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ABSTRACT: The strength of X-ray crystallography in
providing the information for protein dynamics has been
under appreciated. The anisotropic B-factors (ADPs) from
high-resolution structures are invaluable in studying the
relationship among structure, dynamics, and function. Here,
starting from an in-depth evaluation of the metrics used for
comparing the overlap between two ellipsoids, we applied
normal-mode analysis (NMA) to predict the theoretical ADPs
and then align them with experimental results. Adding an extra
layer of explicitly treated water on protein surface significantly
improved the energy minimization results and better
reproduced the anisotropy of experimental ADPs. In
comparing experimental and theoretical ADPs, we focused
on the overlap in shape, the alignment of dominant directions, and the similarity in magnitude. The choices of water molecules,
NMA methods, and the metrics for evaluating the overlap of ADPs determined final results. This study provides useful
information for exploring the physical basis and the application potential of experimental ADPs.

■ INTRODUCTION

X-ray crystallography sets up the gold standard for the
determination of 3D atomic positions, but its potential in
providing the information for protein dynamics has received
less attention. In a typical protein PDB file, each atom occupies
one line that contains five entries, with three for the XYZ
coordinates, one for the occupancy, and one for the
temperature or B-factor. The value of B-factor represents the
magnitude of the electron density in a spherical and isotropic
shape. However, in high-resolution protein structures, each
atom occupies two lines and the additional line contains six
integers that define a symmetric tensor for the anisotropic B-
factor, which is also called anisotropic displacement parameter
(ADP).1−3 ADP represents an asymmetrical and multimodal
distribution of electron density in the shape of an ellipsoid,
which according to the Born−Oppenheimer approximation
reflects the anisotropic movement of the atom nucleus.4,5 In the
current PDB database, the high-resolution structures (<1.2 Å)
compose about 2.5% of the total deposits. The ADPs from
those structures embed a trove of invaluable information for
studying the intriguing relationship between protein structure
and dynamics.
The notion that structure, dynamics, and function are

inseparable in the study of protein biophysics is being
increasingly recognized. According to the vibration frequency
and amplitude, protein dynamics can be arranged from the
high-frequency local movements such as side chain tumbling, to
the low-frequency correlated motions that involves every

element in the whole molecule.6−9 It is believed that the
motions of the lowest vibrational frequency and also of the
largest vibrational amplitude carry the most significance for
protein function.10−13 These molecular motions actually define
the pathway that the protein molecule traces in fulfilling the
biological function. The lowest frequency and the largest
amplitude can be translated into maximal conformation
changes with minimal energy costs.
Two computational approaches have been used to study

protein dynamics: normal-mode analysis (NMA), an analytical
approach based on a harmonic approximation to the protein
energy surface, and principal component analysis (PCA), a
statistical approach based on the sampling of the conformation
space by molecular dynamics (MD) or Monte Carlo
simulations.14−17 Classical NMA starts from a protein structure
that is assumed to be at the local minimum on energy surface.
The first step is to construct the Hessian Matrix, which contains
the second derivative of the system potential energy or the
effective force constant between each pair of atoms.
Diagonalization of the Hessian matrix yields eigenvalues,
corresponding to the vibration frequency (or the amplitude)
of the collective molecular motions, and the corresponding
eigenvectors, representing the direction of the motions.18 For a
nonlinear system containing N particles, the degree of freedom
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(DOF) related with vibration is 3N − 6, with the six DOF of
the translation and rotation of the whole molecule removed.
NMA is mathematically rigorous and produces 3N − 6
orthogonal eigenvectors paired with positive eigenvalues.
However, the PCA based on MD simulation involves the
construction of the covariance matrix based on an ensemble of
protein conformations. Compared to NMA, major advantages
of PCA include the consideration of the anharmonic behavior
of proteins, which could be attributed to the proper treatment
of temperature, pressure, and more importantly, solvent, by the
MD simulation.
Classical NMA is based on the presentation of the system by

all-atom or united-atom force fields. Because of expensive costs
of the physical memory to store the all-atom Hessian matrix
(O(N2)) and the CPU time to diagonalize the matrix (O(N3)),
the application of all-atom NMA (AANM) has been limited.
Currently, the storage of Hessian matrix is not the major issue
given technical advances in the handling of sparse matrixes, but
the matrix diagonalization is still challenging. Iterative
algorithms developed for this purpose include the diagonaliza-
tion in a mixed basis method (DIMB)19,20 and the Lanczos/
Arnoldi factorization method21 adopted in computational
packages of CHARMM22 and GROMACS,23 respectively.
These iterative methods are still very time-consuming and
only yield a small fraction of the total eigenvectors. Therefore,
AANM has been mainly applied to protein systems containing
at most a few hundred residues and without explicitly treated
water molecules.
Various coarse-grained NMA approaches have been pursued

to improve the computational efficiency and thus the
applicability of NMA to large systems.24−27 Methods rooted
in the all-atom presentation of the system include the rotation
translation block (RTB) (also called block normal mode or
BNM), which presents the system with a series of rigid
blocks,28,29 and the method that partitions the matrix to
relevant and nonrelevant parts (CGNM).30−32 In addition,
coarse-gained NMA methods based on much simplified force-
fields have been developed, represented by the anisotropic
network model (ANM).33,34 ANM is the NMA method based
on the elastic network model (ENM) (or Gaussian network
model, GNM), which only considers C-α atoms and applies a
unified force constant (1 kcal/mol/Å2).35,36 Despite such
dramatic simplifications, ENM effectively captures the essentials
of the intrinsic connections between structure and dynamics
and have been successfully applied to large macromolecules and
assemblies that have been beyond the capability of traditional
methods.37−41

A major advantage of the NMA methods based on all-atom
Hessian matrix, including the methods of AANM, RTB, and
CGNM, is the incorporation of detailed chemical information
embedded in the structure, including structural and surface
water molecules.30 However, because of the expensive
computational cost, only a few studies have included explicitly
treated water molecular and addressed their effects on protein
dynamics.30,42−46 These studies revealed that surface water, or
the hydration layer, has significant impacts on protein structure
and dynamics. Especially, having drastically different physical−
chemical properties from the bulk water, the surface water
contributes to the total atomic fluctuations, reduces the
amplitude of protein fluctuations, and shifts the spectrum of
molecular motions toward higher vibration frequency. These
pieces of information, in conjunction with the MD simulations
that explicitly treat both surface and bulk solvent molecules,

provide more complete understanding of the unique con-
tribution by surface water.
For both AANM and coarse-grained NMA methods, it is

essential to study the feature and applicability of each method.
The information on protein dynamics provided by experimental
approaches, such as the X-ray crystallography, NMR, and other
spectroscopic methods, are useful references. Although the
harmonic approximation adopted by NMA obliviates the
anharmonic behavior of protein molecules, NMA has been
confirmed to be able to capture the essentials of protein
dynamics in the vicinity of a local minimum on protein energy
surface.32 Notably, the majority of X-ray data sets were
obtained under the cryogenic temperature of 100 K, well
below the “glass transition” temperature proposed for protein
molecules (160−220 K), when the protein behavior starts to
show more signs of anharmonicity.47 Thus, NMA is especially
suitable to reproduce the protein dynamics under cryogenic
conditions, when the protein molecule behaves more
harmonically and the bulk solvent has less influence over the
intrinsic motions.
At atomic level, protein dynamics is reflected in the

amplitude and the direction of the thermal fluctuations of
each atom. The isotropic thermal factors from X-ray crystal
structures used to be the major criteria in evaluating the NMA
results. Comparing the absolute amplitude of the B-factor of
each atom is not very meaningful, as it is known that NMA
tends to yield smaller atomic fluctuations. Most studies use the
linear correlation coefficient (cciso) as the metric for the overall
alignment between experimental and theoretical B-factors for a
single protein, which varies between 1 (perfect correlation), 0
(no correlation), and −1 (perfect anticorrelation) (eq 11).48

Extensive efforts and considerations have been devoted to
improve the prediction results, including the choice between
all-atom and coarse-grained methods, the inclusion of solvent
molecules, the different setting of cutoff radius for ENM, the
location of the residue relative to the whole molecule or certain
structural features, the consideration of crystalline environment,
etc. However, it has been puzzling that most of the cciso results
fluctuate around 0.6.37,49,50 Interestingly, ENM-based methods
yielded better alignments with NMR data than with X-ray data,
with the cciso above 0.7.

51,52 These facts manifest the limitation
of the isotropic B-factor from X-ray data set as the reference in
evaluating the NMA results, which could be attributed to the
fact that the only useful information provided by isotropic B-
factor is the relative flexibility along the primary sequence
within each protein.
When the resolution of the X-ray data set reached the level of

1.2 Å or above, it becomes possible to fit the atomic thermal
fluctuation with more sophisticated multimodal distributions.
In recent years, the ADPs from high resolution X-ray structures
have increasingly been used as the reference to measure the
NMA results. Compared to the conventional isotropic B-factor,
ADP is superior because ADP carries not only the information
about the amplitude of fluctuations but more importantly the
spatially distributed fluctuations in electron density. Important
information about protein dynamics, more specifically the
directionality of collective molecular motions, is embedded in
these anisotropic fluctuations at atomic level. Therefore, ADP,
as defined by a symmetric 3 × 3 matrix for each atom, provides
clearer and richer information than a single scalar value and
thus is more useful in evaluating the NMA results.
The topic of aligning the experimental and theoretical ADPs

has been attempted numerous times, but a major technical
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hurdle still exists: the suitable metrics to compare the overlap in
shape between two ADPs.37,51,53,54 On the basis of the
definition in X-ray crystallography for the correlation between
two electron-density maps, Merritt developed the formulation
for the correlation coefficient (cc) to quantify the overlap
between two ellipsoids in real space (eq 7).55 However, as
noticed from the very beginning, cc is heavily influenced by the
degree of anisotropy and biased toward the ADPs that are less
anisotropic or close to a sphere in shape (Figure 1). Moreover,
cc is sensitive to the amplitude of the isotropic components of
two ellipsoids. These factors prompted the development of
another two metrics, modified cc (eq 8)37,50 and normalized cc
(eq 10).55 Modified cc involves the construction of a perfectly
misaligned spheroid (keep the eigenvectors but using the
eigenvalues, with the smallest and the largest switched, from the
other spheroid). Modified cc varies between 1 (perfectly
aligned) and 0 (perfectly misaligned). For normalized cc (cc
normalized to the overlaps with isotropic sphere of both
spheroids), the value will be greater than 1 if two ellipsoids are
more similar to each other than the isotropic sphere and less
than 1 if otherwise. Another two metrics, Kullback−Leibler
(KL) distance and Pearson correlation, have also been
used.53,56,57 Although these different metrics have been
repeatedly used in the literature, a detailed investigation of
these metrics, especially with regard to the degree of
anisotropy, the type, and the orientation of spheroids, is
lacking.
In this study, we started from an in-depth evaluation of the

metrics used for evaluating the overlap between two ellipsoids.
We focused on the influence on the results by the degree of
anisotropy, which could be affected by the choice of
computational methods and the selection of the pool of
eigenvectors in calculating the theoretical ADP. We compared
different NMA methods in predicting ADP and used both all-
atom force field based and coarse-grained methods. Moreover,
we studied the effects by surface water and found that adding a
layer of explicitly treated water molecules dramatically improves
the energy minimization (EM) results and has certain impacts
on the results.

■ THEORETICAL METHODS

Treatment of Experimental ADP. The ADPs in high-
resolution structures are listed as six integers in the order of
U11, U22, U33, U12, U13, and U23. Each of these factors has been
scaled up by a factor of 10 000, and the unit is in Å2. These six
ADPs define a symmetric 3 × 3 tensor:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

U U U

U U U

U U U

11 12 13

12 22 23

13 23 33 (1)

which defines the shape of an ellipsoid for each atom. Each
tensor/ellipsoid has three prominent or principal axes that
represent the peaks of three Gaussian distributions. Similar to
the isotropic B-factor, the length of each of the axes is inversely
related with the electron density. The three columns (or rows)
of the tensor represent the projections of three principal axes of
an ellipsoid to the orthogonal XYZ coordinate system used to
define the atomic positions.
Using a simple matrix manipulation (diagonalization), the

above 3 × 3 tensor can be transformed into a diagonal matrix:

= · ·

⎛
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11
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33 (2)

which contains three eigenvalues (Wii). The corresponding
eigenvectors stored in the matrix R (or RT) define the direction
of three prominent axes of the ADP ellipsoid in the orthogonal
XYZ coordinate system, and Wii corresponds to the distribution
of the electron density along each of those prominent axes. The
degree of anisotropy is defined as the ratio between W11 and
W33 and varies between 0 and 1 (sphere).
On the basis of the value of Wii, the equivalent isotropic B-

factor can be calculated based on the following equation:

π

π

= ×

= + + ×

−

−

B W

W W W

8
3

trace( ) 10

8
3

( ) 10

2
4

2
11 22 33 4

(3)

Energy Minimization of the Crystal Structure and
Normal-Mode Analysis (NMA). High resolution structures
that contain experimental anisotropic B-factors were down-
loaded from PDB (see Table S1, Supporting Information, for
the list). Water molecules within 3 Å of the protein molecule
from the crystal structure were kept during the calculations.
First, Modeler was used to fix the missing side chains and
residues within the structure.58 The changes to the overall
structure through the Modeler step were minimal (RMSD of C-
α atoms, 0.09 ± 0.007Å). The initial crystal structure was
energy minimized at double precision. The methods used are
steepest-descent (SD), conjugate-gradient (CG), and limited-
memory Broyden−Fletcher−Goldfarb−Shanno (L-BFGS).23

The force field GROMOS96 (53a6) was used. During the
SD energy minimization step, oxygen atoms of the structural
water and heavy atoms of the protein were position-restrained.
The electrostatic energy was described by a switch function
with the distance for normal treatment set at 15 Å and the
cutoff distance set at 18 Å.59 Two programs from the
GROMACS 4.6.3 package, mdrun and g_nmeig,23 were used
to produce and diagonalize the Hessian matrix, respectively.
The eigenvalues and eigenvectors were saved as the results of
the NMA based on all-atom (or united-atom) force fields
(AANM).
We also tested three different coarse-grained NMA: the

NMA based on the elastic network model (ENM),34 the block
NMA (BNM) based on a representation of the whole molecule
by rigid blocks,29 and the NMA based on partitioning the all-
atom Hessian matrix (CGNM).30−32 For ENM, the coordinates
of the C-α atoms from the original crystal structure were used.
The force constant and the cutoff distance set as 1 kcal/mol/Å2

and 13 Å, respectively. For BNM, we used the Fortran code
DIAGRTB (v2.52) with a minor modification of LRWORK,
from 32,000,000 to 200,000,000, to accommodate large
systems.28,60 Details of Hessian matrix partition and the related
coarse-grained NMA (CGNM) has been described previously
in detail.30 Briefly, the all-atom Hessian matrix was partitioned
into four sections representing the interactions among relevant
to relevant atoms, nonrelevant to nonrelevant atoms, relevant
to nonrelevant atoms, and nonrelevant to relevant atoms:
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=H
H H

H H

xx xy

yx yy
all

(4)

Then the effective force constant matrix for C-α atoms were
extracted based on the following equation:32

′ = − · ·−H H H H Hxx xx xy yy yx
1

(5)

Diagonalization of the effective Hessian matrix for C-α atoms
yielded the eigenvectors and the corresponding eigenvalues.
On the basis of the eigenvectors and eigenvalues from the

above NMA, the theoretical ADP of each atom was calculated
using the following equation:

∑= ⟨Δ ·Δ ⟩ =
·

ϖ=

V x x
V V

ij i j
k

N
ki kj

k1
2

(6)

where i and j are indexes for three orthogonal axes and k is the
index for eigenvectors/eigenvalues. N represents the number of
eigenvectors involved in the analysis.
Comparing Experimental and Theoretical ADPs. The

correlation coefficient (cc) between two ADPs is calculated
according to the following equation:

= ·

+

− −

− −⎡⎣ ⎤⎦
U V

U V

U V
cc( , )

(det det )

det( )

1 1 1/4

1
8

1 1 1/2

(7)

where det represents the matrix determinant.55 Determinant of
the matrix can be calculated as the product of eigenvalues or
directly from entries in the matrix.
Other than the overlap factor or correlation coefficient (cc),

several other metrics have been introduced to quatify the
similaries in shape between two ellipsoids. Two representative
metrics are
1. Modified cc.

=
−
−

cc
cc cc
1 ccM

min

min (8)

where ccmin corresponds to the minimal cc between U and V. V′
represents the perfect misalignment defined by

′ = · ·
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with the prominent (RU
1) and the least prominent (RU

3)
directions being switched and the three eigenvalues being
replaced by the values from tensor V.50

2. Normalized cc.

= U V
U V

cc
cc( , )

cc( , Iso)cc( , Iso)N
(10)

where cc(U,V) is divided by the product of the cc between U or
V with isotropic sphere.51

To compare the distribution of the magnitude of the ADPs,
we calculated the isotropic B-factor based on eq 3, normalized
the value by the sum of all isotropic factors in that protein, and
used the following equation to obtain the linear correlation
coefficient (cciso) between experimental and theoretical B-
factors for each protein:50

∑ − ⟨ ⟩ · − ⟨ ⟩

∑ − ⟨ ⟩ · ∑ − ⟨ ⟩
=

= =

B B B B

B B B B

( ) ( )

( ) ( )

k
N

k k

k
N

k k
N

k

1
exp exp pred pred

1
exp exp 2

1
pred pred 2

(11)

Notice about the Conversion of Units. In a previous
publication, we have listed the conversion of units across
different computational systems.30 For NMA, the GROMACS
program g_nmeig generated eigenvalue and eigenfrequency for
each eigenvector. The unit of eigenfrequency is listed as
wavenumber with the unit in cm−1. Eigenvalue corresponds to
the square of the angular speed (ϕ2), with the unit in s−2, and
requires a conversion factor (1024).30 To convert the eigenvalue
into eigenfrequency, the following factor is needed:

π π
= ϖ = ϖ

· × · ·

= × · ϖ · · = ϖ · ·

= ·

−
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−
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2

10 1

12 2 1
2

24
2 1

1

(12)

where c represents the speed of light.
Systematic Survey of Spheroid Orientations in Euler

Angle Space. To study the overlap between randomly
positioned ellipsoid, we relied on the Haar measure for Euler
angle to approach a uniform coverage of the angle space (α, β,
γ), sin(β)ΔαΔβΔγ. The range of α, β, and γ are 0 to 2π, cos−1

(−1.0) to cos−1 (1.0), and 0 to 2π, respectively. We used the
following Euler’s theorem to rotate the ellipsoid:
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α γ β γ α
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= −

= +

=
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(3, 3) cos( ) (13)

The following equation was used to obtain the mean value of
cc:

∭
∭

∭

β α β γ

β α β γ

β α β γ

π

=
· Δ Δ Δ

Δ Δ Δ

=
· Δ Δ Δ

αβγ

αβγ

cc
cc sin( )

sin( )

cc sin( )

8 2 (14)

■ RESULTS
Metrics for Comparing the Shape of ADP Ellipsoids.

To compare the experimental and computational ADP tensors,
it is necessary to study both the shape, the orientation, and the
magnitude.51 The orientation is represented by three
eigenvectors of the tensor, which define the three dominant
directions of the ADP ellipsoid. The three eigenvalues can be
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converted to the isotropic B-factor and used to compare the
magnitude. In contrast, comparing the shape of two ellipsoids is
complicated. The value of cc varies between 0 for misaligned
and extremely anisotropic ellipsoids and 1 for perfectly aligned
ellipsoids or two ellipsoids that are close to the sphere in shape.
The degree of anisotropy is defined by the ratio between the
shortest and longest radii of the ellipsoids (Figure 1A). The

change in cc value correctly reflects the nature that the
ellipsoids of higher anisotropy (close to sphere), tends to have
larger overlap (Figure 1B). However, this close correlation
between cc and anisotropy has a caveat: the cc results have a
bias toward ADPs of high anisotropy. This is an important issue
for theoretical ADP because the anisotropy is directly related
with the computational model (all-atom force fields or coarse-
grained methods, with or without surface water) and, more

importantly, the number of eigenvectors involved in the
analysis.
On the basis of the definition of cc, several other metrics

were proposed to quantify the overlap between two ellipsoids
including the normalized cc and the modified cc. Which metrics
provide more straightforward and realistic comparison of two
ADPs? To this end, we used the prolate or oblate (pancake- or
cigar-shaped spheroid) as an example. First, we calculated the
overlap between the spheroids of different anisotropy with
isotropic sphere, cc(U,ISO).55 Clearly, cc(U,ISO) depends on
the type of spheroid because the cc trace of prolate is different
from that of oblate, especially at low range of anisotropy
(Figure 1B,C, blue traces). Next we calculated the cc of two
randomly oriented spheroids with the same anisotropy through
a systematic sampling of the Euler angle space (Figure 1B,C,
black traces). As expected, the cc between two randomly
positioned spheroids is lower than the overlap with the
isotropic sphere and also increases along the increase in
anisotropy. Noticeably, the overlap between two randomly
oriented spheroids is shape-independent: the trace for two
prolates and the trace for two oblates are identical (Figure 1D).
To further confirm this, we tested the overlap between a prolate
with a randomly orientated oblate and obtained the same
results. Thus, cc is strongly influenced by the degree of
anisotropy and largely insensitive to the specific shape of the
ADPs (prolate or oblate). The correlation between cc and
anisotropy is an import factor in evaluating experimental and
theoretical ADPs.
Next we studied the modified cc and the normalized cc as a

function of anisotropy. Our results showed modified cc is not
sensitive to anisotropy, which makes it very useful when the
degree of anisotropy needs to be occluded from the analysis
(Figure 2A,B, left). Furthermore, we calculated the overlap
between two randomly oriented spheroids and found that
modified cc is sensitive to the shape of the spheroid because the
overlap between a prolate and an oblate (red trace) is
drastically different from that of prolate−prolate (green, dashed
trace) or oblate−oblate (black trace) (Figure 2C, left).
However, the almost flat trace of modified cc (black traces in
Figure 2A,B, left), even when the anisotropy approaches to 1, is
at odds with the expectation that the overlap between two
spheroids similar to a sphere should be close to 1. For the
normalized cc, it is similar to cc and is also very sensitive to the
degree of anisotropy (Figure 2A,B, right). However, to a certain
extent, normalized cc is also sensitive to the shape of the
spheroids. The traces for the pancake−pancake, cigar−cigar,
and cigar−pancake are all different, especially when the
anisotropy was much less than 1 (Figure 2C, right). A recent
study reported that normalized cc is less useful when evaluating
the theoretical ADP based on the segmented TLS model.61

Taken together, these analyses provided useful information for
applying three metrics to compare the overlap between two
ADPs.

Adding Surface Water Makes the Energy Minimized
Structure Closer to Native Structure. EM of the crystal
structure is a critical step for classical AANM because NMA is
an analytical approach and based on the harmonic approx-
imation of the protein energy surface. To remove the improper
contacts in the structure and more importantly ensure the
modeled conformation by the force field corresponding to a
local minimum on the energy surface, it is essential to use
different EM methods and perform the calculations at double
precision. To study the effects of surface water, we separately

Figure 1. Correlation coefficient (cc) for measuring the overlap
between two spheroids. (A) Schematic drawings of a sphere, a prolate
(cigar-shaped spheroid), and an oblate (pancake-shaped spheroid).
The anisotropies for the three objects are 1.0, 0.2, and 0.2, respectively.
(B) cc for the overlap between two prolates of the same anisotropy.
Red, perfectly aligned prolates; black, averaged cc of randomly
orientated prolates; green, perfectly misaligned prolates. Blue trace
shows the overlap between a prolate and an isotropic sphere. (C) cc
for the overlap between two oblates of the same anisotropy. Red,
perfectly aligned oblates; black, averaged cc of randomly orientated
oblates; green, perfectly misaligned oblates. Blue trace shows the
overlap between an oblate and an isotropic sphere. (D) Averaged cc
for randomly oriented prolate and oblate of the same anisotropy (red
trace). The traces for prolate−prolate (green) and oblate−oblate
(black) are from B and C, respectively.
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tested three conditions: (1) protein only and without water;
(2) protein plus the crystal water within 3 Å from protein, and
(3) protein, the crystal water, and an extra layer (5 Å) of
explicitly treated surface water (Figure 3A). After the EM steps,
we calculated the root-mean-square deviation (rmsd) with
respect to the original crystal structure (Figure 3B,C; Table S1,
Supporting Information). The results were impressively
consistent: among the three conditions, adding an extra layer
of surface water always gave the lowest rmsd (0.65 ± 0.03 Å; n
= 20). Oppositely, removing all water from the structure
resulted in the highest rmsd, 1.56 ± 0.06 Å, and in the middle
was the case with only crystal water (0.94 ± 0.04). To test
whether this observation is force-field relevant, we repeated the
above calculations using another force field, AMBER99, and
obtained the same results.
Comparing the Overlap in Shape between Exper-

imental and Theoretical ADPs. Next we asked how the
treatment of water molecules and the choice of NMA methods
affected the ADP results. In theory, for a system containing N
particles, the number of the normal modes available for analysis
is 3N − 6. The selection of eigenvectors in the calculation of
theoretical ADP is crucial for the results.37 Involving too many
eigenvectors would increase the computational cost and
diminish the meaning of NMA in terms of reducing the
number of free parameters. However, involving too few
eigenvectors would apparently affect the accuracy of the results.
Since the motions of the lowest vibration frequency and of the
highest vibration amplitude are of the most functional
significance, we calculated the theoretical ADP based on the

first 3, 6, 10, 30, 100, or 1000 (if applicable) eigenvectors of the
lowest frequencies.
The anisotropy of the theoretical ADP critically depends on

the number of eigenvectors (Figure 4A). As a reference, the
averaged anisotropy of the experimental ADPs is 0.496 ± 0.099
(n = 20; protein based; filled diamonds) or 0.509 ± 0.168 (n =
6351; residue based; standard deviation). For AANM, the
model with explicitly treated surface water apparently out-
performed the other two models in approaching the level of
experimental anisotropy but with less eigenvectors (black trace
in Figure 4A). With only 30 eigenvectors involved (AANM
with surface water), the averaged anisotropy reached the level
of 0.4, whereas the other two models required hundreds of
eigenvectors to reach a similar level. For coarse-grained NMA,
both BNM and CGNM methods outperformed the ENM
method, which might be related with the all-atom treatment
and the consideration of detailed chemical information
embedded in the structure.
Does adding surface water lead to an improved overlap

between experimental and theoretical ADPs? On the basis of
the averaged cc, the answer seemed to be yes. We calculated the
cc based on different pools of eigenvectors (Figure 4B).
Corresponding to the increase in the number of involved

Figure 2. Modified cc and normalized cc for the overlap between a
pair of spheroids. (A) Modified cc (left) and normalized cc (right) for
measuring the overlap between two prolates of the same anisotropy.
Red, perfectly aligned prolates; black, mean value for randomly
oriented prolates; green, perfectly misaligned prolates. (B) Modified cc
(left) and normalized cc (right) for measuring the overlap between
two oblates of the same anisotropy. (C) Modified cc (left) and
normalized cc (right) for randomly oriented prolate and oblate of the
same anisotropy (red trace). The traces for prolate−prolate (green)
and oblate−oblate (black) are from A and B, respectively. For
modified cc (left), both traces are numerically identical.

Figure 3. Including crystal water and adding surface water improves
EM results. (A) Structures of 1UG6 as an example. (clockwise from
upper left corner) The original crystal structure including oxygen
atoms of water molecules, energy minimized systems including surface
and crystal water, no water, and crystal water only. (B) Overlay of all
four structures shown in A. Cyan, crystal structure; red, surface +
crystal water; green, crystal water only; blue, no water. (C) rmsd of C-
α atoms vs the number of C-α atoms for the 20 proteins used in this
study (see Table S1, Supporting Information, for the list). For each
protein, three water models were tested: systems including surface and
crystal water (black), crystal water only (red), and no water (blue).
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eigenvectors, the cc increases steeply from the value around 0.5
to very close to 1. A replot of the cc values involving 10 or 100
eigenvectors in column format is shown in Figure 4C. It
appears that for the theoretical ADP based on the model
including surface water, the overlap with experimental ADP is
apparently higher. Similarly, the BNM and CGNM methods
outperformed the ENM method.
Negative Controls Are Critical in Evaluating the

Overlap in Shape. To ensure the above conclusion was
correct, we asked whether the increase in cc was due to the
increase in the anisotropy of theoretical ADPs. To this end, we
plotted the cc values that were based on 100 eigenvectors for all
protein residues (n = 6351) as a function of the anisotropy of
the experiment ADP (Figure S1, Supporting Information).
Moreover, we scrambled the input of experimental ADPs for
each protein by randomly choosing experimental ADPs from all
other 19 proteins (Figure S2, Supporting Information).
Choosing atoms from other proteins instead of shuffling the
ADPs within each protein increases the randomness because

subpopulation of atoms, such as the residues belonging to the
same domain, share similarities in the atomic motions. Then we
introduced the traces of negative controls to the cc plots shown
in Figure 4B (Figure 5A). The close resemblance of the cc

traces (solid lines with standard error bars) with the
corresponding negative control traces (color-matched dashed
lines) reinforced the necessity to involve other metrics to help
evaluate the overlap between two ADPs.
We calculated the modified cc and the normalized cc. In both

cases, the clear separations from the negative control traces
demonstrated a better separation between signal and noise than
cc. However, two metrics gave opposite evaluations. For
modified cc, the AANM with surface water produces better
overlap, especially in the range with less than 30 eigenvectors,
and the BNM and CGNM methods outperformed ENM
(Figure 5B). In contrast, normalized cc revealed totally
opposite trends (Figure 5C). This might be related with the
fact that the normalized cc biases toward the ADPs of low
anisotropy values (Figure 2). Again, these analyses showcase
the complexity in interpreting the overlap results.

Comparing the Distribution of the Magnitude and
the Orientation of Experimental and Theoretical ADPs.
We started from comparing the magnitude of experimental and
theoretical ADPs, using a linear correlation factor (cciso) for the
isotropic B-factors within each protein (eq 11; Figure 6A).50

The clear separation between the results (solid trace with

Figure 4. Averaged correlation coefficient (cc) based on the results of
20 proteins. (A) Averaged anisotropy of the theoretical ADP vs the
number of eigenvectors involved in the calculation. Left, results of
NMA based on all-atom force fields. Right, results of coarse-grained
NMA. Averaged anisotropy of experimental ADPs is shown in the
upper left corner (0.496 ± 0.22, n = 20). (B) Averaged cc vs the
number of eigenvectors involved in the analysis. Left, results of NMA
based on all-atom force fields. Right, results of coarse-grained NMA.
(C) Left, averaged cc based on the first 10 eigenvectors. Right,
averaged cc based on the first 100 eigenvectors.

Figure 5. Averaged overlap results based on 20 proteins and the
corresponding negative controls. (A) Averaged cc based on 20
proteins. Dashed lines represent the negative controls based on
scrambled experimental ADPs from the other 19 proteins as input.
Left, AANM results. Right, coarse-grained results. (B) Modified cc
results. Dashed lines represent the negative controls based on
scrambled experimental ADPs as input. (C) Normalized cc results.
Dashed lines represent the negative controls based on scrambled
experimental ADPs as input.
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standard error bar) from the negative control traces (dashed
traces) demonstrated the strength of NMA in predicting the
relative flexibility within each protein. With only 3 eigenvectors
involved, the AANM method with surface water slightly
outperformed other AANM methods and coarse-grained
methods. Noticeably, regardless of the computational models,
the results by all six methods are very similar, indicating that the
isotropic B-factor might not be an effective metric in
differentiating NMA results. To compare the orientation of
ellipsoids represented by ADP tensors, we studied the
eigenvector of the lowest eigenvalue (#1), corresponding to
the highest electron density, and the eigenvector of the highest
eigenvalue (#3), corresponding to the highest flexibility (Figure
6B,C). The results revealed two pieces of information: First,
involving more eigenvectors does not lead to better results,
especially for the model involving surface water, and second,
ENM significantly outperforms the BNM and CGNM in
predicting the orientation of the ADPs.

■ DISCUSSION
The ADPs from high-resolution X-ray crystal structures embed
rich information for protein dynamics; at the same time, they
present an excellent test case for different computational
approaches, mainly the NMA and the MD simulation.

Apparently MD simulation has the advantage of incorporating
a more realistic description of the protein close to the native
environment. However, NMA, as an elegant analytical approach
for studying protein dynamics, is still being widely used. Since
NMA is based on a harmonic approximation of protein energy
surface, it is perfectly suitable to reproduce the dynamic
information embedded in the crystal structures because most of
the X-ray data sets for solving the structure were collected at
extremely low temperature (100 K). In this study, using the
experimental ADPs from high-resolution structure as the
reference, we compared different NMA models in predicting
the theoretical ADP and investigated the effects of surface
water.
We found that including surface water significantly improved

the EM results and outperformed other models in predicting
the anisotropy of the ADP. It is well-known that the water near
the protein surface has very different physical−chemical
properties from the bulk water, such as the 5% increase in
the density of water in hydration layer.62,63 Both experimental
studies, including the measurements by terahertz spectroscopy
and neutron scattering,64−66 and theoretical investiga-
tions30,67,68 supported these differences between surface and
bulk water. How does adding surface water improve the
simulation results? Most likely this is due to the “cage”-like
structure formed by surface water molecules, mediated by an
extensive network of hydrogen bonds and intimate interactions
with polar residues on protein surface.30,42−46 Thus, including
explicitly treated surface water should more faithfully reproduce
the intimate interactions between the protein molecule and the
solvent. Previously, we showed that including surface water
shifts the spectrum of molecular motion generated by NMA
toward higher frequencies, which had been reported by
spectroscopic studies.69−71 Here our results showed that the
model involving surface water outperformed other models in
reproducing the experimentally measured anisotropy. With
surface water, much less eigenvectors (30−50) are needed to
approach the averaged anisotropy of the experimental ADP.
Since 50 eigenvectors only represent a very small fraction of the
total eigenvectors (3N − 6) of the whole system, the
computational cost could be drastically reduced,
The metric for measuring the overlap between two ellipsoids

is critical for interpreting the results. Using the prolate and
oblate as examples we systematically surveyed the metrics
proposed in the literature, including the original cc, modified cc,
and normalized cc. We found that cc faithfully reflects the
nature that the overlap between two ellipsoids depends on the
degree of anisotropy. However, the close correlation between
cc and anisotropy makes it difficult to distinguish the real
overlaps from the contaminations with the overlap with
ellipsoids similar to the sphere. To this end, negative control
data sets, based on randomly selected ADPs from other
proteins, should be very useful in judging the quality of the
overlap results. In contrast, modified cc and normalized cc
clearly separate signal from noise, but to different extent both
show sensitivities to the shape and the anisotropy of the
ellipsoid. Thus, our results show that to compare the overlap
between ADPs, it is essential to consider anisotropy, which is
related with the computational models and the number of
eigenvectors, and more importantly, use different metrics in
conjunction with properly designed negative controls to
evaluate the results. In practical application, ADPs as negative
control could be chosen from a pool of proteins that are totally
irrelevant in both function and structure. Noticeably, alignment

Figure 6. Comparing the magnitude and the orientation of theoretical
and experimental ADPs. (A) Averaged correlation (cciso) between
experimental and theoretical isotropic B-factors for 20 proteins.
Dashed lines represent the negative controls based on scrambled
experimental ADPs as input. Left, AANM results. Right, coarse-grained
results. (B) Averaged dot product (absolute value) of the eigenvectors
with the smallest eigenvalues. Results are averaged based on 20
proteins. Dashed lines represent the negative controls based on
scrambled experimental ADPs as input. (C) Averaged dot product
(absolute value) of the eigenvectors with the largest eigenvalue.
Results are averaged based on 20 proteins. Dashed lines represent the
negative controls based on scrambled experimental ADPs as input.
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of the isotropic B-factors leads to the results around 0.5,
regardless of the computational methods and force fields
(Figure 6A). In the field, there is a transition from relying on
ADP instead of isotropic B-factor as the metric to evaluate
NMA results. This should be related with the fact that isotropic
B-factors mainly report the relative flexibility within each
protein, but however, ADPs provide much richer information
for protein dynamics at atomic detail. Importantly, the
collective molecular motions, which critically underlies the
fulfillment of protein function, are embedded in the anisotropic
thermal fluctuations.
A comparison of different models and methods showed that

the NMA based on ENM produced results comparable to the
results by all-atom force field based methods, including AANM,
BNM, and CGNM. ENM, related to GNM, is a knowledge-
based model with a drastically simplified presentation of the
system: only C-α atoms are being considered, and they are
connected through a network of elastic springs with a unified
force constant, 1 kcal/mol/Å2. Purely based on the positional
definition of C-α atoms, ENM faithfully reproduces the atomic
fluctuations determined by NMR and X-ray crystallogra-
phy52,72,73 and has been applied to large systems that are
beyond the reach of canonical NMA methods.37−41 Here our
results confirmed the effectiveness of the NMA based on ENM,
especially in predicting the orientation of the ADP. However,
the NMA methods rooted in the all-atom presentation are
capable of incorporating a more complex chemical nature and
thus have the potential to better reproduce the experimental
ADP. Among all the methods, the MD simulation at 300 K
better reproduced the absolute amplitude of crystallographic B-
factors. Previously, we investigated the effect of surface water by
developing the CGNM method.30 In that study, we reported
that CGNM outperformed ENM-based method because the
results of AANM instead of the experimental results were used
as the reference for the purpose of methodology development.
Here in the current study, we mainly used the experimentally

determined ADP as the reference to compare different
computational methods. Moreover, we included 20 proteins
in the calculation instead of just one in a previous study. For
isotropic fluctuations, the correlation coefficient by ENM is
comparable to the results by other methods (Figure 6A).
However, in terms of predicting the directionality of the ADP
ellipsoids, ENM indeed outperformed other coarse-grained
methods and matched AANM (Figure 6B). We thought this
might be related with the fact that ENM is knowledge-based
and rooted in the experimental observation of thermal
fluctuations, especially by X-ray crystallography, which might
explain the effectiveness of ENM in reproducing empirical
results.

■ CONCLUSIONS
In summary, we compared the theoretical ADP based on NMA
with the experimentally determined ADP embedded in high
resolution structures. Incorporating surface water improved the
EM results and the alignment with experimental ADP in certain
aspects. With the number of the high resolution structures
deposited in the PDB databank steadily increasing every year,
the ADPs from those structures represent a trove of treasure for
the study of protein dynamics but have not been intensively
investigated. Further improving the alignment between
experimental theoretical ADPs could be accomplished by
incorporating the anharmonic behavior of the protein and the
crystalline environment, although both only have weak

influences over the intrinsic dynamics of the protein under
cryogenic conditions.53,56,74 From the aspect of experimental
ADP, the quality of the data could be improved through careful
exclusion of the whole-body movement of the crystal and
standardization of the refinement procedure, as the methods of
SHELX and REFMAC gives slightly different results.37,75,76

Finally, it would be interesting to ask whether the ADPs within
a protein follow certain patterns and to investigate the patterns
in the context of structure and protein. Taken together,
continuing study of the ADP will strengthen our understanding
of the general relationship among structure, dynamics, and
function and, retrogradely, would benefit the development of
the methodology for refining medium-to-low resolution
structures.77,78
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