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Abstract
Coronavirus disease 2019 (COVID-19) is a novel disease resulting from infection with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which has quickly risen since the beginning of 2020 to become a global pandemic. As a result
of the rapid growth of COVID-19, hospitals are tasked with managing an increasing volume of these cases with neither a
known effective therapy, an existing vaccine, nor well-established guidelines for clinical management. The need for
actionable knowledge amidst the COVID-19 pandemic is dire and yet, given the urgency of this illness and the speed with
which the healthcare workforce must devise useful policies for its management, there is insufficient time to await the
conclusions of detailed, controlled, prospective clinical research. Thus, we present a retrospective study evaluating
laboratory data and mortality from patients with positive RT-PCR assay results for SARS-CoV-2. The objective of this study
is to identify prognostic serum biomarkers in patients at greatest risk of mortality. To this end, we develop a machine
learning model using five serum chemistry laboratory parameters (c-reactive protein, blood urea nitrogen, serum calcium,
serum albumin, and lactic acid) from 398 patients (43 expired and 355 non-expired) for the prediction of death up to 48 h
prior to patient expiration. The resulting support vector machine model achieved 91% sensitivity and 91% specificity (AUC
0.93) for predicting patient expiration status on held-out testing data. Finally, we examine the impact of each feature and
feature combination in light of different model predictions, highlighting important patterns of laboratory values that impact
outcomes in SARS-CoV-2 infection.

Introduction

Coronavirus disease 2019 (COVID-19) is a novel disease
resulting from infection with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) that as of June 5, 2020
has resulted in 394,887 deaths worldwide since its emer-
gence in late 2019 [1]. Currently, there is no vaccine or
highly effective therapy against SARS-CoV-2 and there is a
dearth of prognostic tools to identify which patients are at
increased risk of death. Thus, the effective management of
COVID-19 requires the identification of patient mortality
risk and the ability to surface such an identification

algorithm from among the new and rapidly accumulating
data now available regarding this disease. Previous studies
have evaluated laboratory, radiological, and observational
findings in COVID-19 patients but have had limited success
in determining which patients will have a poor outcome [2].
More specifically, laboratory data such as coagulation fac-
tors, serum proteins, serum electrolytes, and cytokines have
been studied [2–5] and some of these, such as ferritin and c-
reactive protein (CRP), may offer early clinical signs of
severe disease onset [2–4]. For example, Zhou et al. [5]
observed significantly greater increases in serum ferritin,
procalcitonin, and CRP in very severe disease, however,
they suggest this could be due to a secondary bacterial
infection. Wang [2] found that levels of CRP were posi-
tively correlated with the size of lung lesions on imaging
and severity of disease presentation. Similarly, Tan et al. [3]
demonstrated that early stage disease with significant CRP
increase was a predictor of early, severe COVID-19. That
being said, there has not been an integrative model that can
capture the combined effect of multiple such biomarkers
and the interactions between them.
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The use of machine learning (ML) in medicine is not a
new concept, particularly in the area of pathology where
rapid growth in the synergistic domains of laboratory
information systems (LIS) and digital slide scanning has
made large collections of valuable healthcare data available
for statistical modeling. In a study by Luo et al. [6], authors
demonstrated that using patient demographics and other
laboratory test results ML could accurately predict normal
or abnormal serum ferritin results. Huang and Wu [7] used
deep convolutional neural networks to classify bacterial
colonies by morphology prior to employing advanced
identification techniques (automated systems and mass
spectrometry) saving laboratory technician time and
expertise. Furthermore, in the realm of anatomic pathology,
studies have shown that ML can be used with significant
success in the diagnosis of prostate adenocarcinoma, breast
carcinoma, skin cancers, and typing colorectal polyps
among other malignant diagnoses [8–10].

In the midst of a rapidly evolving scenario such as the
COVID-19 pandemic, ML constitutes a particularly pow-
erful method to surface insights directly from newly gen-
erated testing and patient data where guidelines have yet to
be established. ML has the ability to improve diagnostic
performance relative to hand-selected biomarkers by
selecting groups of relevant biomarkers and more con-
sistently capturing both their relative importance to pre-
diction and their interactions among one another [11].
Moreover, ML is amenable to model inspection and inter-
pretability (depending upon the technique used), further
allowing models to be evaluated and inspected by experts as
a means to fuel and guide subsequent clinical decisions.
Lastly, ML performs well in circumstances where structured
numerical data are readily available. Our institution per-
forms a considerable amount of SARS-CoV-2 testing pre-
sently exceeding 80,000 samples processed between March
13, 2020 and June 5, 2020, resulting in one of the largest
data sets of SARS-CoV-2 positive patients in our state.
With our institution serving as a testing hub, we generate
significant quantities of data that will uniquely allow our
institution to identify otherwise unforeseen relationships
between test results, laboratory values, and patient outcome.

Materials and methods

Data and outcomes selection

Approval for the study was obtained from the University of
Texas Medical Branch Institutional Review Board (IRB# 20-
0125). A retrospective query of the LIS was performed for
patients with positive testing for SARS-CoV-2 using any of
the following platforms: Abbott ID Now, Abbott M2000,
Hologic Panther Fusion, Cepheid Gene Xpert, or our own

RT-PCR Laboratory Developed Test using SQL [12]. In
addition, patient mortality was obtained by querying our
Enterprise Data Warehouse for “Deceased” status among
SARS-CoV-2 positive patients. Twenty-six serum chemistry
and blood gas laboratory parameters (Table 1) were collected
and assessed for sparsity, preserving only laboratory tests for
which at least 25% of patients had measured values within
14 days following a positive SARS-CoV-2 test and excluding
any laboratory values captured within 48 h of death. All
patients with positive SARS-CoV-2 test results which were
admitted to our hospital for care were included. Part of the
rationale for doing this is that patients are more likely to be
comparable on latent variables such as comorbid illnesses that
we did not explicitly capture via laboratory results. Addi-
tionally, filtering on admitted patients increases the density of
lab results across our tests of interest, thereby making us less
reliant on imputation than if we had not filtered patients in this
way. Tests within 48 h of death were excluded to maximize
clinical prognostication while preserving sensitivity, thus
allowing clinical action to thwart potential mortality. Fur-
thermore, for patients who have had multiple laboratory
measurements within the selection window, the earliest
laboratory result is used for analysis. All analyses were per-
formed using Python 3.7 and the scikit-learn, pandas, and
shap packages.

Model development

From among the 26 laboratory values, multivariate feature
imputation was performed using scikit-learn’s Iter-
ativeImputer method to replace absent laboratory values
with probabilistic numerical results (Supplementary fig.,
Missingness Plot). This method models each feature with
missing values as a function of other features and uses the
resulting best fit function to estimate missing values. This is

Table 1 Laboratory search parameters queried in the laboratory
information system.

Laboratory search parameters

Acute care PO2 D-dimer

Alanine aminotransferase Estimated glomerular filtration rate

Albumin Estimated glomerular filtration rate, African
American

Alkaline phosphatase Ferritin

Anion gap Glucose

Aspartate aminotransferase Hemolysis index

Bilirubin, total International normalized ratio, protime

Blood urea nitrogen Lactate dehydrogenase

C-reactive protein Lactic acid

Calcium Potassium

Chloride Protein, total

CO2, total Protime

Creatinine Sodium
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done in a round-robin fashion such that, at each step, a
feature column is designated as a prediction output (y),
while the other features are collectively considered a feature
matrix X and used for a regression of the form ŷ= f(X).
After initializing missing values to their feature-wise mean,
we used Bayesian ridge regression as our multivariate
model followed by ten cycles of imputation over the entire
feature table. We retained y (expired versus non-expired) as
a feature during imputation. We then performed 1000
bootstrap samplings of our imputed data set. Including the
dependent variable when imputing missing values among
independent variables is motivated by the fact that there is
presumed to be a relationship between these variables and
excluding the dependent variable from imputation can
produce biased estimates, which suppress imputed inde-
pendent variables toward the null hypothesis. Thus, inclu-
sion of the dependent variable in imputation works to
preserve correlations by allowing imputation to model them
based upon a full view of the data captured and not
including all relevant variables—dependent or otherwise—
would artificially bias imputation by blinding it to such
correlations. This topic is discussed in detail in both Gra-
ham and Enders [13, 14].

Following multiple imputation, data were shuffled and
divided into training (80%) and testing (20%) subsets and a
logistic regression classifier was trained to predict expira-
tion status based upon these laboratory values. Since most
SARS-CoV-2 positive patients were not deceased, class
weighting was applied to increase model penalty for failing
to correctly identify patients who would expire. Using the
model trained on all 26 laboratory values, we then exam-
ined regression coefficients as a measure of feature impor-
tance to understand the relative influence of each input
laboratory value on the model’s final prediction. We then
selected the subset of five laboratory values to which the
model assigned the highest weights after which the model
was retrained. Five values were selected in an attempt to
provide a simple and parsimonious set of common labora-
tory tests. Theorizing that these laboratory values may have
nonlinear interactions, we then trained a support vector
machine (SVM) using a radial basis function kernel from
this same set of five laboratory values.

Machine learning

The SVM we trained for this task is a nonlinear model and, as
such, it does not lend itself as transparently as a linear model
does to interpretation. To better understand how the trained
SVM model behaves, we implemented Shapley additive
explanations (SHAP) using Python’s SHAP package [15].
SHAP is an ML interpretability technique growing in popu-
larity for its ability to capture the marginal contribution of
each feature to a model’s ultimate output even as those

contributions may differ in the context of different specific
predictions and in the context of values of other features for
those predictions. SHAP is based upon the game-theoretic
notion of Shapley values and it considers each feature as a
“player” on a “team” of features that works to influence a
trained model’s prediction. More specifically, a model’s
baseline output is determined by averaging over all predic-
tions of a given model. Then, each specific prediction is
considered as a function of feature influence resulting in some
deviation of the model from a baseline prediction. This notion
of the “strength” of a positive or negative prediction is then
repeatedly tested using different feature “teams” comprising
different combinations of features. In doing this, the SHAP
approach can empirically determine the influence of each
feature for each prediction by comparing how important that
feature is to model output both in the presence and absence of
combinations of other features. A linear model, such as a
logistic regression, takes the following form:

f̂ xð Þ ¼ β0 þ β1x1 þ � � � þ βnxn;

where x in this case is a specific patient’s collection of lab
values about which we wish to make a prediction, xn is a
specific value within that collection (e.g., CRP), and βn is a
learned weight applied to that lab value. In such a model,
the importance of each feature such as CRP, denoted ϕCRP,
can be straightforwardly determined:

ϕCRPðf̂ Þ ¼ βCRPxCRP � E βCRPXCRPð Þ ¼ βCRPxCRP � βCRPEðXCRPÞ;

where βCRPxCRP is the weight of CRP multiplied by the
value of CRP for a specific example and EðβCRPXCRPÞ is the
average of the weight of CRP multiplied by the CRP values
for each item in the data set. In simple terms, the importance
of a specific feature for a specific prediction outcome in the
case of a linear model is the difference between the overall
feature weight and the value for that feature for a specific
prediction versus the overall feature weight and average
value for all predictions. Note that this also does not need to
consider other features.

By contrast, a nonlinear model such as our SVM can
achieve better performance through capturing nonlinear
interactions between features and outcomes at the expense
of yielding itself to as simple of an interpretation technique.
The Shapley value of a feature, by contrast, is its influence
as a member of the feature “team”, denoted S, weighted and
summed over all combinations of feature values:

ϕCRP valð Þ ¼
X

S�fx1;¼ ;xngnfxCRPg

Sj j! p� Sj j � 1ð Þ!
p!

� val S∪ xCRPf gð Þ � valðSÞð Þ;
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where S is a subset of features, n is the total number of
features, and x is the collection of feature values used for a
given prediction. The advantage of this approach is that it
exhaustively assesses each prediction with all possible
combinations of features, annotating the actual influence of
each feature for each prediction. Other explainability
approaches such as local interpretable model-agnostic explana-
tions approximate feature importance by sparsely modeling the
impact of each feature upon predictions in the data set and are
especially valuable when exhaustive assessment is not feasible,
such as a data set of millions of patients. For data sets of the
size we have in this study, we can efficiently perform an
exhaustive feature attribution technique and gain richer insight
into model behavior. The output of SHAP analysis produces a
“force plot”, which can be viewed either for a single example
or for a whole test population. Because the relationship
between features and their corresponding SHAP values is
nonlinear and influenced by the values of other features, we
profiled the feature-wise relationship between feature and
SHAP values in aggregate across all test predictions. To further
elucidate such relationships, we also plotted the pairwise
relationship between each laboratory value for each test
prediction, its corresponding SHAP value, and the magnitude
of other members of the five selected laboratory parameters.
Imputed values were used in SHAP importance analysis and
imputation would impact—at least to some degree—resulting
Shapley values. The most effective way in which we currently
mitigate this impact is by dropping very sparse measurements
leaving us with a fairly dense if not entirely complete initial
data set (as seen in the missingness plot). Moreover, as the
Shapley value analysis considers the importance of a feature as
a function of its relative contribution to outcome, it will favor
features that have conspicuously high values especially when
other features for the same entity have values closer to their
class-wise mean. Taking this into account, although Shapley
value analysis is not free from imputation bias, imputed
features are themselves less likely to be at the upper or lower
bounds of feature variation since they are themselves the
product of a regression used during imputation. Finally, the
situation in which imputed features would be expected to be
anomalous would likely also be a situation where other feature
values used for that imputation were also anomalous and the
co-occurrence of multiple anomalous values for a patient
example would still result in Shapley values which are
distributed more evenly among them (since they are all
members of the same feature set for a given record) rather than
assigning undue importance only to the imputed feature.

Results

We identified 398 patients (43 expired and 355 non-
expired) that met criteria for inclusion. Our initial trained

model using all 26 laboratory parameters resulted in a
model with 80% sensitivity and 77% specificity for identi-
fying patients who would expire when scored against a
held-out test set. Logistic regression permitted the evalua-
tion of feature importance on the model (Fig. 1). The five
laboratory values to which the model assigned the highest
weights were then selected: CRP, blood urea nitrogen
(BUN), serum calcium, serum albumin, and lactic acid. The
linear model was then retrained, achieving 90% sensitivity
and 77% specificity for expiration status.

Our SVM with class weighting achieved 91% sensitivity
and 91% specificity with an AUC of 0.93 and AUPRC of
0.76 (Fig. 2). Additionally, the confusion matrix depicts the
individual tallies for our true patient labels (alive and
expired) and predicted labels (alive and expired) based upon
which the calculated negative predictive value is 98.4%,
and positive predictive value is 62.5% for predicting risk of
mortality in SARS-CoV-2 positive patients at least 48 h
prior to death.

Shapley values were calculated for each feature and each
test prediction as a way to profile the relative influence of
these laboratory values in model prediction. Figure 3
depicts a force diagram for the model’s highest-confidence
correct prediction of mortality, the model’s single false-
negative prediction of survival, and an additive force dia-
gram for the model’s mortality prediction across the entire
test set. Each diagram represents the influence of each
laboratory feature on a single example with a true-positive
and false-negative prediction shown. For the single true-
positive prediction shown, CRP was most influential in
making a prediction of death followed by albumin, which
was not decreased and thus limited the model’s confidence.
Alternatively, for the single false-negative prediction, while

Fig. 1 Learned regression coefficients for each of 26 laboratory
values provided to a logistic regression model. Features are each
present on the x-axis with their corresponding regression coefficient on
the y-axis. Features are ranked according to the absolute value of their
corresponding coefficient. The last-ranked features protein, total and
aspartate aminotransferase have regression coefficients of zero.

Development of a prognostic model for mortality in COVID-19 infection using machine learning 525



decreased albumin, decreased calcium, and elevated lactic
acid contributed toward a prediction for death, the lack of an
elevated CRP exerts a strong negative influence on this
prediction and induces the model to predict that the patient
will not expire. Figure 3 also depicts a comprehensive
assessment of these force diagrams across the entire data set
wherein each force plot is one slice of the aggregate figure.
The x-axis of the aggregate figure denotes which particular
slice is either a false-positive, true-positive, false-negative,
or false-positive model prediction. As shown in Fig. 3, CRP
and calcium are most influential for most predictions but not
for all predictions.

CRP, lactic acid, and serum calcium contribute the most
to mortality prediction and have the strongest influence on
model output when considered over the entire data set as
illustrated in Fig. 4. These three features having the highest
and lowest SHAP values. As shown in the force diagrams in
Fig. 3, certain predictions preferentially use serum BUN and
albumin. The relationship between the magnitude of BUN
and its corresponding influence on model prediction (i.e.,
SHAP value) is most pronounced in circumstances where
CRP and lactic acid are not elevated and calcium is not
decreased. In other words, BUN becomes more relevant in a
subpopulation of patients in whom CRP, lactic acid, and
calcium are not significantly aberrant. This may indicate
that there are two separate phenotypes that can contribute to
predicting mortality: one driven by CRP, lactic acid, and
calcium, and the other by albumin and BUN. Equally
intriguing are the pronounced nonlinear relationships
between CRP and calcium and between albumin and lactic

acid both of which are highlighted in Fig. 4. In the case of
CRP and calcium, the interaction plot shows that CRP has a
strong influence on model outcome only when calcium is
elevated. Alternatively, in the case of albumin and lactic
acid, albumin has a strong influence on model output pri-
marily when lactic acid is elevated. When CRP and calcium
contribute both strong positive and negative influence on
prediction, albumin is typically only influential to prediction
when decreased. Furthermore, for albumin and CRP there is
a nonlinear relationship between feature and Shapley
values. Increasingly aberrant values of CRP exert more
influence on model predictions except for some samples
with high BUN, for which CRP’s influence on prediction is
less. For albumin, there is a collection of samples over
which decreased albumin is increasingly influential for a
negative model prediction except for samples where lactic
acid is decreased, in which cases changes in albumin have
little effect on prediction.

Discussion

The rapid spread of the novel SARS-CoV-2 virus and our
limited knowledge of its clinical course has caused a unique
shift in our healthcare system. What is usually a slow
methodical process to develop and validate clinical tools to
aid in the management of diseases has become a rapid
frenzy of discovery. Much progress has been made in
diagnostic testing, identifying many patients infected with
the virus such that there is now a wealth of laboratory data

Fig. 2 Receiver operating
characteristic (ROC) curve
depicting the performance of a
trained support vector
machine classifier using the
top 5 highest-weighted
laboratory values. Normalized
confusion matrix depicting the
support vector machine’s
prediction of patient expiration
versus a patient’s true expired
status.
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capturing both SARS-CoV-2 status and concomitant
laboratory values. Moreover, this repository continues to
grow as hospitals manage rapidly increasing numbers of
SARS-CoV-2 cases. Currently, there are multiple studies
which report one or two laboratory values associated with
prognosis in COVID-19 patients. However, the complex
interactions among numerous laboratory values are difficult
to illustrate and, moreover, are not well described. To our
knowledge, this is the first study using ML to predict
mortality in SARS-CoV2 positive patients, which relies
exclusively on a multiplex of serum biomarkers.

ML prediction models for COVID-19 have been rapidly
entering the medical literature, however, most rely either
partially or entirely on subjective clinical data which may
vary heavily between observers [16] and institutions. These
tools rely either wholly or in part on symptomatic findings
and have AUCs ranging from 0.83 to 0.91. This is generally
consistent with our findings but many of these models do
not include a more detailed assessment of model behavior
and sensitivity and specificity for predicting death in the
setting of COVID-19 [17, 18]. Interestingly, established
prognostic models such as APACHE II, SOFA, and

CURB65 scores have been shown to be useful in predicting
death in the setting of COVID-19 with AUCs of 0.84–0.96.
Among these, APACHE II demonstrated the highest per-
formance with an AUC of 0.96 and a sensitivity and spe-
cificity of 96% and 86%, respectively, although the study
demonstrating this exclusively considered ICU patients
[19]. Additionally, by utilizing subjective data, such models
are likely only to be generalizable within institutions that
share the same definitions and approaches to recording the
specified data. Pathology is uniquely situated to offer
quantitative insight into the progression of COVID-related
illness as laboratories can access and process large amounts
of objective laboratory data, which are directly uploaded to
the LIS. Our ML algorithm took advantage of this structure
and obtained all data directly from the LIS without the need
for manual entry of any individual values. This not only
saves time and resources but ensures that new data can be
easily accessed to further train and test this model.

Early identification of at-risk patients has several fore-
seeable benefits including improved allocation of critical
care supplies and staff, ability to contact individuals not
currently admitted to the hospital and ensure they are

Fig. 3 Feature importance for each of five core laboratory para-
meters for our trained SVM model. As the influence of laboratory
parameters will be different in the setting of different patients, this
additive force diagram depicts the changing influence of these

parameters throughout the test set. Large blue and pink background
areas represent true-positive and true-negative predictions with false-
positive and false-negative predictions overlaid.
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evaluated thoroughly, and the ability to relocate hospita-
lized patients to a center capable of delivering a higher level
of care. One ML platform currently being used in over 100
US hospitals to predict mortality and guide hospital

practices is the Epic Deterioration Index (EDI). EDI is a
proprietary ML algorithm that assesses multiple clinical and
laboratory factors to estimate a hospitalized patient’s risk of
progressing to severe disease. A recent study through the

Fig. 4 Relationships between feature and Shapley values. The relationship between the value (color) and Shapley value (x-axis) is plotted for
each of five laboratory parameters used to train the SVM model.
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University of Michigan evaluated the accuracy and impact
of the EDI on an SARS-CoV-2 positive population at their
institution showing the EDI to have a relatively high posi-
tive predictive value of 80% for patients labeled as high
risk, however, the sensitivity was only 39% [20].

Our algorithm aimed to first train for high sensitivity and
then optimize for the highest specificity possible with
minimal sacrifice to the sensitivity. We initially allowed a
simple linear model to work with all 26 laboratory para-
meters, but sought to simplify the model via feature
exclusion, resulting in a parsimonious set of five laboratory
parameters: CRP, BUN, serum calcium, serum albumin,
and lactic acid. These laboratory parameters comprise an
intuitive and clinically relevant subset of commonly tested
parameters with which clinicians are already comfortable.
These markers can be obtained quickly from most clinical
chemistry laboratories with specimens collected using a
serum separator or red-top-tube and a heparinized syringe.
Lastly, the model’s weighting of these five laboratory
values unifies several separate observations that appear
elsewhere in the literature with regard to severe COVID-19
disease progression or death and highlights potential non-
linear interactions among these parameters that generate
additional pathophysiologic hypotheses [2, 3, 21]. This
approach is, of course, not without limitations. In using an
SVM, we deliberately sought a model that was not confined
to axis-parallel decision boundaries as we suspected and
intended to capture interactions between features. In com-
parison to a decision tree, for example, this comes with a
trade off in terms of clinical interpretability. Nonlinear
models such as this are powerful but they are more limited
in their direct application by clinicians in the care of
patients. It is our hope that future work in the field of model
explainability and decision support will close this gap.
Second, SVMs do not easily lend themselves to a prob-
abilistic interpretation of the form “this patient has an x
percent chance of death” which is often a useful interpretive
paradigm although there are approaches that can allow for
such an interpretation [22] in the standard case of hinge
loss. Lastly, this model is developed using the data of one
medical center, therefore embedding within that data the
ordering practices of one medical center as well. Even if the
overall distribution of laboratory values for patients is
generalizable, it may be that differing protocols result in
more sparse features thus requiring more imputation.

CRP and lactic acid are used regularly as serum markers
of inflammation. High levels of CRP and lactic acid have
been identified as strong predictors of COVID-19 disease
severity and elevated CRP has been positively correlated
with the size of lung lesions by computed tomography
[2, 3, 21]. Interleukin-6, an inflammatory cytokine that
induces the production of both CRP and lactic acid, has
been shown to be present in high quantities in COVID-19

patients [23]. Furthermore, studies have demonstrated lactic
acid elevation in sepsis and circulatory shock, whereas
albumin is well known to act as a negative acute inflam-
matory reactant [24]. Our algorithm placed a strong weight
on hypoalbuminemia as a negative model predictor except
in the setting of hyperlactatemia. Severe sepsis causes a
high anion-gap metabolic acidosis due hyperlactatemia,
while hypoalbuminemia is known to lower an anion gap
[25]. In such a severe inflammatory state resulting in such
high levels of lactic acid, albumin becomes less con-
tributory to predicting mortality.

Multiple studies have identified kidney injury as a
sequela frequently present in COVID-19 patients with
severe disease, many of whom expired [26–28]. In addition,
nephropathies associated with other viruses such as HIV,
CMV, and HCV are well known [29, 30]. A review of
kidney renal histology in 26 COVID-19 autopsies demon-
strated diffuse proximal tubular injury and electron micro-
scopic examination revealed coronavirus-like particles with
spikes in the tubular epithelium and podocytes. Positive
immunohistochemical staining for the SARS-CoV-2
nucleoprotein has been observed in tubular epithelial cells,
which also demonstrated the upregulation of angiotensin
converting enzyme 2 (ACE2) [26] that serves as the
receptor binding domain of SARS-CoV-2 spike protein
facilitating entry into the cell [31]. Of the five biomarkers,
our algorithm weighted BUN, albumin, and calcium highly,
which are all associated with acute kidney injury (AKI)
[32]. Low serum albumin has been reported as a common
finding in non-survivors as demonstrated by Huang et al.
[33] whereby 25 of 36 had low albumin. Furthermore, AKI
is a well-documented cause of hypoalbuminemia, which can
exacerbate hypocalcemia [29, 34]. In a multicenter, retro-
spective study, Li et. al., reported that patients with severe
disease including death had an elevated BUN that was
statistically significant compared with survivors and
patients with non-severe disease. Authors further demon-
strated a mortality risk in COVID-19 patients with AKI with
an estimated hazard ratio 5.3 times those without AKI [27].
In light of severe disease associated with kidney injury in
COVID-19 patients, it is unsurprising to see a pattern of
hypoalbuminemia, hypocalcemia, and azotemia identified
by our algorithm.

In patients with COVID-19, cardiac disease is a well-
documented risk factor for increased risk of death
[28, 35, 36]. Autopsy findings have detected the virus in
heart tissue by RT-PCR and myocarditis in association with
elevated cardiac biomarkers [37]. Like tubular epithelial
cells, ACE2 is expressed on myocytes and vascular endo-
thelial cells [26, 31]. Additionally, cardiac arrhythmias have
been documented in COVID-19 patients [37]. Myocarditis
and hypocalcemia are both independently associated with
arrhythmias [24] offering some explanation of the
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mechanisms whereby serum calcium is a useful predictive
variable and increased risk of death in patients with existing
cardiac disease. This is consistent with our model’s high
weight on low calcium levels to predict mortality. More
interestingly, calcium has been hypothesized to support an
immune response to COVID-19 based upon reports that
calcium channel blockers are associated with reduced
mortality in COVID-19 [38]. Although we do not provide a
mechanism as to why, our work supports hypocalcemia as a
useful feature in predicting mortality in COVID-19.

Our study is not without limitations. These data represent
a single institution (University of Texas Medical Branch)
and are subject to institutional biases, which may be present
in clinical test selection and implementation. More relevant
to this model itself, the sample size is unbalanced with a
relative minority of SARS-CoV-2 positive mortalities
although this is likely to be a limitation in any setting.
Given the recency of SARS-CoV-2, such a paucity of
mortalities with existing laboratory data is unavoidable
without larger multi-institutional data sets.

Finally, this study does not perform subset analysis
among other clinical factors such as patient diagnoses. This
is partly to preserve parsimony in the model itself as a
simple, general tool for predicting risk of mortality. How-
ever, it may always be the case that ongoing case accrual
will power larger studies that may discover other covariates
outside of laboratory testing data. Lastly, as this model is
aiming to predict the outcomes of timeseries events, many
of which are still ongoing, it is always possible that any
patients who currently are alive may become case fatalities
at any point. For these reasons, we emphasize that the utility
of such a model is likely more in its ability to integrate
disparately cited laboratory values as interactive predictors
of mortality and to guide discussion on why such features
end up being relevant.

An important strength of this study is that we include all
SARS-CoV-2 positive patients who are deceased even if
those patients did not die while admitted to the hospital. As
such patients are present in model training and testing
subgroups, this allows our predictive model to portend risk
of death for both in-hospital and post-discharge mortality,
further enhancing its applicability and its value in sensi-
tively flagging patients at risk for such adverse outcome,
especially as COVID-19 presently lacks well-defined
management guidelines. Furthermore, this ML approach is
easy to deploy, train, and retrain, meaning that, as more
data become available, this algorithm will improve with
regard to predictive performance. Furthermore, we hope to
follow development of such an algorithm with additional
studies that quantify its potential benefit to patient
survival by prospectively following algorithmically flagged
patients.

ML algorithms can simultaneously evaluate the cumu-
lative effects of numerous biomarkers to discover high-
order interactions. This intricacy of data interpretation
demonstrates the powerful opportunity of using ML in
clinical pathology.
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