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Abstract

We present a new classification method for expression profiling data, called MIDClass (Microarray Interval Discriminant
CLASSifier), based on association rules. It classifies expressions profiles exploiting the idea that the transcript expression
intervals better discriminate subtypes in the same class. A wide experimental analysis shows the effectiveness of MIDClass
compared to the most prominent classification approaches.
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Introduction

Microarrays are a well established technology to analyze the

expression of many genes in a single reaction whose applications

range from cancer diagnosis to drug response. They are matrices,

where known samples of DNA, cDNA, or oligonucleotides, called

probes, combine with mRNA sequences. The expression level of

genes is given by the amount of mRNA bounding to each entry.

The aim is to find either sets of genes that characterize particular

disease states or experimental condition or highly correlated genes

that share common biological features. Microarray numerical data

coming out from experiments are normalized and analysed [1].

Several algorithms and methods have been used for this analysis

[2]. In particular statistical models should be suitable to correctly

estimate the magnitude and the significance of differentially

expressed genes [3–5]. Finally, specific supervised and unsuper-

vised learning methods allow to investigate the predictive power of

the candidate gene sets [6–8]. Several successful classification

methods have been reported in the literature [9–13].

Support Vector Machines (SVM) [9] are powerful binary

classification methods which take as input a training set of data,

each belonging to one of two given classes. It finds support vectors

for the classification by identifying a maximum separating

hyperplane either when data are linearly separable or through

kernel functions. SVMs can be successfully applied to multi-

categorial classification by using the ‘‘one-against-all’’ methodol-

ogy [14].

Decision trees [10] are hierarchical models for supervised

learning based on the idea that classification can be broken down

into a set of progressive choices on the attributes. In a decision tree

each internal node denotes a test on an attribute, each branch

gives the outcome of the test and each leaf node stores the class

label. Each path from the root to a leaf corresponds to a

classification decision. When single tree classification shows low

predicting power then decision forest classification can improve

accuracy. Random Forests (RF) [13] build hundreds of trees. Each

tree refers to a random variant of the same data. A single tree in

the forest is built by using a bootstrap sample obtained from the

training set.

The Nearest-Neighbor classifier [15] assigns to an unknown

phenotype the label associated to the nearest sample tuple. The

natural extension of the nearest-neighbor rule is the k-Nearest-

Neighbor classifier (k-NN). In this case, the new tuple label will be

the most represented in the k-nearest-neighbor tuples. The

distance from the new tuple is used as a weight in the classification.

This method tends to be slow for large training sets.

Diagonal Linear Discriminant Analysis [16] (DLDA) is a linear

discriminant analysis method with future selection based on a

diagonal covariance matrix which ignores potential correlation

between different features.

Those classifiers make use of a so called black-box and rely on

many genes to give good classification results. However, recently,

Wang and Simom [17] explored the virtues of very simple single

gene classification models for molecular classification of cancer.

They first identify the genes with the most powerful univariate

class discrimination ability and then construct simple classification

rules for class prediction using those single genes. Their results

show that in many cases the single gene classification yields more

accurate classification results than classical approaches.

In this paper we present a new classification method, called

MIDClass (Microarray Interval Discriminant CLASSifier) based

on association rules. Association Rule Mining has been proven to

be effective in many microarray applications[18–20]. In [18],

authors extract significant relations among microarray genes

annotated with metabolic pathways, transcriptional regulators and

Gene Ontologies. In [19], McIntosh and Chawla employ

quantitative association rules capable of dealing with numeric

data representing cumulative effects of variables. In [20], Antonie
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and Bessonov classify using feature selection based on Support

Vector Machines with recursive feature elimination in connection

to association rules.

MIDClass is an association rule mining method [18,19,21]

which classifies gene expression exploiting the idea that gene

expression interval values could better discriminate subtypes in the same class.

A flowchart of the proposed method is pictured in Figure 1. A wide

experimental analysis shows the effectiveness of such a method

compared to the above most prominent classification approaches.

MIDClass is available at http://ferrolab.dmi.unict.it/midclass.

html.

Methods

Overview
Association rule mining finds sets of items (called frequent

itemsets) whose occurrences exceed a predefined threshold in the

dataset. Then it generates association rules from those itemsets

with the constraints of minimal confidence. The market basket

analysis [22] problem is an example of this kind of mining.

Customers habits are classified by finding associations between the

items placed in their shopping baskets.

In MIDClass items are gene expression intervals. Baskets are the

phenotypes containing (i.e. described by) sets of gene expression

intervals. The aim of MIDClass is to extract frequent maximal

itemsets and then use them as rules whose antecedent is the

conjunction of gene expression intervals and the consequence is

the class-label.

Before mining, MIDClass preprocesses data. First, MIDClass

applies the T-Test [23,24] to filter those genes whose expression

do not present any significant variability across the classes. Next, a

discretization algorithm partitions the gene expression intervals

into subintervals possessing strong discriminant power in each

class. A flowchart of the proposed method on ‘‘Breast Cancer 2’’

Dataset is depicted in Figure 2.

Data format
MIDClass takes as input a matrix M of n samples | t genes.

Let w(x,m) denote the expression value of sample x on the m-th

gene, with m~1, . . . , t. Samples are divided into classes

corresponding to phenotypes disease. Let k be a class label, Wk

is the set of all values w(:,:) of genes associated to phenotypes of

class k.

Statistical gene filtering
In order to select discriminant gene expression values MIDClass

applies the T-Test [23,24]. This step is critical for the reliability of

the results, since the presence of not informative genes might

negatively affect the classification and the computational perfor-

mances. Notice that this step is done before running MIDClass .

Other suitable statistical test can be applied. In particular,

MIDClass uses the LIMMA package available in R through

Bioconductor [25].

Discretization
For each gene m, MIDClass partitions its expression value

w(:,m) by a discretization algorithm. This produces a set of

intervals and each expression value belongs to only one of them.

Consequently, MIDClass constructs a matrix M from M by

replacing each w(x,m) with the unique interval containing it.

To perform such a discretization, since there is no best

discretization method, MIDClass includes the following tech-

niques [26]: ID3, EWIB, NONE. However, among the available

discretization algorithms, in the tested datasets, ID3 showed to be

Figure 1. MIDClass flowchart.
doi:10.1371/journal.pone.0069873.g001

MIDClass: Microarray Data Classification Method

PLOS ONE | www.plosone.org 2 August 2013 | Volume 8 | Issue 8 | e69873



Figure 2. Example of MIDClass flowchart on Breast Cancer 2 Dataset (data are partially shown). Let w(x,m) denote the expression value of
sample x on the m-th gene (an example of entry in M is shown as a black box). Samples are divided into classes corresponding to phenotypes disease.

After discretization process, MIDClass constructs a matrix M from M by replacing each w(x,m) with the unique interval containing it. w(:,:) denotes an

entry in M (an example of entry in M is shown as a black box). Then, MIDClass computes per class the possible sets of w(:,:) that are frequent and they
have maximal size. MIDClass filters out gene expression intervals which size are below a given threshold. Since, association rules express interesting
relationships between gene expressions and class labels, MIDClass uses them for classification. Therefore, MIDClass extracts a set of rules per class. Each
rule has quantitative attributes on the antecedence part (i.e. discretized values) and one categorical attribute on the consequence side (i.e. the class k).
Finally, it returns only rules that have a maximal score. The score takes into account the number of items in each sample are contained in the rule
together with the cardinality of the rule (the computation of the score is described in detailed in the Methods section).
doi:10.1371/journal.pone.0069873.g002

MIDClass: Microarray Data Classification Method

PLOS ONE | www.plosone.org 3 August 2013 | Volume 8 | Issue 8 | e69873



one of the more robust. MIDClass uses ID3 as default

discretization algorithm.

We denote by w(:,:) the entries in M, with W the set all possible

w(:,:) in M, and with Wk the set of intervals falling into the k-th

class. Note that, MIDClass classifies M, i.e. it mines gene

expression intervals rather than gene expression values.

Extract maximal frequent itemsets
Let X(W be an itemset (a set of pairs composed by gene and

expression interval) and let T be a collection of itemsets (e.g. the

set all possible itemsets). We denote by support(X ) the percentage

of itemsets Y[T such that X(Y . The support measures how

often X occurs in T . Let minSup denote a threshold value given

by the user whose experimentally default value is 0.4. If

support(X )§minSup, then X is claimed as a frequent itemset.

Let FI be the set of all frequent itemsets in T . If X is frequent

and there is no frequent superset of X , then X is a maximally frequent

itemset. We denote by MFI the set of all maximally frequent

itemsets. MIDClass extracts only MFIs by using the MAximal

Frequent Itemset Algorithm (MAFIA) [27].

Since gene expression intervals may be too narrow and some

time with a low significance, MIDClass allows users to tune the

model by filtering out those that are below a certain threshold

(Minimal Interval Size threshold – the default value is 0.05).

Extract association rules from maximal frequent itemsets
An association rule is an implication X[Y , where X5W,

Y5W, and X\Y~1. Let s be the percentage of subsets in T

containing X|Y and let c be the percentage of subsets of T

containing both X and Y . Then, X[Y holds in the set T with

support s and it has confidence c in T . The minimum confidence is

a threshold value given as input by the user and whose default value

is 0.05.

Association rules express interesting relationships between gene

expressions and class labels. Therefore, MIDClass uses them for

classification.

MIDClass identifies maximal frequent itemsets for each class k,

MFIk, by using Wk. Those itemsets generate the set of rules

Rk~ rk
1,:::,rk

hk

n o
per class. The antecedence of each rule is the

conjunction of the items (gene and expression interval) and the

consequence is the membership of class k.

Extract discriminant association rules and classification
Let x be an unknown discretized sample (i.e. genes expressions

are represented by intervals), and let Rk~ rk
1,:::,rk

hk

n o
be the

association rules for class k. For x, MIDClass evaluates how many

rules are satisfied, even partially, in each Rk.

MIDClass assigns x to that class k whose rules are maximally

satisfied by the following scoring function.

Given a class k, MIDClass first evaluates x for each rule rk
v[Rk,

by using the following function EVAL(rk
v ,x)~

Drk
v \xD
Drk

v D logDrk
v D

DRk D
:

Notice that, EVAL(rk
v ,x) takes into account the number of items

in the sample contained in the antecedent of the rule together with

the cardinality of the rule Drk
v D. The value is normalized by the

number of rules, DRk D, in the class k. Finally, the score assigned to

the sample x with respect to the class k is set to beXhk

v~1
EVAL(rk

v ,x):

Results and Discussion

All tests have been run on a HP Pavilion with Intel Corei7, 8GB

RAM and ubuntu 12.04.

Datasets and Preprocessing
We selected eleven gene expression datasets used in [17].

All datasets are publicly available and were downloaded from

the BRB-Array Tools Data Archive for Human Cancer

Gene Expression repository 2 (http://linus.nci.nih.gov/brb/

DataArchive_New.html). In Table 1 we give the details of each

dataset. In Table 2 we report the number of genes used by each

classifier. Finally, in oder to compare MIDClass with the

association rule mining based method reported in [20] we used

the same Leukemia dataset [28]. Leukemia dataset contains the

gene expression profile from the leukemia microarray study of

Golub et al. [28]. It consists of 72 bone marrow tissues: 47 acute

lymphoblastic leukemia (ALL) cases and 25 acute myeloid

leukemia (AML) cases.

Performances
After MIDClass had generated the rules, we filter each rule by

removing the genes intervals whose presence did not give any

classification improvement. This step is implemented by applying

a Leave-One-Out gene strategy [29].

To motivate the usage of gene intervals we run MIDClass on

genes values discretized by using 1 for up regulated genes, 21 for

donwregulated and 0 for normal expression values. We tested this

model on the Breast Cancer 2 dataset obtaining very poor results

(46% of accuracy).

Concerning MIDClass running time, Figure 3 (a) reports the

running time to build and establish the reliability of the model

using the LOOCV on the tested dataset and Figure 3 (b) the time

to execute MIDClass to create the model and classify a new

instance.

Table 1. Dataset description.

Dataset Description

Brain Cancer 60 samples, 46 patients with classic and 14 patients with
desmoplastic brain cancer

Breast Cancer 1 99 samples, patients that did (n = 45) and did not relapse
(n = 54)

Breast Cancer 2 60 samples, disease-free (n = 32) or cancer recurred (n = 38)

Gastric Tumor 132 samples, 103 tumor samples and 20 normal controls

Lymphoma 58 samples. Patients that did (n = 32) and did not cured
(n = 26)

Lung Cancer 1 41 samples, squamous cell lung carcinoma (21) or
pulmonary carcinoid (20)

Lung Cancer 2 181 samples, 31 mesothelioma samples and 150
adenocarcinoma

Melanoma 70 samples, 45 cases of malignant melanoma patients and
25 of non-malignant patients

Myeloma 173 samples, 137 patients with bone lytic lesions,36
patients without

Pancreatic Cancer 49 samples, 24 ductal carcinoma samples and 24 normal
controls

Prostate Cancer 102 samples, 50 non-tumor prostate and 52
prostate tumors

doi:10.1371/journal.pone.0069873.t001
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We compared our system against competitors using a Leave-

One-Out-Cross-Validation (LOOCV). Using cross-validation one

can better assess the performance of the classifier and predict how

the classifier will generalize to a new independent data set. Table 3

reports the average accuracy obtained from LOOCV. Figure 4

reports the ROC curve of MIDClass on all the analyzed datasets.

Wang and Simon in [17] (here after Single Gene Classify) claim

that in most of the cases a single gene is enough to obtain a better

classification compared to the state of the art. However, we show

that MIDClass outperforms the Single Gene Classify ( based on t-

test (SGC-t) and based on WMW (SGC-W)) in almost all cases and

in particular on those datasets in which it had poor performances

(see Table 3). Table 3 shows also that MIDClass outperformed the

standard methods (DLDA, k-NN, SVM and RF). The perfor-

mances of compared systems have been obtained from [17].

Results in Table 3 also show that MIDClass in connection with

ID3 in all datasets but one, Prostate Cancer, is more performant

than EWIB. Finally, MIDClass in almost all cases outperformed

all compared systems.

Comparing with the method in [20] in the Leukemia dataset,

we observed that our rules have a high number of genes (an

average of 10 genes compared to the 5 reported by the authors)

Figure 3. Runninig time of MIDClass to (a) build and establish its reliability using the LOOCV and (b) to create the model and
classify a new instance.
doi:10.1371/journal.pone.0069873.g003

Table 2. Number of genes used by classifiers in each tested
dataset.

Dataset MIDClass SGC-t SGC-W DLDA k-NN SVM RF

Melanoma 55 1 1 7200 7200 7200 7200

Breast
Cancer 1

8 1 1 17 17 17 15

Brain
Cancer

239 1 1 14 14 14 14

Breast
Cancer 2

16 1 1 176 176 176 176

Gastric
Tumor

23 1 1 848 848 848 848

Lung
Cancer 1

101 1 1 7472 7472 7472 7472

Lung
Cancer 2

55 1 1 3207 3207 3207 3207

Lymphoma 3 1 1 2 2 2 2

Myeloma 27 1 1 169 169 169 169

Pancreatic
Cancer

22 1 1 56 56 56 44

Prostate
Cancer

45 1 1 798 798 798 798

doi:10.1371/journal.pone.0069873.t002

Table 3. Comparisons of MIDClass , single gene classifiers
and standard classifiers.

Dataset MIDClass SGC-t SGC-W DLDA k-NN SVM RF

Melanoma 98.5 (ID3, 0.1, 2) 97 96 97 97 97 97

Breast Cancer 1 76 (ID3, 0.05, 1) 63 69 61 53 52 43

Brain Cancer 83 (ID3, 0.01, 1) 80 77 65 73 60 70

Breast Cancer 2 90 (ID3, 0.05, 1) 58 50 73 67 73 67

Gastric Tumor 94 (ID3, 0.05, 2) 89 80 81 96 97 95

Lung Cancer 1 98 (ID3, 0.05, 2) 98 95 95 98 98 98

Lung Cancer 2 99 (ID3, 0.01, 2) 93 93 99 99 99 99

Lymphoma 69 (ID3, 0.1, 2) 76 71 66 52 59 57

Myeloma 84 (ID3, 0.05, 2) 68 67 75 78 74 79

Pancreatic
Cancer

78 (ID3, 0.05, 1) 69 90 63 61 65 55

Prostate Cancer 92 (EWIB, 0.01, 2) 89 89 78 93 93 93

We report the average accuracy of all tested classifiers on the selected dataset
obtained with standard LOOCV. The performances concerning the compared
algorithms have been retrieved from [17]. Concerning MIDClass , in brackets we
report the discretization algorithm, the MFI threshold and the f function (1:
f ~ log 2: f ~ exp ).
doi:10.1371/journal.pone.0069873.t003
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and some genes were not present in our rules (such as

RIN2,MNX1,LYN,GSTT2, GJA5,CD63 and CYFIP2). Howev-

er, MIDClass yields a better classification performance ( MIDClass

: 97.2% vs method in [20]: 95.52%).

Although MIDClass has been designed to afford two-class

classification problems, we tested its performances in a multi-class

classification problem. Following [14] we implemented the

algorithm according to the One-Versus-All strategy. We per-

formed a LOOCV on the SRBT dataset [30] obtaining 100%

classification accuracy by using ID3, MFI threshold equals to 0.05

and Minimal Interval Size equals to 0.05. By comparing such

results with the one yielded by ANMM4CBR [31] (around the

97%), MIDClass looks promising also for classifying multi-class

instances.

Finally, in order to validate the use of gene intervals we

conducted an experiment by substituting the intervals assigned to

genes in the rules with their fold changes. We observed a strong

degradation of the performances. Table 4 presents some of the

MIDClass classification rules that have been used in the

classification process of ‘‘Breast Cancer 2’’ dataset. For example,

by substituting the intervals assigned to APS and IL17BR with

their fold change we obtained a poorer classification performance

equal to 81% (originally it was 90%).

Discussion of Biological Relevance
Table 4 presents some of the classification rules that have been

used in the classification process of breast cancer 2 dataset. We

assessed each gene in the rules in the breast cancer context by

reviewing relevant literature and using IPA-Ingenuity Software

(http://www.ingenuity.com/).

Most part of genes in Table 4 were related to breast cancer. For

example, HOXB13, IL17BR and CHDH genes represented by

Rule1 are correlated with ER status and all three genes exhibited

an ER-dependent correlation pattern with HER2 status.

ER is a member of the nuclear hormone family of intra cellular

receptors, it is a DNA-binding transcription factor which regulates

gene expression. Binding of estrogen to ER stimulates proliferation

of mammary cells, producing an increasing of cell division, DNA

replication, and increases mutation rate. This causes disruption of

the cell cycle, apoptosis and DNA repair processes eventually

leading to tumor formation. The Human Epidermal growth factor

Receptor 2 HER2/neu belongs to a family of four trans

Figure 4. MIDClass ROC curves.
doi:10.1371/journal.pone.0069873.g004
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membrane receptor tyrosine kinases involved in signal transduc-

tion pathways that regulate cell growth and proliferation. Over-

expression of this receptor in breast cancer is associated with

increased disease recurrence and worse prognosis.

Previous studies shown that HOXB13 is negatively regulated by

ER, likely through a different mechanism than gene activa-

tion[32]. On the contrary, IL17BR and CHDH are both positively

correlated with ER expression, their extent of correlation is less

than that for PR and pS2. Previously, the HOXB13:IL17BR

index was found to be higher in HER2-positive tumors than that

in HER2-negative tumors [33]. The relationship of these three E2-

regulated genes to HER2 is notable because recent data from

preclinical models indicate that crosstalk between the HER2 and

ER signaling pathways directly contributes to the development of

tamoxifen resistance [34,35]. They are estrogen-regulated genes,

and have a prognostic utility due to their complex regulation

through both ER- and HER2-dependent pathways. These two

pathways play a key role in breast cancer.

Another relevant gene reported by Rule10 is CCL4 (Gene

Symbol SCYA4). It is a member of chemokines family and was

present at high levels in breast cancer tissues compared to normal

tissues [36]. This gene with CC chemokines CCL2 is also

correlated to the grade of breast tumors [37]. High levels of CCL2

or CCL4 trigger macrophage, B and T lymphocytes recruitment

to the tumor [36,38], which is correlated with a poor prognosis

[36]. A previous study also showed that CCL2 was correlated to

lymph node status [38]. CCL2 -2518A/G promoter polymor-

phism has been shown to be correlated with staging and metastasis

of breast cancer patients [39]. CCL4 displayed an expression

inversely correlated to ER and to PR in breast cancer biopsies and

is linked to HER2 status.

ABCC11 is associated with resistance to methotrexate and

fluoropyrimidines, two classes of agents widely used for breast

cancer treatments (see Rule10). Its transcripts were overexpressed

in estrogen receptor-(ER-) positive breast cancers [39]. ABCC11-

mediated transport of anticancer drugs, combined with its

expression levels in a hormonally-regulated breast tissue, suggest

that the pump expression may be regulated by xenobiotics.

ABCC11 mRNA and protein levels were enhanced by DEX

(dexamethasone) a potent anti-inflammatory factor widely used in

cancer therapy, and by PROG (progesterone) in MCF7 (proges-

terone receptor-(PR-) positive) but not in MDA-MB-231 (PR-

negative) breast cancer cells. This suggested a PR-signaling

pathway involvement in ABCC11 regulation. Furthermore,

ABCC11 levels were positively correlated with the PR status of

postmenopausal patient breast tumors from two independent

cohorts. Thus, in the subclass of breast tumors (Estrogen Receptor-

(ER-) negative/PR-positive), the elevated expression level of

ABCC11 may alter the sensitivity to ABCC11 anticancer

substrates, especially under treatment combinations with DEX

[40–42].

Interesting interaction between DOK2 and APS is represented

by Rule10. These genes are not yet related to breast cancer

although they are missexpressed in several breast cancer mRNA

profiling. DOK2 is known as the substrate of chmeric p210bcr/abl

oncoprotein characterizing chronic myelogenous leukemia with

Philadelphia chromosome. Reduced DOK2 expression was

recently reported in lung adenocarcinoma, suggesting that this

protein acts as a tumor suppressor in solid tumors.

Finally, we mark that the use of gene intervals instead of gene

fold changes not only improves the classification power of

MIDClass as shown in Performances Section but reflect also the

two operating modes of gene expression at the messenger level:

baseline, and under-expression or over-expression. In addition,

converting real gene expression data into a typically small number

of finite values maintaining the variation of the original data,

Table 4. MIDClass classification rules in breast cancer 2 dataset.

Rule Genes Class

Rule1 IL17BR[0.79,0.98], DOK2[2.29,2.44], HOXB13[20.68,20.09], CHDH[1.58,1.89],

SCYA4[7.64,8.13], GUCY2D[4.19,2.14E7], ABCC11[5.68,6.56], IL1R2[1.49,2.14E7],

APS[0.18,2.14E7] NonRecurrence

Rule2 ABCC11[2.84,3.19], IL17BR[0.0,2.14E7], CHDH[0.94,1.2], GUCY2D[3.53,3.8],

SCYA4[7.64,8.13], APS[0.18,2.14E7] NonRecurrence

Rule3 DOK2[2.23,2.25], APS[20.46,20.38], IL1R2[1.09,1.38], IL17BR[0.0,22.29],

SCYA4[8.16,2.14E7], ABCC11 [5.68,6.56], HOXB13[1.1,2.14E7] NonRecurrence

Rule4 IL17BR[20.43,20.34], CHDH [0.0,2.14E7], SCYA4[6.91,7.06], APS[20.74,20.64],

GUCY2D[4.19,2.14E7], HOXB13[1.1,2.14E7] NonRecurrence

Rule5 GUCY2D[0.56,0.7], APS[21.34,21.15], HOXB13[22.2,22.09], DOK2[2.0,2.11],

ABCC11[4.96,5.25], SCYA4[6.91,7.06], CHDH[1.58,1.89] NonRecurrence

Rule6 HOXB13 [20.09,0.21], ABCC11 [3.61,3.97],APS [0.0,2.14E7],IL17BR [0.12,0.79] Recurrence

Rule7 GUCY2D [2.75,2.84],HOXB13 [0.56,0.85],ABCC11 [3.44,3.51], IL17BR [21.03,20.76],

CHDH [1.2,1.35],APS [0.0,2.14E7],DOK2 [1.21,1.45] Recurrence

Rule8 IL17BR [1.18,1.24],ABCC11 [0.0,2.14E7],APS [0.0,2.14E7], GUCY2D [3.07,3.25],

DOK2 [0.0,1.2],CHDH [1.89,2.15],HOXB13 [22.77,22.58], IL1R2 [0.0,20.37] Recurrence

Rule9 GUCY2D [2.0,2.41], IL17BR [1.46,2.14E7],APS [20.53, 20.46],CHDH [2.36,2.14E7],

ABCC11 [0.57,2.84] Recurrence

Rule10 SCYA4 [0.0,5.99], DOK2 [0.0,1.2],IL17BR [0.12,0.79] ,IL1R2 [0.0,20.37],

APS [21.15,20.74] Recurrence

doi:10.1371/journal.pone.0069873.t004
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generates more intuitive rules that are able to catch possible

individual variation.

Supporting Information

Manual S1 MIDClass user manual.

(PDF)
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