) was observed, whereas the ES
HLA-A�02:01¡ cell line SK-N-MC was not recognized. The
MHC¡ cell line K562 served as a NK cell control and was also
not recognized (Fig. 1D). Specific lysis of A673 target cells was
shown for PAPPA-2G6 T cells in xCELLigence assay. SK-N-
MC cells (A2¡) served as a negative control and were not
affected, whereas A673 ES cells were effectively lysed (Fig. 1E).

Identification of the PAPPA-2G6 TCR sequence

To identify the Vb-chain of the TCR-clone the IOTest� Beta
Mark Kit was used and indicated the expression of Vb7.2
(Fig. S2A). Flow cytometry results were further confirmed via
PCR (Fig. S2B). The PCR product was sequenced, analyzed via
IMGT/V-Quest research, and confirmed the sequence of the
TRBV4-2�01F Vb-chain.

For the screening of the Va-chain the PCR revealed initially
three different PCR products, which were further sequenced
(Fig. S2C). However, IMGT/V-Quest analysis predicted only
the TRVA5�01F as the native Va-chain sequence.

New specific primers directed against both identified vari-
able chains were used to amplify the whole Va/b-chains
(Fig. 2) and for further construction of the retroviral vector
after sequencing.

ES reactivity of PAPPA-2G6 TCR transgenic T cells

After retroviral transduction PAPPA-2G6 TCR transgenic T cells
were isolated via multimer labeling and magnetic bead separation
and cultured for further analysis (Fig. 3A). In IFNg ELISpot
assays specificity of the TCR transgenic T cells toward T2 cells
pulsed with the PAPPA1434 peptide was maintained in contrast
to the influenza control peptide (Fig. 3B). Also, in T2 peptide

titrations the sensitivity of the TCR toward the peptide pulsed
T2 cells remained comparable to the original T cell clone
(Fig. 3C). In addition, HLA-A�02:01C ES cell lines A673, TC-71,
and EW7 were similarly recognized in contrast to the HLA-A2¡

ES cell lines SK-N-MC and SB-KMS-KS1 (Fig. 3D). Further-
more, PAPPA-specific T cells specifically lysed A673 cell lines in
xCELLigence assay in contrast to SK-N-MC controls (Fig. 3E).

Reduced tumor burden after application of PAPPA-2G6
TCR transgenic T cells

Prior to adoptive transfer T cell were checked for phenotypic
markers. T cells showed a CD45ROCCC, CD62LCC, CCR7dim,
and CD45RAC phenotype with features of central memory
(TCM) as well as effector memory (TEM) T cells (Fig. 4A).

Mice in all groups received s.c. inoculated A673 cells and a
total body irradiation (3.5 Gy) on day 3. Additionally, 1.5£107

irradiated IL15-secreting NSO cells were injected twice per week
i.p. T cells were applied on day 4. The control groups were either
untreated (n D 6), received 5£106 CD8C depleted PBMCs (n D
6) or 5£106 CD8C depleted PBMCs substituted with 5£106

unspecific T cells (n D 5). The study group received 5£106

CD8C depleted PBMCs substituted with 5£106 specific PAPPA-
2G6 TCR transgenic T cells (n D 14). Only the study group that
was treated with the TCR transgenic T cells showed a significant
weight reduction in contrast to the controls whereas the control
groups showed no reduction in tumor growth (Fig. 4B).

Detection of TCR transgenic T cells in blood, bone marrow,
and tumor samples

Samples from blood, bone marrow, and tumors of sacrificed
mice were stained by CD8C mAB and MHC-multimers to detect
PAPPA-specific T cells (mice 1–3, Fig. 5). Via flow cytometry T
cells were detectable in all three types of tissue. Yet, T cell infil-
tration into the tumor site was greater in the study group treated
with the TCR transgenic T cells in comparison to the control
group treated with unspecific T cells (mice 4–6, Fig. S3).

Figure 2. Identification of the PAPPA-2G6 TCR sequence. Full TCR PCR with specific primers for TRAV5 and TRBV4-4. PCR products (green boxes) of expected sizes were
extracted and sequenced.
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Immunohistochemistry reveals tumor-infiltrating T cells
and PAPPA positivity in A673 xenografts

Tumor-infiltrating T cells were detected in A673 tumors with a
specific CD8C antibody (Fig. 6A). Unspecific T cells of the con-
trol group were less frequently detected at the tumor site in
contrast to the PAPPA-2G6-treated mice. Furthermore, we
showed PAPPA expression in A673 xenografts (Fig. 6B) in

contrast to adjacent normal murine tissue. Placental tissue
served as a positive control.

Discussion

Insulin and IGF pathways represent widely investigated
mechanisms and targets in cancer.50 The IGF-axis plays an
important role in pediatric cancer in general and ES in

Figure 3. Isolation and ES specificity of PAPPA-2G6 TCR transgenic T cells. (A) Transduction efficiency for PAPPA-2G6 TCR transgenic T cells of 47.3% was determined via
FACS multimer staining (middle). Multimer-PE stained transgenic T cells were isolated via magnetic beads (right) (B) PAPPA-2G6 TCR transgenic T cells show peptide spec-
ificity against PAPPA1434 peptide loaded T2 cells. (C) Reactivity is dose dependent in IFNg ELISpot T2 titration assays. IFNg release diminishes at a threshold of < 10 nM.
(D) HLA-A�02:01C/PAPPAC ES cell lines are recognized specifically compared to the controls in IFNg ELISpot assays. (E) Killing of A673 ES cells is shown via detachment in
xCELLigence assay. Addition of PAPPA-2G6 TCR transgenic T cells specifically kills HLA-A�02:01C A673 tumor cells (top) whereas the negative SK-N-MC control is not
affected. Data are presented as mean and SEM. A673, EW7 and TC-71: HLA-A�02:01C ES; SK-N-MC and SB-KMS-KS1: HLA-A�02:01¡ ES; K562: MHC¡ NK cell control. Error
bars represent standard deviation of triplicate experiments. Asterisks indicate significance levels. p values < 0.05 were considered statistically significant (�p < 0.05; ��p
< 0.005; ���p < 0.0005).
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particular.1,2,28,29 Pre-clinical and clinical studies addressing
the IGF axis revealed IGF1R pathway inhibition as a prom-
ising treatment strategy.51,52 Variations of this strategy
remain to be investigated,53,54 in particular those that may
be capable of overcoming resistance against IGF1R antibod-
ies. One of these could be to decrease IGF concentration by
targeting PAPPA to prevent IGF from binding to alternate
receptors, e.g., the insulin receptor. In addition, utilization
of antigens present in pregnancy privileged sites as thera-
peutic targets in cancer have recently gained renewed
interest.3

PAPPA expression has been associated with various epithe-
lial cancers.4-10 We previously showed its overexpression in
ES.11 PAPPA functions as a highly specific metalloproteinase
cleaving IGF binding protein-4 (IGFBP-4) thereby activating
IGFs. Of note for bone cancer, it is critically involved in bone
growth.55

PAPPA is an important factor for growth in ES as recently
shown by knockout assays in ES cells. In vitro ES growth was
hampered and in vivo survival of ES-bearing mice was pro-
longed.56 Targeting the IGF pathway via PAPPA may thus rep-
resent a novel option for PAPPA positive bone sarcoma, in
particular for advanced ES patients.

The recent breakthroughs using by T cell checkpoint inhibi-
tors and CARs has renewed the interest in immunotherapy of
cancer.57 In our study, we first isolated T cells specific for the
PAPPA1434 peptide (IILPMNVTV) and introduced its TCR ret-
rovirally into random T cells. To ensure specific pairing of the
transgenic TCR, we performed minimal murinization in addi-
tion to codon optimization for increased homologous pairing
and expression in human T cells.49 Next, we showed ES speci-
ficity of this TCR in vitro. Then, we demonstrated comparable
peptide affinities of wild type and transgenic TCR as well as ES
specificity. Finally, we demonstrated in vivo efficacy against

Figure 4. PAPPA-2G6 TCR transgenic T cells show in vivo efficacy. (A) Transgenic T cells were controlled for phenotypic marker before application. (B) Mice treated with
PAPPA-2G6 TCR transgenic T cells have significant tumor growth reduction in contrast to the controls.

Figure 5. Detection of engrafted and tumor-infiltrating T cells in PAPPA-2G6 TCR transgenic T cells treated mice via FACS. FACS staining for CD8C and specific multimer
shows PAPPA-2G6 transgenic T cells circulating in blood (left). Further T cells were detected in bone marrow (middle) and infiltrating into the A673 tumors (right). An irrel-
evant multimer served as a control.
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human ES in Rag2¡/¡gc¡/¡ mice. PAPPA-2G6 TCR transgenic
T cells proved to be effective and no in vivo adverse effects were
observed. Of interest, we observed a larger amount of infiltrat-
ing T cells into the tumor site in mice treated with the PAPPA-
2G6 TCR transgenic T cells as compared to the unspecific T
cell control group. In vivo efficacy may further be improved by
applying certain T cell subtypes, e.g., TCM or TSCM or by using
a more efficient mouse strand for T cell engraftment.58-61 Yet in
our studies, we could demonstrate T cell engraftment in treated
mice. Functionality of ex vivo T cells remains to be shown in
future studies. Given our recent finding that, irrespective of
treatment, bone marrow involvement determines fatal outcome
in ES patients, our finding of ES-specific T cell infiltration into
the bone marrow is of particular interest. It may open new
treatment options for these dismal patients.62

To the best of our knowledge, this is the first study upon
PAPPA in ES and the first successful attempt to target PAPPA
via TCR transgenic T cells. In contrast to chimeric antigen
receptor (CAR) bearing T cells, TCR-based T cell therapy is
not restricted to surface molecules. Rather, TCR employing T
cells can target peptides derived from all proteins required for
malignancy and metastasis. TCR-based recognition is restricted
to MHC, whereas CAR T cell action is MHC independent,
making this approach easily accessible to a wider range of
patients.63 However, selection of a target that is not dispensable
for malignancy is critical for avoidance of resistance evolution
and success of targeted therapies. This applies in particular to

oligo-mutated malignancies such as ES, where checkpoint
inhibitors are not efficacious.

In other tumor entities, feasibility of targeting PAPPA via
antibodies already has been demonstrated.64 However, PAPPA
is not internalized into the tumor cell and may rather be
cleaved on the cell surface resulting in free-floating PAPPA/
antibody complexes in the blood stream. The immunological
synapse between TCR and MHC is about 15 nm wide.65

PAPPA in its active form is covalently bound to glycosamino-
glycans on the cell surface.14,15 This type of binding is giving
PAPPA a spacer function possibly advantageous for its func-
tion, i.e., capturing IGFBP-4/IGF complexes for cleavage and
thereby activating IGFs. While the distance between a CAR
and its target is not clearly defined, the spacer PAPPA will
increase this distance and may reduce CAR efficacy14,66 making
a TCR-based approach more attractive. Furthermore, circulat-
ing inactive PAPPA bound to the pro-form of eosinophil major
basic protein (proMBP) in the blood may non-specifically acti-
vate CAR T cells causing a cytokine release syndrome.67,68 A
drawback of TCR-based T cell therapy is potential cross reac-
tivity of the TCR with unknown target structures. While CARs
are not tumor specific, their cross reactivity with normal cells is
defined. In contrast, a TCR may have cross reactivity with an
unknown target. This risk of cross reactivity is greatly enhanced
by TCR affinity enhancement, an approach utilized by expert
groups in the TCR-based immunotherapy field to enhance
affinity and avidity of the TCR against the tumor target.36-38

Figure 6. Immunohistochemistry staining confirms tumor infiltration by transgenic T cells and target gene expression. (A) Tumor slides were stained with a specific anti-
body against CD8C in immunohistochemistry. Infiltration by T cells could be shown in PAPPA-2G6-treated mice (top). CD8 positivity upon mice treated with unspecific T
cells was less frequent (bottom). (B) Immunohistochemistry further showed strong immunoreactivity in trophoblast layers of placental villi (left; positive control) and xen-
ografted A673 (right).
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Distinct from TCR affinity enhancement, we addressed the
challenge of reconciling efficacy with specificity by generating
allo-restricted TCRs against a tumor-specific peptide.39,69

Taken together, these considerations in conjunction with the
data reported here may render TCR transgenic T cells a prom-
ising approach to target PAPPA expressing malignancies, in
particular ES.
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